高三理科数学第三轮复习 限时训练6
- 格式:doc
- 大小:1.60 MB
- 文档页数:3
倒数第5天 解析几何[保温特训]1.若直线l 1:ax +2y +6=0与直线l 2:x +(a -1)y +(a 2-1)=0平行,则实数a=________.解析 由a (a -1)-2×1=0得:a =-1,或a =2,验证,当a =2时两直线重合,当a =-1时两直线平行.答案 -12.当直线l :y =k (x -1)+2被圆C :(x -2)2+(y -1)2=5截得的弦最短时,k 的值为________.解析 依题意知直线l 过定点P (1,2),圆心C (2,1),由圆的几何性质可知,当圆心C 与点P 的连线l 垂直时,直线l 被圆C 截得的弦最短,则k ·2-11-2=-1,得k =1.答案 13.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦的长为23,则a =________.解析 由⎩⎨⎧x 2+y 2+2ay -6=0,x 2+y 2=4,得2ay =2,即y =1a ,则⎝ ⎛⎭⎪⎫1a 2+()32=22,解得a =1.答案 14.椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为________.解析 椭圆的焦距为4,所以2c =4,c =2因为准线为x =-4,所以椭圆的焦点在x 轴上,且-a 2c =-4,所以a 2=4c =8,b 2=a 2-c 2=8-4=4,所以椭圆的方程为x 28+y 24=1.答案 x 28+y 24=15.直线x -2y +2=0经过椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点和一个顶点,则该椭圆的离心率为________.解析 直线x -2y +2=0与坐标轴的交点为(-2,0),(0,1),依题意得,c =2,b =1⇒a =5⇒e =255.答案 255 6.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 2作倾斜角为120°的直线与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________. 解析 不妨设|F 1F 2|=1.∵直线MF 2的倾斜角为120°,∴∠MF 2F 1=60°,∴|MF 2|=2,|MF 1|=3,2a =|MF 1|+|MF 2|=2+3,2c =|F 1F 2|=1,∴e =c a =2- 3.答案 2- 37.已知点P (a ,b )关于直线l 的对称点为P ′(b +1,a -1),则圆C :x 2+y 2-6x -2y =0关于直线l 对称的圆C ′的方程为________.解析 由圆C :x 2+y 2-6x -2y =0得,圆心坐标为(3,1),半径r =10,所以对称圆C ′的圆心为(1+1,3-1)即(2,2),所以(x -2)2+(y -2)2=10.答案 (x -2)2+(y -2)2=108.在△ABC 中,∠ACB =60°,sin A ∶sin B =8∶5,则以A ,B 为焦点且过点C的椭圆的离心率为________.解析 设BC =m ,AC =n ,则 m n =85,m +n =2a ,(2c )2=m 2+n 2-2mn cos 60°,先求得m =1613a ,n =1013a ,代入得4c 2=196169a 2,e =713.答案 7139.在平面直角坐标系xOy 中,已知△ABC 的顶点A (-4,0),C (4,0),顶点B 在椭圆x 225+y 29=1上,则sin A +sin C sin B等于________. 解析 由正弦定理得sin A +sin C sin B=a +c b =108=54. 答案 5410.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(1,2)在“上”区域内,则双曲线离心率e 的取值范围是________.解析 双曲线x 2a 2-y 2b 2=1的一条渐近线为y =b a x ,点(1,2)在该直线的上方,由线性规划知识,知:2>b a ,所以e 2=1+⎝ ⎛⎭⎪⎫b a 2<5,故e ∈(1,5). 答案 (1,5)11.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点、右焦点分别为A 、F ,它的左准线与x 轴的交点为B ,若A 是线段BF 的中点,则双曲线C 的离心率为________.解析 由题意知:B ⎝ ⎛⎭⎪⎫-a 2c ,0,A (a,0),F (c,0),则2a =c -a c , 即e 2-2e -1=0,解得e =2+1.答案 2+112.过直线l :y =2x 上一点P 作圆C :(x -8)2+(y -1)2=2的切线l 1,l 2,若l 1,l 2关于直线l 对称,则点P 到圆心C 的距离为________.解析 根据平面几何知识可知,因为直线l 1,l 2关于直线l 对称,所以直线l 1,l 2关于直线PC 对称并且直线PC 垂直于直线l ,于是点P 到点C 的距离即为圆心C 到直线l 的距离,d =|2×8-1|12+22=3 5.答案 3 513.已知椭圆的中心为坐标原点,短轴长为2,一条准线方程为l :x =2.(1)求椭圆的标准方程;(2)设O 为坐标原点,F 是椭圆的右焦点,点M 是直线l 上的动点,过点F 作OM 的垂线与以OM 为直径的圆交于点N ,求证:线段ON 的长为定值.解 (1)∵椭圆C 的短轴长为2,椭圆C 的一条准线为l :x =2,∴不妨设椭圆C 的方程为x 2a 2+y 2=1.∴a 2c =1+c 2c =2,即c =1.∴椭圆C 的方程为x 22+y 2=1.(2)F (1,0),右准线为l :x =2,设N (x 0,y 0),则直线FN 的斜率为k FN =y 0x 0-1,直线ON 的斜率为k ON =y 0x 0, ∵FN ⊥OM ,∴直线OM 的斜率为k OM =-x 0-1y 0, ∴直线OM 的方程为:y =-x 0-1y 0x ,点M 的坐标为M ⎝ ⎛⎭⎪⎫2,-2(x 0-1)y 0. ∴直线MN 的斜率为k MN =y 0+2(x 0-1)y 0x 0-2. ∵MN ⊥ON ,∴k MN ·k ON =-1,∴y 0+2(x 0-1)y 0x 0-2·y 0x 0=-1, ∴y 20+2(x 0-1)+x 0(x 0-2)=0,即x 20+y 20=2.∴ON =2为定值.[知识排查]1.用直线的点斜式、斜截式设直线的方程时,易忽略斜率不存在的情况.2.判断两直线的位置关系时,注意系数等于零时的讨论.3.直线的斜率公式,点到直线的距离公式,两平行线间的距离公式记住了吗?4.直线和圆的位置关系利用什么方法判定(圆心到直线的距离与圆的半径的比较)?两圆的位置关系如何判定?5.截距是距离吗?“截距相等”意味着什么?6.记得圆锥曲线方程中的a,b,c,p,ca的意义吗?弦长公式记熟了吗?7.离心率的大小与曲线的形状有何关系?等轴双曲线的离心率是多少?8.在椭圆中,注意焦点、中心、短轴端点,三点连线所组成的直角三角形.9.在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式Δ≥0的限制.(求交点、弦长、中点、斜率、对称,存在性问题都在Δ>0 下进行)。
数列(6)1、如图所示,∠AOB=1rad,点A l,A2,…在OA上,点B1,B2,…在OB上,其中的每一个实线段和虚线段的长均为1个长度单位,一个动点M从O点出发,沿着实线段和以O为圆心的圆弧匀速运动,速度为l长度单位/秒,则质点M到达A3点处所需要的时间为__秒,质点M到达An点处所需要的时间为秒.2、已知数列满足:,,,,,且当n≥5时,,若数列满足对任意,有,则b5= ;当n≥5时,.3、已知数列的各项均为正整数,对于,有当时,______;若存在,当且为奇数时,恒为常数,则的值为______.4、已知等差数列的前项和为,,,则数列的前项和为______________5、若数列{a n}满足则称数列{a n}为调和数列.已知数列{}为调和数列,且x1+x2+…+x20=200,则x5+x16=________.6、已知等差数列的公差d不为0,等比数列的公比q为小于1的正有理数。
若,且是正整数,则q等于.7、(2012年高考(湖北理))回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249等.显然2位回文数有9个:11,22,33,,99.3位回文数有90个:101,111,121,,191,202,,999.则(Ⅰ)4位回文数有__________个;(Ⅱ)位回文数有_________个.8、(2012年高考(湖南理))设N=2n(n∈N*,n≥2),将N个数x1,x2,,xN依次放入编号为1,2,,N 的N个位置,得到排列P0=x1x2xN.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前和后个位置,得到排列P1=x1x3xN-1x2x4xN,将此操作称为C变换,将P1分成两段,每段个数,并对每段作C变换,得到;当2≤i≤n-2时,将Pi分成2i段,每段个数,并对每段C变换,得到Pi+1,例如,当N=8时,P2=x1x5x3x7x2x6x4x8,此时x7位于P2中的第4个位置.(1)当N=16时,x7位于P2中的第___个位置;(2)当N=2n(n≥8)时,x173位于P4中的第___个位置.9、(2012年高考(上海春))已知等差数列的首项及公差均为正数,令当是数列的最大项时,____.10、(2012年高考(湖南文))对于,将表示为,当时,当时为0或1,定义如下:在的上述表示中,当,中等于1的个数为奇数时,;否则。
高三上理科数学限时训练62021―2021学年度高三理科数学限时训练6(集合与简易逻辑)1.让你?{1,2,3,4,5,6},m?{1,2,4};然后呢?()a.(a)ub.{1,3,5}c.{?,?,?}d、 {?,?,?}2.下列命题中,真命题是()a、 ?。
?x0?r、 ex0?0b。
?十、r、 2倍?x2a??1d.a?1,b?1是ab?1的充分条件b3.若集合a={-1,1},b={0,2},则集合{zz=x+y,x∈a,y∈b}中的元素的个数为()a、 5b。
4c。
3d。
二4.已知集合p={xx2≤1},m={a}.若p∪m=p,则a的取值范围是()c、 a?B0的充要条件是a.(-∞,-1]b.[1,+∞)c.[-1,1]d.(-∞,-1]∪[1,+∞)5.已知集合a?{(x,y)|x,y是实数,X2?Y2?1},a?{(x,y)|x,y为实数,且y?x},则a?b的元素个数为()a、 0b.1c、二,d.3? 6.“x???”是“x”吗Of()a.充分而不必要条件b.必要而不充分条件c.充要条件d.既不充分也不必要7.设a,b∈r。
“a=0”是“复数a+bi是纯虚数”的()a.充分而不必要条件b.必要而不充分条件c.充分必要条件d.既不充分也不必要条件8.若关于x的不等式|x-1|+|x-2|>a2+a+1(x∈r)恒成立,则实数a的取值范围为()a、(0,1)b.(-∞,-1)∪(0,+∞)c、(-∞,-1) d.(-1,0)9.已知集合a?{?1,1,2,4},b?{?1,0,2}则a?b=1,x?2} ,然后cup=xk1k111设集合M={x | x?,K?Z},n={x | x?,K?Z},然后设集合M和n2442关系:mn。
(填?,?,?,?)10.认识你吗?{y|y?log2x,x?1},p?{y | y???12.设置二次函数f(x)?AX2?BX?C(a?0)。
高考小题限时练41.(2016·天津)已知集合A ={1,2,3,4},B ={y |y =3x -2,x ∈A },则A ∩B 等于( ) A .{1} B .{4} C .{1,3} D .{1,4}答案 D解析 因为集合B 中,x ∈A ,所以当x =1时,y =3-2=1; 当x =2时,y =3×2-2=4; 当x =3时,y =3×3-2=7; 当x =4时,y =3×4-2=10, 即B ={1,4,7,10}.又因为A ={1,2,3,4},所以A ∩B ={1,4}.故选D.2.(2015·四川)设a ,b 都是不等于1的正数,则“3a >3b >3”是“log a 3<log b 3”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 答案 B解析 ∵3a >3b >3,∴a >b >1,此时log a 3<log b 3正确;反之,若log a 3<log b 3,则不一定得到3a >3b >3.例如当a =12,b =13时,log a 3<log b 3成立,但推不出a >b >1.故“3a >3b >3”是“log a 3<log b 3”的充分不必要条件.3.下列四个函数中,属于奇函数且在区间(-1,0)上为减函数的是( ) A .y =(12)|x |B .y =x -42-xC .y =log 2|x |D .y =-x 13答案 D解析 选项A ,y =(12)|x |为偶函数,因此排除;选项B ,y =x -42-x =-x -4x -2=-(1-2x -2)=-1+2x -2的对称中心为(2,-1),在(2,+∞)和(-∞,2)上递减,不符合题意,排除;选项C ,y =log 2|x |是偶函数,因此不符合题意,排除C.故选D. 4.复数z =(3-2i)i 的共轭复数z 等于( ) A .-2-3i B .-2+3i C .2-3iD .2+3i答案 C解析 因为z =(3-2i)i =3i -2i 2=2+3i , 所以z =2-3i ,故选C.5.已知各项不为零的等差数列{a n }的前n 项和为S n .若m ∈N *,且a m -1+a m +1-a 2m =0,S 2m -1=38,则m 等于( )A .10B .20C .30D .40答案 A解析 由a m -1+a m +1=2a m ,得2a m -a 2m=0, 又a m ≠0,所以a m =2, 则S 2m -1=2m -1a 1+a 2m -12=(2m -1)a m=2(2m -1)=38,所以m =10.6.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A.18 B.38 C.58 D.78 答案 D解析 4名同学各自在周六、周日两天中任选一天参加公益活动的情况有24=16(种),其中仅在周六(周日)参加的各有1种,∴所求概率为1-1+116=78.7.若实数x ,y满足不等式组⎩⎪⎨⎪⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则该约束条件所围成的平面区域的面积是( )A .3 B.52 C .2 D .22答案 C解析 因为直线x -y =-1与x +y =1互相垂直,所以如图(阴影部分,含边界)所示的可行域为直角三角形,易得A (0,1),B (1,0),C (2,3),故AB =2,AC =22,其面积为12×AB ×AC =2.8.已知点F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点,过F 1且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABF 2是锐角三角形,则该双曲线离心率的取值范围是( ) A .(1,3) B .(3,22) C .(1+2,+∞)D .(1,1+2)答案 D解析 设A (-c ,b 2a ),B (-c ,-b 2a ),则F 2A →=(-2c ,b 2a ),F 2B →=(-2c ,-b 2a).F 2A →·F 2B →=4c 2-(b 2a)2>0,e 4-6e 2+1<0,1<e <1+ 2.9.(2016·浙江)设函数f (x )=sin 2x +b sin x +c ,则f (x )的最小正周期( ) A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关答案 B 解析 因为f (x )=sin 2x +b sinx +c =-cos 2x 2+b sin x +c +12,其中当b =0时,f (x )=-cos 2x 2+c +12,f (x )的周期为π;当b ≠0时,f (x )的周期为2π.即f (x )的周期与b 有关,但与c 无关,故选B.10.(2015·课标全国Ⅰ)执行下面的程序框图,如果输入的t =0.01,则输出的n 等于( )A .5B .6C .7D .8答案 C解析运行第一次:S=1-12=12=0.5,m=0.25,n=1,S>0.01;运行第二次:S=0.5-0.25=0.25,m=0.125,n=2,S>0.01;运行第三次:S=0.25-0.125=0.125,m=0.062 5,n=3,S>0.01;运行第四次:S=0.125-0.062 5=0.062 5,m=0.031 25,n=4,S>0.01;运行第五次:S=0.031 25,m=0.015 625,n=5,S>0.01;运行第六次:S=0.015 625,m=0.007 812 5,n=6,S>0.01;运行第七次:S=0.007 812 5,m=0.003 906 25,n=7,S<0.01.输出n=7.故选C.11.(2016·课标全国乙)平面α过正方体ABCDA1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为( )A.32B.22C.33D.13答案A解析如图所示,设平面CB 1D 1∩平面ABCD =m 1,∵α∥平面CB 1D 1,则m 1∥m ,又∵平面ABCD ∥平面A 1B 1C 1D 1,平面CB 1D 1∩平面A 1B 1C 1D 1=B 1D 1,∴B 1D 1∥m 1,∴B 1D 1∥m ,同理可得CD 1∥n .故m 、n 所成角的大小与B 1D 1、CD 1所成角的大小相等,即∠CD 1B 1的大小. 而B 1C =B 1D 1=CD 1(均为面对角线),因此∠CD 1B 1=π3,得sin∠CD 1B 1=32,故选A.12.(2016·四川)在平面内,定点A ,B ,C ,D 满足|DA →|=|DB →|=|DC →|,DA →·DB →=DB →·DC →=DC →·DA →=-2,动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是( ) A.434 B.494 C.37+634D.37+2334答案 B解析 由题意,|DA →|=|DB →|=|DC →|,所以D 到A ,B ,C 三点的距离相等,点D 是△ABC 的外心;DA →·DB →=DB →·DC →=DC →·DA →=-2⇒DA →·DB →-DB →·DC →=DB →·(DA →-DC →)=DB →·CA →=0,所以DB ⊥AC ,同理可得,DA ⊥BC ,DC ⊥AB ,从而点D 是△ABC 的垂心,∴△ABC 的外心与垂心重合,因此△ABC 是正三角形,且点D 是△ABC 的中心.DA →·DB →=|DA →||DB →|cos∠ADB =|DA →||DB →|×⎝ ⎛⎭⎪⎫-12=-2⇒|DA →|=2,所以正三角形ABC 的边长为23;我们以A 为原点建立直角坐标系,B ,C ,D 三点坐标分别为B (3,-3),C (3,3),D (2,0),由|AP →|=1,设P 点的坐标为(cos θ,sin θ),其中θ∈[0,2π), 而PM →=MC →,即点M 是PC 的中点,可以写出M 的坐标为M ⎝ ⎛⎭⎪⎪⎫3+cos θ2,3+sin θ2,则|BM →|2=⎝ ⎛⎭⎪⎫cos θ-322+⎝ ⎛⎭⎪⎪⎫33+sin θ22 =37+12sin ⎝ ⎛⎭⎪⎫θ-π64≤37+124=494,当θ=23π时,|BM →|2取得最大值494.故选B.13.(2016·山东)若⎝⎛⎭⎪⎪⎫ax 2+1x 5的展开式中x 5的系数为-80,则实数a =________. 答案 -2解析 ∵T k +1=C k 5(ax 2)5-k ⎝ ⎛⎭⎪⎪⎫1x k =a 5-k C k 5x5102k -, 由10-52k =5,解得k =2,∴a 3C 25=-80,解得a =-2.14.某研究机构对儿童记忆能力x 和识图能力y 进行统计分析,得到如下数据:由表中数据,求得线性回归方程为y ^=5x +a ^,当某儿童的记忆能力为12时,则他的识图能力为________. 答案 9.5解析 由表中数据得x =7,y =5.5,由(x ,y )在直线y ^=45x +a ^上,得a ^=-110,即线性回归方程为y ^=45x -110.所以当x =12时,y ^=45×12-110=9.5,即他的识图能力为9.5.15.已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是________. 答案 π6解析 由题意,得sin ⎝ ⎛⎭⎪⎫2×π3+φ=cos π3,因为0≤φ<π,所以φ=π6.16.如图,VA ⊥平面ABC ,△ABC 的外接圆是以AB 边的中点为圆心的圆,点M 、N 、P 分别为棱VA 、VC 、VB 的中点,则下列结论正确的有________(把正确结论的序号都填上).①MN∥平面ABC;②OC⊥平面VAC;③MN与BC所成的角为60°;④MN⊥OP;⑤平面VAC⊥平面VBC.答案①④⑤解析对于①,因为点M、N分别为棱VA、VC的中点,所以MN∥AC,又MN⊄平面ABC,所以MN∥平面ABC,所以①是正确的;对于②,假设OC⊥平面VAC,则OC⊥AC,因为AB是圆O的直径,所以BC⊥AC,矛盾,所以②是不正确的;对于③,因为MN∥AC,且BC⊥AC,所以MN与BC所成的角为90°,所以③是不正确的;对于④,易得OP∥VA,又VA⊥MN,所以MN⊥OP,所以④是正确的;对于⑤,因为VA⊥平面ABC,BC⊂平面ABC,所以VA⊥BC,又BC⊥AC,且AC∩VA=A,所以BC⊥平面VAC,又BC⊂平面VBC,所以平面VAC⊥平面VBC,所以⑤是正确的.综上,应填①④⑤.。
一、 选择题(本大题共10小题,每一小题只有一个正确选项,满分共50分)1.已知0x <,则函数4()2f x x x=--有( ) A 最小值6 B 最大值6 C 最小值2- D 最大值2- 2.“1x <-”是“210x ->”的( )条件A 充分不必要B 必要不充分C 充要D 既不充分也不必要3.函数1()lg(1)1f x x x=++-的定义域是( ) A (,1)-∞- B (1,)+∞ C (1,1)(1,)-+∞ D (,)-∞+∞ 4.已知2()3(1)f x x xf '=+,则(2)f '=( )A 1B 2C 4D 85.设向量(1,2),(2,)a b y ==-,若//a b ,则|3|a b +=( )6.若点(,9)a 在函数3x y =的图像上,则tan 6a π=( )7.函数2cos 1y x =+在( )区间上为增函数 A [0,]2π B [,]2ππ C [0,]π D [,2]ππ 8.等比数列{}n a 中,若6291,7.S S ==则4S 为( )A 28B 32C 35D 499.如果直线310ax y ++=与直线2230x y +-=垂直,那么a 的值为( ) A 3 B 13- C 3- D 1310.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机取一个数为b ,则b a >的概率是( ) A 45 B 35 C 25 D 15二、 填空题(本大题共4小题,共20分) 11.已知随机变量ξ服从正态分布2(2,)N σ,且(4)0.8,p ξ<=则(02)p ξ<<= ;12.在ABC 中,角A ,B ,C 所对应的边分别为,,a b c ,且222b c bc a +=+,则A= ;13.数列{}n a 对任意*n N ∈,满足133,8,n n a a a +=+=则10S = ; 14.若函数()ln f x a x x =+在1x =处取得极值,则a = 。
小题强化练(三)一、选择题1.已知集合A ={x ∈N |x ≤3},B ={x |x 2+6x -16<0},则A ∩B =( ) A .{x |-8<x <2} B .{0,1} C .{1}D .{0,1,2}2.已知复数z =-1+i(i 是虚数单位),则1+z1-z =( )A .15+25iB .-15+25iC .15-25iD .-15-25i3.我国古代数学著作《九章算术》有如下问题:“今有金棰,长五尺.斩本一尺,重四斤.斩末一尺,重二斤.问次一尺各重几何?”意思是:“现有一根金棰,长五尺,一头粗,一头细.在粗的一端截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金棰由粗到细是均匀变化的,则中间三尺的重量为( )A .6斤B .9斤C .10斤D .12斤4.设点F 1,F 2分别是双曲线x 2-y 29=1的左、右焦点.若点P 在双曲线上,且PF 1→·PF 2→=0,则|PF 1→+PF 2→|=( )A .10B .210C . 5D .2 55.把边长为1的正方形ABCD 沿对角线BD 折起,形成的三棱锥C -ABD 的正视图与俯视图如图所示,则侧视图的面积为( )A .22B .12C .24D .146.在直三棱柱ABC -A 1B 1C 1中,AA 1=2A 1B 1=2B 1C 1,且AB ⊥BC ,点M 是A 1C 1的中点,则异面直线MB 与AA 1所成角的余弦值为( )A .13B .223C .324D .127.在区间[-2,2]上随机取一个数b ,若使直线y =x +b 与圆x 2+y 2=a 有交点的概率为12,则a =( )A .14B .12C .1D .28.已知定义在R 上的函数f (x )满足:(1)f (x +2)=f (x );(2)f (x -2)为奇函数;(3)当x ∈[0,1)时,f (x 1)-f (x 2)x 1-x 2>0(x 1≠x 2)恒成立,则f ⎝⎛⎭⎫-152,f (4),f ⎝⎛⎭⎫112的大小关系正确的是( ) A .f ⎝⎛⎭⎫112>f (4)>f ⎝⎛⎭⎫-152 B .f (4)>f ⎝⎛⎭⎫112>f ⎝⎛⎭⎫-152 C .f ⎝⎛⎭⎫-152>f (4)>f ⎝⎛⎭⎫112 D .f ⎝⎛⎭⎫-152>f ⎝⎛⎭⎫112>f (4) 9.阅读如图所示的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为( )A .0B .1C .2D .310.已知函数f (x )=2x -log 12x ,且实数a >b >c >0满足f (a )f (b )f (c )<0.若实数x 0是函数y =f (x )的一个零点,那么下列不等式中不可能成立的是( )A .x 0<aB .x 0>aC .x 0<bD .x 0<c11.已知抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点.设M 为抛物线上的动点,则|MO ||MF |的最大值为( )A . 3B .1C .33D .23312.将函数y =sin 2x 的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位长度得到y =f (x )的图象.若函数f (x )在区间⎣⎡⎦⎤0,π4上单调递增,且f (x )的最大负零点在区间⎝⎛⎭⎫-5π12,-π6上,则φ的取值范围是( ) A .⎝⎛⎦⎤π6,π4 B .⎝⎛⎭⎫π6,π2 C .⎝⎛⎦⎤π12,π4 D .⎝⎛⎭⎫π12,π2二、填空题13.二项式⎝⎛⎭⎫2x -x 9展开式中含x 3项的系数为________. 14.设数列{a n }是由正数组成的等比数列,S n 是{a n }的前n 项和,已知a 2a 4=16,S 3=28,则当a 1a 2…a n 最大时,n 的值为________.15.已知扇形OAB 的圆心角∠AOB =90°,半径为2,C 是其弧上一点.若OC →=λOA →+μOB →,则λ·μ的最大值为________.16.f (x )是定义在R 上的函数,其导函数为f ′(x ).若f ′(x )>2f (x ),f (2 019)=2 019e 4 038,则不等式f (x )>2 019e 2x (其中e 为自然对数的底数)的解集为________.参考答案与解析小题强化练(三)1.解析:选B .由A ={x ∈N |x ≤3}={0,1,2,3},B ={x |x 2+6x -16<0}={x |-8<x <2},得A ∩B ={0,1},故选B .2.解析:选B .因为z =-1+i ,所以1+z 1-z =1-1+i 1-(-1+i)=i 2-i =i(2+i)(2-i)(2+i)=-15+25i.故选B .3.解析:选B .由题意知金棰由粗到细每一尺构成一个等差数列,且首项a 1=4,a 5=2,则公差d =a 5-a 15-1=-12.所以a 3=a 1+2d =4-1=3,所以a 2+a 3+a 4=3a 3=9,故选B .4.解析:选B .由双曲线方程知a =1,b =3,则c =10,|F 1F 2|=210.由PF 1→·PF 2→=0,得PF 1→⊥PF 2→,则|PF 1→+PF 2→|=|2PO →|=|F 1F 2→|=210,故选B .5.解析:选D .由正视图及俯视图可知,正方形沿对角线BD 折起后,二面角C -BD -A 为直二面角,则三棱锥C -ABD 的侧视图是一腰长为22的等腰直角三角形,如图所示.则其面积为12×22×22=14,故选D .6.解析:选B .法一:由题知AA 1∥BB 1,则异面直线MB 与AA 1所成角为∠MBB 1,如图.又△BB 1M 为直角三角形,cos ∠MBB 1=BB 1MB .在直三棱柱ABC -A 1B 1C 1中,设AA 1=2A 1B 1=2B 1C 1=2,由AB ⊥BC ,得B 1M =12A 1C 1=22.故MB =22+⎝⎛⎭⎫222=32,所以cos ∠MBB 1=BB 1MB =223,故选B .法二:以B 为原点,BA ,BC ,BB 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图.设AA 1=2A 1B 1=2B 1C 1=2,则M ⎝⎛⎭⎫12,12,2,B (0,0,0),A (1,0,0),A 1(1,0,2),所以MB →=⎝⎛⎭⎫-12,-12,-2,AA 1→=(0,0,2).设异面直线MB 与AA 1所成角为θ,则cos θ=|MB →·AA 1→||MB →||AA 1→|=492×2=223,所以异面直线MB 与AA 1所成角的余弦值为223,故选B .7.解析:选B .由直线y =x +b 与圆x 2+y 2=a 有交点,得圆心到直线的距离d =|b |2≤a ,解得b ∈[-2a ,2a ].又b ∈[-2,2],且直线y =x +b 与圆x 2+y 2=a 有交点的概率为12,所以由几何概型的概率计算公式可知P =2a -(-2a )2-(-2)=12,解得a =12,故选B . 8.解析:选C .由f (x +2)=f (x )可知函数f (x )的周期为2,可知f (x )=f (x -2).又f (x -2)为奇函数,可知f (x )为奇函数.所以f ⎝⎛⎭⎫-152=f ⎝⎛⎭⎫-152+2×4=f ⎝⎛⎭⎫12,f (4)=f (4-2×2)=f (0)=0,f ⎝⎛⎭⎫112=f ⎝⎛⎭⎫112-2×3=f ⎝⎛⎭⎫-12.又x ∈[0,1)时,f (x )单调递增,故奇函数f (x )在(-1,1)内单调递增,所以f ⎝⎛⎭⎫12>f (0)>f ⎝⎛⎭⎫-12,即f ⎝⎛⎭⎫-152>f (4)>f ⎝⎛⎭⎫112,故选C . 9.解析:选C .当输入的N =24时,程序依次如下执行:N 能被3整除,N =243=8,不满足N ≤3;N 不能被3整除,N =8-1=7,不满足N ≤3;N 不能被3整除,N =7-1=6,不满足N ≤3;N 能被3整除,N =63=2,满足N ≤3,输出N =2,故选C .10.解析:选D .由f (x )=2x -log 12x ,可知函数f (x )在区间(0,+∞)上单调递增.因为实数a >b >c >0满足f (a )f (b )f (c )<0,则f (a ),f (b ),f (c )可能都小于0或有1个小于0,2个大于0,如图.则A ,B ,C 可能成立,x 0>c ,D 不可能成立.11.解析:选D .设抛物线上点M (m ,n )(m >0),则n 2=2pm ,可得|MO |=m 2+n 2=m 2+2pm .由抛物线的定义得|MF |=m +p 2,所以|MO ||MF |=m 2+2pmm +p 2=m 2+2pmm 2+pm +p 24=1+pm -p 24m 2+pm +p 24.令pm -p 24=t ,t >-p 24,则m =t p +p 4,所以|MO ||MF |=1+tt 2p 2+3t 2+9p 216=1+1t p 2+32+9p 216t≤1+13=233,当且仅当t p 2=9p 216t ,即t =3p 24时,等号成立,故选D . 12.解析:选C .法一:函数y =sin 2x 的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位长度得到函数f (x )=sin (2x -2φ)的图象,则当x ∈⎣⎡⎦⎤0,π4时,2x -2φ∈⎣⎡⎦⎤-2φ,π2-2φ.由函数f (x )在区间⎣⎡⎦⎤0,π4上单调递增,可知⎩⎨⎧-π2+2k π≤-2φ,π2-2φ≤π2+2k π(k ∈Z ),解得-k π≤φ≤π4-k π(k ∈Z ).又由0<φ<π2,可知0<φ≤π4①.函数f (x )的所有零点满足2x -2φ=k π(k ∈Z ),即x =12k π+φ(k ∈Z ),由最大负零点在⎝⎛⎭⎫-5π12,-π6内,得-5π12<12k π+φ<-π6(k ∈Z ),即-5π12-12k π<φ<-π6-12k π(k ∈Z ),由0<φ<π2可知当k =-1时,π12<φ<π3②.由①②,φ的取值范围为⎝⎛⎦⎤π12,π4,故选C . 法二:由题意得f (x )=sin(2x -2φ),观察选项可取φ=π3,可得f (x )=sin ⎝⎛⎭⎫2x -2π3,可知当x ∈⎣⎡⎦⎤0,π4时,2x -2π3∈⎣⎡⎦⎤-2π3,-π6,函数f (x )先减后增,不符合题意,排除B ,D ;取φ=π6,易得函数f (x )=sin ⎝⎛⎭⎫2x -π3在⎣⎡⎦⎤0,π4上单调递增,令2x -π3=k π(k ∈Z ),得x =π6+k2π(k ∈Z ),则函数f (x )取得的最大负零点为x =-π3∈⎝⎛⎭⎫-5π12,-π6,符合题意,排除A ,故选C . 13.解析:二项式展开式的通项为T r +1=C r 9⎝⎛⎭⎫2x 9-r(-x )r =(-1)r ·29-r C r 9x 32r -9.令32r -9=3,解得r =8,可知所求二项式展开式中含x 3项的系数为(-1)8·29-8C 89=2×9=18.答案:1814.解析:由数列{a n }是各项均为正数的等比数列,且a 2a 4=16,可得a 3=4.又S 3=a 3⎝⎛⎭⎫1q 2+1q +1=28,可得1q 2+1q +1=7,即⎝⎛⎭⎫1q -2·⎝⎛⎭⎫1q +3=0,解得q =12⎝⎛⎭⎫q =-13舍去,故a n =a 3qn -3=25-n.则a 1a 2…a n =24×23×…×25-n=2(9-n )n2,可知当(9-n )n2取得最大值时,a 1a 2…a n取得最大值,此时整数n =4或5.答案:4或515.解析:由题|OA →|=|OB →|=|OC →|=2,且OA →·OB →=0.由OC →=λOA →+μOB →,两边平方得OC →2=(λOA →+μOB →)2=λ2OA →2+2λμOA →·OB →+μ2OB →2=4λ2+4μ2,可得4=4λ2+4μ2,即λ2+μ2=1,所以λ·μ≤λ2+μ22=12,当且仅当λ=μ=22时取得等号,故λ·μ的最大值为12.答案:1216.解析:构造函数g (x )=f (x )e 2x ,则g ′(x )=f ′(x )e 2x -2e 2x f (x )(e 2x )2=f ′(x )-2f (x )e 2x.由f ′(x )-2f (x )>0,可知g (x )在R 上单调递增,则当x >2 019时,g (x )>g (2 019)=f (2 019)e 4 038=2 019,即f (x )e 2x >2 019,所以不等式f (x )>2 019e 2x 的解集为{x |x >2 019}.答案:{x |x >2 019}。
数列求和 建议用时:45分钟一、选择题1.在等差数列{a n }中,若a 3+a 5+a 7=6,a 11=8,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +3a n +4的前n项和S n =( )A.n +1n +2B.n n +1C.n n +2D.2nn +1B [设等差数列{a n }的公差为d ,由a 3+a 5+a 7=6,a 11=8,得a 5=2,d =1,所以a n =n -3.则a n +3=n ,a n +4=n +1,所以1a n +3a n +4=1n (n +1)=1n -1n +1.所以S n =1-1n +1=nn +1.故选B.]2.数列{(-1)n (2n -1)}的前2 020项和S 2 020等于( ) A .-2 018 B .2 018 C .-2 020D .2 020D [S 2 020=-1+3-5+7+…-(2×2 019-1)+(2×2 020-1)=2×1 010=2 020.故选D.]3.在数列{a n }中,已知a 1+a 2+…+a n =2n -1,则a 21+a 22+…+a 2n =( )A .(2n -1)2B.(2n -1)23C .4n-1D.4n -13D [由题意得,当n =1时,a 1=1,当n ≥2时,a 1+a 2+…+a n -1=2n -1-1,则a n =2n -1-(2n -1-1)=2n -1(n ≥2),n =1时也成立,所以a n =2n -1,则a 2n=22n -2,所以数列{a 2n }的首项为1,公比为4的等比数列,所以a 21+a 22+…+a 2n =1×(1-4n )1-4=4n -13,故选D.]4.数列{a n }中,a 1=2,且a n +a n -1=na n -a n -1+2(n ≥2),则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1(a n -1)2前2 019项和为( )A.4 0362 019 B.2 0191 010 C.4 0372 019D.4 0392 020B [∵a n +a n -1=na n -a n -1+2(n ≥2),∴a 2n -a 2n -1-2(a n -a n -1)=n ,整理,得(a n -1)2-(a n -1-1)2=n , ∴(a n -1)2-(a 1-1)2=n +(n -1)+…+2, 又a 1=2,∴(a n -1)2=n (n +1)2,即1(a n -1)2=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1. 则数列⎩⎨⎧⎭⎬⎫1(a n -1)2前2 019项和为: 2(1-12+12-13+…+12 019-12 020)=2⎝ ⎛⎭⎪⎫1-12 020=2 0191 010.故选B.]5.设数列{a n }的前n 项和为S n ,且a 1=2,a n +a n +1=2n (n ∈N *),则S 13=( ) A.213-43 B.213+23 C.214-43 D.214+23C [∵a 1=2,∴n =2时,a 2+a 3=22,n =4时,a 4+a 5=24, n =6时,a 6+a 7=26,n =8时,a 8+a 9=28, n =10时,a 10+a 11=210,n =12时,a 12+a 13=212, ∴S 13=2+22+24+26+28+210+212 =2+22[1-(22)6]1-22=214-43.故选C.]二、填空题6.(2019·浙江台州期中)已知数列{a n }满足1a n =1a n +1-1,且a 1=1,则a n =________,数列{b n }满足b n =2na n,则数列{b n }的前n 项和S n =________.1n (n -1)·2n +1+2 [由1a n =1a n +1-1可得1a n +1-1a n =1, 所以⎩⎨⎧⎭⎬⎫1a n 为等差数列,公差、首项都为1,由等差数列的通项公式可得 1a n =n ,a n =1n ,2n a n =n ×2n , S n =1×2+2×22+…+n ×2n ,2S n =1×22+…+(n -1)×2n +n ×2n +1,相减得S n =-(2+22+…+2n )+n ×2n +1=-2(1-2n )1-2+n ×2n +1=(n -1)×2n +1+2.]7.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 018=________. 3·21 009-3 [∵数列{a n }满足a 1=1,a n +1·a n =2n ,① ∴n =1时,a 2=2,n ≥2时,a n ·a n -1=2n -1,②由①÷②得a n +1a n -1=2,∴数列{a n }的奇数项、偶数项分别成等比数列, ∴S 2 018=1-21 0091-2+2(1-21 009)1-2=3·21 009-3.]8.已知等差数列{a n }满足a 3=7,a 5+a 7=26,b n =1a 2n -1(n ∈N *),数列{b n }的前n 项和为S n ,则S 100的值为________.25101 [因为a 3=7,a 5+a 7=26,所以公差d =2, 所以a n =a 3+2(n -3)=2n +1.所以b n =1a 2n -1=1(2n +1)2-1=14n (n +1)=14⎝ ⎛⎭⎪⎫1n -1n +1.所以S 100=b 1+b 2+…+b 100=14(1-12+12-13+…+1100-1101)=25101.] 三、解答题9.已知等差数列{a n }满足a 6=6+a 3,且a 3-1是a 2-1,a 4的等比中项. (1)求数列{a n }的通项公式; (2)设b n =1a n a n +1(n ∈N *),数列{b n }的前项和为T n ,求使T n <17成立的最大正整数n 的值[解] (1)设等差数列{a n }的公差为d , ∵a 6-a 3=3d =6,即d =2,∴a 3-1=a 1+3,a 2-1=a 1+1,a 4=a 1+6, ∵a 3-1是a 2-1,a 4的等比中项, ∴(a 3-1)2=(a 2-1)·a 4,即(a 1+3)2=(a 1+1)(a 1+6),解得a 1=3.∴数列{a n }的通项公式为a n =2n +1. (2)由(1)得b n =1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎪⎫12n +1-12n +3. ∴T n =b 1+b 2+…+b n =12(13-15+15-17+…+12n +1-12n +3) =12⎝ ⎛⎭⎪⎫13-12n +3=n3(2n +3), 由n 3(2n +3)<17,得n <9.∴使T n <17成立的最大正整数n 的值为8.10.(2019·天津高考)设{a n }是等差数列,{b n }是等比数列,公比大于0,已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c n =⎩⎨⎧1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).[解] (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .依题意,得⎩⎪⎨⎪⎧3q =3+2d ,3q 2=15+4d ,解得⎩⎪⎨⎪⎧d =3,q =3,故a n =3+3(n -1)=3n ,b n =3×3n -1=3n . 所以{a n }的通项公式为a n =3n , {b n }的通项公式为b n =3n . (2)a 1c 1+a 2c 2+…+a 2n c 2n=(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n ) =⎣⎢⎡⎦⎥⎤n ×3+n (n -1)2×6+(6×31+12×32+18×33+…+6n ×3n ) =3n 2+6(1×31+2×32+…+n ×3n ). 记T n =1×31+2×32+…+n ×3n ,① 则3T n =1×32+2×33+…+n ×3n +1,② ②-①得,2T n =-3-32-33-…-3n +n ×3n +1=-3(1-3n )1-3+n ×3n +1=(2n -1)3n +1+32.所以a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2n -1)3n +1+32=(2n -1)3n +2+6n 2+92(n ∈N *).1.定义在[0,+∞)上的函数f (x )满足:当0≤x <2时,f (x )=2x -x 2;当x ≥2时,f (x )=3f (x -2).记函数f (x )的极大值点从小到大依次记为a 1,a 2,…,a n ,…,并记相应的极大值为b 1,b 2,…,b n ,…,则a 1b 1+a 2b 2+…+a 20b 20的值为( )A .19×320+1B .19×319+1C .20×319+1D .20×320+1A [由题意当0≤x <2时,f (x )=2x -x 2=-(x -1)2+1极大值点为1,极大值为1,当x ≥2时,f (x )=3f (x -2).则极大值点形成首项为1,公差为2 的等差数列,极大值形成首项为1,公比为3的等比数列,故a n =2n -1,b n =3n -1,故a n b n =(2n -1)3n -1, 设S =a 1b 1+a 2b 2+…+a 20b 20=1×1+3×31+5×32+…+39×319, 3S =1×31+3×32+…+39×320, 两式相减得-2S =1+2(31+32+…+319)-39×320 =1+2×3(1-319)1-3-39×320,∴S =19×320+1,故选A.]2.(2019·金山中学模拟)数列{a n }且a n =⎩⎪⎨⎪⎧1n 2+2n ,n 为奇数,sin n π4,n 为偶数,若S n 是数列{a n }的前n 项和,则S 2 018=________.3 0282 019[数列{a n }且a n =⎩⎪⎨⎪⎧1n 2+2n ,n 为奇数,sin n π4,n 为偶数,①当n 为奇数时,a n =1n 2+2n =12⎝ ⎛⎭⎪⎫1n -1n +2, ②当n 为偶数时,a n =sin n π4,所以S 2 018=(a 1+a 3+a 5+…+a 2 017)+(a 2+a 4+a 6+…+a 2 018), =12(1-13+13-15+…+12 017-12 019)+(1+0-1+…+0), =1 0092 019+1=3 0282 019.]3.(2019·济南模拟)如图,将平面直角坐标系中的格点(横、纵坐标均为整数的点)按如下规则标上标签:原点处标数字0,记为a 0;点(1,0)处标数字1,记为a 1;点(1,-1)处标数字0,记为a 2;点(0,-1)处标数字-1,记为a 3;点(-1,-1)处标数字-2,记为a 4;点(-1,0)处标数字-1,记为a 5;点(-1,1)处标数字0,记为a 6;点(0,1)处标数字1,记为a 7;……;以此类推,格点坐标为(i ,j)的点处所标的数字为i +j(i ,j 均为整数),记S n =a 1+a 2+…+a n ,则S 2 018=________.-249 [设a n 的坐标为(x ,y ),则a n =x +y .第一圈从点(1,0)到点(1,1)共8个点,由对称性可知a 1+a 2+…+a 8=0;第二圈从点(2,1)到点(2,2)共16个点,由对称性可知a 9+a 10+…+a 24=0,……;以此类推,可得第n 圈的8n 个点对应的这8n 项的和也为0.设a 2 018在第k 圈,则8+16+…+8k =4k (k +1),由此可知前22圈共有2 024个数,故S 2 024=0,则S 2 018=S 2 024-(a 2 024+a 2 023+…+a 2019),a 2 024所在点的坐标为(22,22),a 2 024=22+22,a 2 023所在点的坐标为(21,22),a 2 023=21+22,以此类推,可得a 2 022=20+22,a 2 021=19+22,a 2 020=18+22,a 2 019=17+22,所以a 2 024+a 2 023+…+a 2 019=249,故S 2 018=-249.]4.已知各项均不相等的等差数列{a n }的前四项和S 4=14,且a 1,a 3,a 7成等比数列.(1)求数列{a n }的通项公式; (2)设T n 为数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和,若λT n ≤a n +1对一切n ∈N *恒成立,求实数λ的最大值.[解] (1)设数列{a n }的公差为d (d ≠0),由已知得,⎩⎪⎨⎪⎧4a 1+6d =14,(a 1+2d )2=a 1(a 1+6d ),解得⎩⎪⎨⎪⎧a 1=2,d =1或⎩⎨⎧a 1=72,d =0(舍去),所以a n =n+1.(2)由(1)知1a n a n +1=1n +1-1n +2, 所以T n =⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝⎛⎭⎪⎫1n +1-1n +2 =12-1n +2=n2(n +2).又λT n ≤a n +1恒成立,所以λ≤2(n +2)2n =2⎝ ⎛⎭⎪⎫n +4n +8, 而2⎝ ⎛⎭⎪⎫n +4n +8≥16,当且仅当n =2时等号成立. 所以λ≤16,即实数λ的最大值为16.1.(2017·全国卷Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .110A [设首项为第1组,接下来的两项为第2组,再接下来的三项为第3组,依此类推,则第n 组的项数为n ,前n 组的项数和为n (1+n )2.由题意知,N >100,令n (1+n )2>100⇒n ≥14且n ∈N *,即N 出现在第13组之后.第n 组的各项和为1-2n 1-2=2n -1,前n 组所有项的和为2(1-2n )1-2-n =2n +1-2-n .设N 是第n +1组的第k 项,若要使前N 项和为2的整数幂,则第n +1组的前k 项的和2k -1应与-2-n 互为相反数,即2k -1=2+n (k ∈N *,n ≥14),k =log 2(n +3)⇒n 最小为29,此时k =5,则N =29×(1+29)2+5=440.故选A.]2.已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2. (1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2),…,P n +1(x n +1,n +1)得到折线P 1P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .[解] (1)设数列{x n }的公比为q ,由已知知q >0. 由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2.所以3q 2-5q -2=0.因为q >0,所以q =2,x 1=1. 因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,…,Q n +1. 由(1)得x n +1-x n =2n -2n -1=2n -1, 记梯形P n P n +1Q n +1Q n 的面积为b n ,5 由题意b n =(n +n +1)2×2n -1=(2n +1)×2n -2, 所以T n =b 1+b 2+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2,① 2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1.② ①-②得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+2(1-2n -1)1-2-(2n +1)×2n -1.所以T n =(2n -1)×2n +12.。
倒数第6天立体几何[保温特训]1.一个正方体的各顶点均在同一球的球面上,若该球的体积为43π,则该正方体的表面积为________.解析设正方体的棱长为a,球的半径为R,则依题意有4πR33=43π,解得R= 3.因为3a=2R=23,所以a=2.故该正方体的面积为6a2=24.答案242.一块边长为10 cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形作侧面,以它们的公共顶点P为顶点,加工成一个如图所示的正四棱锥形容器.当x=6 cm时,该容器的容积为________cm3.解析由题意可知道,这个正四棱锥形容器的底面是以6 cm为边长的正方形,侧高为5 cm,高为4 cm,所以所求容积为48 cm3.答案483.如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为________.解析 如图,分别过点A 、B 作EF 的垂线,垂足分别为G 、H ,连接DG 、CH ,容易求得EG =HF =12,AG =GD =BH=HC =32,所以S △AGD =S △BHC =12×22×1=24, 所以V =V E -ADG +V F -BHC +V AGD -BHC =13×24×12+13×24×12+24×1=23.答案 234.已知l ,m 是两条不同的直线,α,β是两个不同的平面,下列命题:①若l ⊂α,m ⊂α,l ∥β,m ∥β,则α∥β;②若l ⊂α,l ∥β,α∩β=m ,则l ∥m ;③若α∥β,l ∥α则l ∥β;④若l ⊥α,m ∥l ,α∥β,则m ⊥β.其中真命题是______________(写出所有真命题的序号).解析 ①:只有当l 与m 相交时,才可证明α∥β;③:l 可能在平面β内. 答案 ②④5.设α,β为两个不重合的平面,m ,n 为两条不重合的直线,给出下列四个命题:①若m ⊥n ,m ⊥α,n ⊄α则n ∥α;②若α⊥β,则α∩β=m ,n ⊂α,n ⊥m ,则n ⊥β;③若m ⊥n ,m ∥α,n ∥β,则α⊥β;④若n ⊂α,m ⊂β,α与β相交且不垂直,则n 与m 不垂直.其中,所有真命题的序号是________.解析 ③错误,α,β相交或平行;④错误,n 与m 可以垂直,不妨令n =α∩β,则在β内存在m ⊥n .答案①②6.已知α,β是两个不同的平面,下列四个条件:①存在一条直线a,a⊥α,a⊥β;②存在一个平面γ,γ⊥α,γ⊥β;③存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α;④存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α.其中是平面α∥平面β的充分条件的为________(填上所有符号要求的序号).解析①正确,此时必有α∥β;②错误,因为此时两平面平行或相交均可;③错误,当两直线a,b在两平面内分别与两平面的交线平行即可;④正确,由于α∥β,经过直线α的平面与平面β交于a′,则a∥a′,即a′∥α,又b∥α,因为a,b为异面直线,故a′,b为相交直线,由面面平行的判定定理可知α∥β,综上可知①④是平面α∥平面β的充分条件.答案①④7.设a,b为空间的两条直线,α,β为空间的两个平面,给出下列命题:①若a∥α,a∥β,则α∥β;②若a⊥α,α⊥β,则α⊥β;③若a∥α,b∥α,则a∥b; ④若a⊥α,b⊥α,则a∥b.上述命题中,所有真命题的序号是________.解析若a∥α,a∥β,则α∥β或α与β相交,即命题①不正确;若a⊥α,a ⊥β,则α∥β,即命题②不正确;若a∥α,b∥α,则a∥b或a与b相交或a 与b异面,即命题③不正确;若a⊥α,b⊥α,则a∥b,即命题④正确,综上可得真命题的序号为④.答案④8.已知棱长为2的正方体,则以该正方体各个面的中心为顶点的多面体的体积为________.解析以正方体各个面的中心为顶点的多面体是两个全等的正四棱锥的组合体,如图,一个正四棱锥的高是正方体的高的一半,故所求的多面体的体积为2×13×⎝⎛⎭⎪⎫12×2×2×12×2=23.答案2 39.已知平面α,β,γ,直线l,m满足:α⊥γ,γ∩α=m,γ∩β=l,l⊥m,那么①m⊥β;②l⊥α;③β⊥γ;④α⊥β.由上述条件可推出的结论有________(请将你认为正确的结论的序号都填上).解析画图可知①m⊥β、③β⊥γ不一定成立.答案②④10.已知直线l⊥平面α,直线m⊂平面β,给出下列命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确命题的序号是________.解析α∥β⇒直线l⊥平面β,由于直线m⊂平面β,∴l⊥m故①正确;由l ∥m,直线l⊥平面α可推出直线m⊥平面α,而直线m⊂平面β,∴α⊥β故③正确.答案①③11.在三棱柱ABC -A1B1C1中,AA1⊥BC,∠A1AC=60°,AA1=AC=BC=1,A1B= 2.(1)求证:平面A1BC⊥平面ACC1A1;(2)如果D为AB的中点,求证:BC1∥平面A1CD.证明(1)在△A1AC中,∠A1AC=60°,AA1=AC=1,∴A1C=1,△A1BC中,BC=1,A1C=1,A1B=2,∴BC⊥A1C,又AA1⊥BC,∴BC⊥平面ACC1A1,∵BC⊂平面A1BC,∴平面A1BC⊥平面ACC1A1.(2)连接AC1,交A1C于O,连接DO,则由D为AB中点,O为A1C中点得,OD∥BC1,OD⊂平面A1DC,BC1⊄平面A1DC,∴BC1∥平面A1DC.12.如图,在三棱锥S -ABC中,平面EFGH分别与BC,CA,AS,SB交于点E,F,G,H,且SA⊥平面EFGH,SA⊥AB,EF⊥FG.求证:(1)AB∥平面EFGH;(2)GH∥EF;(3)GH⊥平面SAC.证明(1)因为SA⊥平面EFGH,GH⊂平面EFGH,所以SA⊥GH.又因为SA⊥AB,SA,AB,GH都在平面SAB内,所以AB∥GH.因为AB⊄平面EFGH,GH⊂平面EFGH,所以AB∥平面EFGH.(2)因为AB∥平面EFGH,AB⊂平面ABC,平面ABC∩平面EFGH=EF,所以AB∥EF.又因为AB∥GH,所以GH∥EF.(3)因为SA⊥平面EFGH,SA⊂平面SAC,所以平面EFGH⊥平面SAC,交线为FG.因为GH∥EF,EF⊥FG,所以GH⊥FG.又因为GH⊂平面EFGH,所以GH⊥平面SAC.13.如图a,在直角梯形ABCD中,AB⊥AD,AD∥BC,F为AD的中点,E在BC上,且EF∥AB.已知AB=AD=CE=2,沿线EF把四边形CDFE折起如图b,使平面CDFE⊥平面ABEF.(1)求证:AB⊥平面BCE;(2)求三棱锥C -ADE 体积.(1)证明 在题图a 中,EF ∥AB ,AB ⊥AD ,∴EF ⊥AD ,在题图b 中,CE ⊥EF ,又平面CDFE ⊥平面ABEF ,且平面CDFE ∩平面ABEF =EF ,CE ⊥平面ABEF ,AB ⊂平面ABEF ,∴CE ⊥AB ,又∵AB ⊥BE ,BE ∩CE =E ,∴AB ⊥平面BCE ;(2)解 ∵平面CDFE ⊥平面ABEF ,且平面CDFE ∩平面ABEF =EF ,AF ⊥FE ,AF ⊂平面ABEF ,∴AF ⊥平面CDEF ,∴AF 为三棱锥A -CDE 的高,且AF =1,又∵AB =CE =2,∴S △CDE =12×2×2=2,∴V C -ADE =13·S △CDE ·AF =13×2×1=23.[知识排查]1.弄清楚球的简单组合体中几何体度量之间的关系,如棱长为a 的正方体的外接球的半径为32a .2.搞清几何体的表面积与侧面积的区别,几何体的表面积是几何体的侧面积与所在底面面积之和,不能漏掉几何体的底面积.3.立体几何中,平行、垂直关系可以进行以下转化:线∥线⇔线∥面⇔面∥面,线⊥线⇔线⊥面⇔面⊥面,这些转化各自的依据是什么?4. 平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”.5.立几问题的求解分为“作”,“证”,“算”三个环节,不能只“作”,“算”,而忽视了“证”这一重要环节.。
高三理科数学周三限时训练1.已知集合{}{}21,1,0,1,A x x B A B =≥=-⋂=则 A .{}1B. {}11-,C .{}101-,,D .{}1x x ≥2.已知复数z 满足2z z i +⋅=(其中i 为虚数单位),则z = A.1+iB .1i -C .1i -+D .1i --3.已知命题p :关于m 的不等式2log m <1的解集为{}2m m <;命题q :函数()321f x x x =+-有极值.下列命题为真命题的是 A. p q ∧B .()p q ∧⌝C. ()p q ⌝∧D .()()p q ⌝∧⌝4.如图,在△ABC 中,90,2,3C BC AC ∠===o,三角形内的空白部分由三个半径均为1的扇形构成,向△ABC 内随机投掷一点,则该点落在阴影部分的概率为 A.6πB .16π-C.4πD .14π-5.某几何体的三视图如图所示,则该几何体的体积为 A.5B .163C. 6D .86.若将函数()cos 212f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移8π个单位长度,得到函数()g x 的图象,则下列说法正确的是A. ()g x 的最小正周期为4πB .()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减 C. ()g x 图象的一条对称轴为12x π=D .()g x 图象的一个对称中心为7,012π⎛⎫⎪⎝⎭7.函数2ln 8x y x =-的图象大致为8.古希腊数学家阿波罗尼奥斯在他的著作《圆锥曲线论》中记载了用平面切割圆锥得到圆锥曲线的方法.如图,将两个完全相同的圆锥对顶放置(两圆锥的轴重合),已知两个圆锥的底面半径均为1,母线长均为2,记过圆锥轴的平面ABCD 为平面α(α与两个圆锥面的交线为AC ,BD),用平行于α的平面截圆锥,该平面与两个圆锥侧面的截线即为双曲线Γ的一部分,且双曲线Γ的两条渐近线分别平行于AC ,BD ,则双曲线Γ的离心率为A.23B . 2 C. 3 D.29.已知()12,0,,22a b a b c a b d c d ==⋅==+-=且,则的取值范围是 A .022⎡⎤⎣⎦,B .[]02,C .02⎡⎤⎣⎦,D. []0,110.执行如图所示的程序框图,若输入的,,a b c 依次为()()()sin cos sin sin ,sin ,cos 42αααππαααα⎛⎫∈ ⎪⎝⎭,其中,,则输出的x 为A .()cos cos ααB .()sin sin ααC .()cos sin ααD .()sin cos αα11.过抛物线()220y px p =>的焦点F 作直线l ,交抛物线于点M ,N ,交抛物线的准线于点P ,若2PM PN =u u u u r u u u r,则直线l 的斜率为A .2±B .±2C .22±D .±412.已知函数()21,0,0x x x f x e x -⎧+≤⎪=⎨>⎪⎩,若对任意[]1,1x ∈-,不等式()()21242a f a x a f x ⎡⎤--+≥⎡⎤⎣⎦⎣⎦恒成立,其中0a >,则a 的取值范围是 A. 10,3⎛⎤ ⎥⎝⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C. 3,7⎡⎫+∞⎪⎢⎣⎭D .13,37⎡⎤⎢⎥⎣⎦13.在621x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为________.(用数字作答)14.若实数,x y 满足约束条件0,343,430,x x y z x y y ≥⎧⎪+≤=+⎨⎪≥⎩则的最大值为__________.15.我国《物权法》规定:建造建筑物,不得妨碍相邻建筑物的通风和采光.已知某小区的住宅楼的底部均在同一水平面上,且楼高均为45米,依据规定,该小区内住宅楼楼间距应不小于52米.若该小区内某居民在距离楼底27米高处的某阳台观测点,测得该小区内正对面住宅楼楼顶的仰角与楼底的俯角之和为45°,则该小区的住宅楼楼间距实际为__________米.16.已知球O 的半径为3,该球的内接正三棱锥的体积最大值为V 1,内接正四棱锥的体积最大值为V 2,则12V V 的值为___________. 答案1-5 6-10 11-12。
高三理科数学第三轮复习 限时训练(六)
时间30分钟 成绩_____________________
1
.集合{(,)|M x y y ==,{(,)|1,}N x y x y R ==∈,则M N 等于( )
A .{(1,0)}
B .{|01}y y ≤≤
C .{1,0}
D .∅
2.使不等式230x x -<成立的必要不充分条件是( )
A 03x <<
B 04x <<
C 02x <<
D 0x <,或3x >
3.设2tan()5
αβ+=
,1tan()4
4
π
β-=
,则tan()4
π
α+=( )
A .
1318
B .
1322
C .
322
D .
16
4. 如图,由两条曲线224,x y x y -=-=及直 线1-=y
5.已知数列{}n a 满足:13a =,1221(*,2)n
n n a a n N n -=+-∈≥,且存在实数λ使得
{
}2
n n
a λ+为等差数列,则{}n a 的通项公式是n a = .
6.在极坐标系中,若过点)0,3(A 且与极轴垂直的直线交曲线θρcos 4=于A 、B 两点,则
=||AB ____ _.
7.已知a ∈R ,若关于x 的方程210
4
x x a a ++-
+=有实根,则a 的取值范围
是 .
8. 函数R x Z k x k x x f ∈∈-
++-
=,,)2
2
14cos(
)2cos()(π。
(1)求)(x f 的周期;(2)解析式及)(x f 在),0[π上的减区间;
(3)若=
)(αf 5
102,)2
,
0(π
α∈,求)4
2tan(π
α+
的值。
高三理科数学第三轮复习 限时作业(六)
时间:35分钟 成绩
1、复数3
)
2)(1(i
i i z ++-=等于
( )
A .i +1
B .i --1
C .i 31+
D .i 31--
2、一个几何体的三视图如下图所示,其中正视图中△ABC 是边长为2的正三角形,俯视图
为正六边形,那么该几何体的侧视图的面积为( ) A .12 B .6
C .2
3
D .
3
2
3、已知曲线2:22=+y x C ,点()2,0A -及点 ()a B ,2,
以点A 观察点B ,要使视线不被曲线C 挡 住,则实数a 的取值范围是( )
( )
A .()()∞+-∞-,44,
B .()(),11,-∞-+∞
C .[]4,4-
D . ()()∞+-∞-,22,
4、已知且,0b a <<直线022=+-by ax 始终平分圆01422
2=+-++y x y x 的周长,
下列
不等式正确的是 ( ) A .1log 2>a B .2log log 22->+b a
C .0)(log 2<-a b
D .1)(
log 2<+
b
a a
b
5、已知3)2(3
12
3++++=x b bx
x y 是R 上的单调增函数,则b 的范围为
6、曲线2
4x y -=与x 轴的围成的图形面积为________。
7、10
2)1(x -的展开式中2x 的系数是 ,如果展开式中第r 4项和第2+r 项的二项
式系数相等,则r 等于 。
8、已知函数5)(23+++=bx ax x x f ,在函数)(x f 图像上一点))1(,1(f P 处切线的斜率为3.
(Ⅰ)若函数)(x f y =在2-=x 时有极值,求)(x f 的解析式; (Ⅱ)若函数)(x f y =在区间2[-,]1上单调递增,求b 的取值范围.。