膨胀计
- 格式:doc
- 大小:35.50 KB
- 文档页数:3
实验报告课程名称: 化工专业实验 指导老师: 卜志扬 介素云 成绩:_______________ 实验名称: 膨胀计法测定聚合反应速率一. 实验目的1. 掌握膨胀计法测定聚合反应速率的原理和方法。
2. 了解动力学实验数据的处理和计算方法。
二. 实验原理聚合动力学主要是研究聚合速率、分子量与引发剂浓度、单体浓度、聚合温度等因素间的定量关系。
连锁聚合一般可分成三个基元反应:引发、增长、终止。
若以引发剂引发,其反应式及动力学如下:引发: •−→−R I dk 2 ••→+M M R][2I fk R d i =•(1)增长: •+•−→−+1n kn M M M p]][[M M k R p p •=(2)终止: p M M tkn m −→−+••2][M k R i i =(3)式中I 、M 、R •、M •、P 分别表示引发剂、单体、初级游离基或聚合物游离基及无活性聚合物。
R i 、R p 、R t 、k d 、k p 、k t 分别表示各步反应速率及速率常数。
f 表示引发效率。
[ ]表示浓度。
聚合速率可以用单位时间内单体消耗量或者聚合物生成量来表示,即聚合速度应等于单体消失速度,dtM d R ][-≡。
只有增长反应才消耗大量单体,因此也等于增长反应速率。
在低转化率下,稳态条件成立,R f =R t ,则聚合反应速率为:][][][)2(][21211M I K M I k fk k dt M d td p == (4)式中K 为聚合反应总速率常数。
单体转化为聚合物时,由于聚合物密度比单体密度大,体积将发生收缩。
根据聚合时体积的变化,可以计算反应转化率。
聚合速率的测定方法有直接法和间接法两类。
直接法有化学分析法、蒸发法、沉淀法。
最常用的直接法是沉淀法,即在聚合过程中定期取样,加装订线沉淀剂使聚合物沉淀,然后分离、精制、干燥、称重,求得聚合物量。
间接法是测定聚合过程中比容、粘度、折光率、介电常数、吸收光谱等物性的变化,间接求其聚合物的量。
实验6 膨胀计法测定苯乙烯自由基聚合反应速率一、实验目的1、了解自由基聚合的原理和反应机理;2、掌握膨胀计的使用方法及其原理;二、实验原理聚合是一种化学反应,由许多分子组成的大分子称为聚合物。
自由基聚合是其中一种重要的聚合形式。
自由基聚合是指通过自由基反应机理进行聚合的过程。
自由基聚合可以发生在单体中,也可以在多体中进行。
在反应中,自由基起到引导聚合的作用。
聚合反应是若干单体分子(一般为低分子量化合物)加入引发剂(称为引发单体)后,在一定的温度容器内、经过一段时间的反应,由于相互作用,形成大分子化合物(称为聚合物)。
聚合物一般为线性链状结构,可以作为高分子材料应用于制造各种化学品、塑料等材料。
苯乙烯是一种具有较高反应活性的单体,可以通过自由基反应机理进行聚合。
苯乙烯的聚合可以通过热引发、光引发等方式进行,其中以过氧化物引发方式最常用。
过氧化物引发剂(如过氧化苯甲酰)加入苯乙烯单体中,通过热的方式引发自由基聚合反应。
自由基聚合具有单分子反应特性,所以其反应速率可以用分子反应速率常数表示。
分子反应速率常数k可以通过聚合前后单体浓度变化的比值和反应时间计算得出。
膨胀计是一种用于测量高分子物质在化学反应中的膨胀量的仪器。
在实验中,将聚合单体置于一定温度下,在一定时间内进行聚合,然后利用膨胀计测量聚合物的膨胀量,从而计算出反应速率。
膨胀计的原理是利用聚合物吸收单体的性质。
在反应过程中,单体被吸收到聚合物中,导致聚合物产生膨胀。
通过测量膨胀量,可以得出聚合物的近似质量,并计算出反应速率。
膨胀计的使用方法包括以下步骤:(1) 准备苯乙烯聚合前和聚合后的试样,并记录试样的重量。
(2) 将试样装入膨胀计仪器中,加入引发剂和其他反应条件,并启动仪器。
(3) 在一定时间内进行聚合反应,并测量聚合物产生的膨胀量。
(4) 计算出聚合物的质量变化和反应速率。
三、实验操作1、实验仪器和材料膨胀计、苯乙烯、过氧化苯甲酰。
2、实验步骤(2) 在聚合前的苯乙烯试样中加入适量的过氧化苯甲酰引发剂,并将样品加入膨胀计仪器中。
膨胀计法测定甲基丙烯酸甲酯本体聚合反应速率一、实验目的1. 掌握膨胀计法测定聚合反应速率的原理和方法2. 验证聚合速率与单体浓度间的动力学关系,求得MMA本体聚合反应平均聚合速率二、实验原理根据自由基聚合反应机理可以推导出聚合初期的动力学微分方程:即聚合反应速率Rp与引发剂浓度[I]1/2、单体浓度[M]成正比。
在转化率低的情况下,可假定引发剂浓度保持恒定,将微分式积分可得:式中:[M]0为起始单体浓度;[M]为t时刻单体浓度,K为常数。
如果从实验中测定不同时刻的单体浓度[M],求出不同时刻的数值,并对时间t作图应得一条直线,由此可验证聚合反应速率与单体浓度的动力学关系式。
聚合反应速率的测定对工业生产和理论研究具有重要的意义。
实验室多采用膨胀计法测定聚合反应速率:由于单体密度小于聚合物密度,因此在聚合过程中聚合体系体积不断缩小,体积降低的程度依赖于单体和聚合物的密度差,即体积的变化是和单体的转化率成正比。
如果使用一根直径很小的毛细管来观察体积的变化(参见图5-1),测试灵敏度将大大提高,这种方法就叫膨胀计法。
若以ΔV表示聚合反应t时刻的体积收缩值,为单体完全转化为聚合物时的体积收缩值,则单体转化率C可以表示为:式中,V0为聚合体系的起始体积; r为毛细管半径;h为某时刻聚合体系液面下降高度;dp为聚合物密度;dm为单体密度。
因此,聚合反应速率为:因此,通过测定某一时刻聚合体系液面下降高度,即可计算出此时刻的体积收缩值和转化率,进而作出转化率与时间关系曲线,根据直线部分斜率,即可求出平均聚合反应速率。
应用膨胀计法测定聚合反应速率既简单又准确,需要注意的是此法只适用于测量转化率在10%反应范围内的聚合反应速率。
因为只有在引发剂浓度视为不变的阶段(10%以内的转化率)体积收缩与单体浓度呈线性关系,才能用上式求取平均速率;特别是在较高转化率下,体系粘度增大,导致聚合反应自动加速,用上式计算的速率已不是体系的真实速率。
膨胀计法测定苯乙烯聚合反应速率2.试验原理聚合反应速率可通过挺直测定用于反应的单体或所产生的聚合物的量求得,这被称为挺直法;也可以从陪同聚合反应的物理量的变幻求出,被称为间接法。
前者适用于各种聚合办法,而后者只能用于均一的聚合体系。
间接法能够延续地、精确地求得聚合物初期的聚合反应速率。
对于均一的聚合体系,在聚合反应举行的同时,体系的密度、勃度、折光度、介电常数等也都发生变幻。
本试验就是依据密度随友应物浓度变幻的原理来测定聚合反应速率的。
聚合物的密度通常也比其单体大,通过观看一定量单体在聚合时的体积收缩就可以计算出聚合反应速率。
为了增大比容随温度变幻的敏捷度,观看体积变幻是在一个很小的毛细管中举行的。
测定所用的仪器称为膨胀计,其结构主要包括两部分:下部是聚合容器,上部连有带有刻度的毛细管。
将加有定量引发剂的单体弥漫膨胀计,在恒温水浴中聚合,单体改变为聚合物时密度增强,体积收缩,毛细管内液面下降。
每隔一定时光记录毛细管内聚合混合物的弯月面的变幻,可将毛细管读数按一定关系式对时光作图。
再按照单体浓度,从而求出聚合总速率的变幻状况。
动力学讨论普通限于低转化率,在5%-10%以下。
在低转化率下,假定[I]保持不变时,引发剂引发的聚合反应速率方程式如下: Rp=d[M]/dt=k[M](1)式中,k为反应速率常数;[M]为单体浓度。
经积分得: In=[M]0/[M]t=kt(2)式中,[M]0、[M]t分离为单体的起始浓度和t时刻浓度。
设膨胀计的体积(即苯乙烯的起始体积)为V0,苯乙烯彻低聚合后的体积为V∞,则(VI一V∞)就是苯乙烯转化成聚苯乙烯总的体积收缩量,而t时刻所能达到的体积收缩量为(Vt一V∞),因为(V0一V∞)和(Vt一V∞)分离与单体的起始浓度[M]0和:时刻剩下的苯乙烯浓度[M]t相关,将它们分离代入式(2)得: ln=(V0一V∞)/(Vt -V∞)=kt(3)因为膨胀计毛细管的刻度是长度单位,故将式(3)分子、分母分离除以毛细管的横截面积即变换成长度: In=(L0一L ∞)/(Lt一L∞)=kt(4) 由式(1)可知,聚合反应速率对单体浓度为一第1页共3页。
膨胀计法测玻璃化转变温度思考题一、引言在材料科学领域,膨胀计法是一种常用的测试方法,用于测定材料的玻璃化转变温度。
玻璃化转变温度是材料由固态转变为液态的临界温度,也是材料的重要物理性质之一。
本文将从膨胀计法的基本原理出发,探讨如何利用膨胀计法测定玻璃化转变温度,并结合实际案例进行深入探讨,帮助读者更全面地理解膨胀计法及其在材料研究中的应用。
二、膨胀计法的基本原理膨胀计法是通过测定材料在不同温度下的热膨胀系数来确定材料的玻璃化转变温度。
其中,热膨胀系数定义为单位温度变化下材料单位长度的变化量,通常用ppm/℃(百万分之一/摄氏度)来表示。
当材料接近玻璃化转变温度时,其热膨胀系数将显著增加,这一特性可以用来确定材料的玻璃化转变温度。
三、膨胀计法测定玻璃化转变温度的步骤1. 样品准备:需要准备一定量的样品,并将其放置在膨胀计中进行测定。
2. 设定实验条件:在进行实验之前,需要根据样品的性质和要求设置好实验条件,包括温度范围、升温速率等。
3. 开始实验:将样品放置在膨胀计中,然后根据设定的实验条件进行升温,同时记录样品的长度变化。
4. 分析数据:通过分析样品在不同温度下的热膨胀系数曲线,可以找到热膨胀系数发生显著变化的温度点,即玻璃化转变温度。
五、实际案例分析以某种工程塑料为例,通过膨胀计法测得其在升温过程中的热膨胀系数曲线,如下图所示:在这个实际案例中,我们可以清晰地看到随着温度的升高,工程塑料的热膨胀系数呈现出先缓慢增加,然后在约180℃时急剧增加的趋势。
而在这个温度点附近,可以认为工程塑料发生了玻璃化转变。
通过膨胀计法测定,我们确定了这种工程塑料的玻璃化转变温度为180℃。
在实际工程实践中,准确测定材料的玻璃化转变温度对于材料的选取和设计具有重要意义。
膨胀计法作为一种可靠的测试方法,在材料科学研究和工程应用中得到了广泛的应用。
六、总结与展望通过本文的讨论,我们对膨胀计法测定玻璃化转变温度的原理和方法有了更深入的理解。
膨胀计法测定苯乙烯聚合反应速率实验报告
本试验旨在使用膨胀计法来测定苯乙烯聚合反应的速率。
聚合反应的速率表示聚合反应生成产物的速率,其受不同的微环境因素影响,包括反应温度、浓度等。
本实验采用膨胀计法,测定苯乙烯在恒定温度和压强下聚合反应的速率。
膨胀计法测定反应相当于利用反应液容积的变化来推断反应的进展,相当于用反应室的容积与体积之间的变化来检测反应速率。
本实验根据恒定温度和压强,在实验中采用膨胀计测定苯乙烯聚合反应的速率,主要包括实验前的准备、实验的操作以及实验结束后的数据处理等步骤。
实验前的准备主要是准备各种实验仪器,包括膨胀计、细枝毛笔及记录纸等。
其中,膨胀计的容积是1ml,两个活塞的初始位置调整在实验空膨胀值上,细枝毛笔则用来放置在反应室内测定容积变化,记录纸则用来记录反应过程中体积变化的数据。
经过实验前的准备,准备好了需要的一切,就可以正式开始实验。
实验过程是将苯乙烯放入容积为1ml的反应室里,记录反应室开始时的容积,然后置放在定温恒温蒸馏仪中进行聚合,定时截取容积数据,半个小时到一个小时的间隔不断的调整活塞的位置,记录反应室的容积,待实验结束时,反应室的容积最终稳定,表明反应结束,实验结束。
实验结束后进行数据处理,主要是对收集到的数据进行处理,根据实验结果可以得出 amountA(L)/min 来表示反应速率,从而验证反应的机理。
经过本次实验的膨胀计法,我们测定了苯乙烯聚合反应的速率,通过实验结果来证明不同的微环境因素会影响反应速率。
本实验表明,膨胀计法是一种可行的方法来测定苯乙烯聚合反应的速率。
实验三 加聚反应动力学——膨胀计法测反应速度一、 实验目的膨胀计法是测定聚合速度的一种方法。
它的依据是单体密度小,聚合物密度大,因此随着聚合反应的进行,体积会发生收缩。
当一定量单体聚合时,体积的变化与转化率成正比。
如果将这种体积的变化放在一根直径很长很窄的毛细管中观察,其灵敏度将大为提高,这种方法就是膨胀计法。
通过本实验应达到以下的目的:1、用膨胀计法通过体积收缩进行加聚反应动力学的研究;2、学会处理加聚反应动力学数据,画出转化率与时间的关系图,计算苯乙烯聚合反应速度常数k 。
二、 实验原理从自由基加聚反应的机理及动力学研究与实验都证明苯乙烯聚合的动力学过程,基本上可由下式描述:(1)此式表示聚合反应速度与引发剂浓度的平方根成正比,与单体浓度成正比。
如果转化率低,(<16%),可假定引发剂浓度保持恒定,则可得下式:(2)式中为起始单体浓度;M 为时间t 时的单体浓度;k 为反应速度常数。
此式是直线方程。
若以对t 作图,其斜率即为k 。
由于单体与聚合物的密度不同,在单体聚合时必然发生体积的变化,故可通p v []I []M 0M [][]⎪⎪⎭⎫ ⎝⎛M M 0ln过加聚反应时体积的变化求得转化率,从转化率则可求得不同时间的单体浓度,进而可求得反应速度常数。
三、仪器与试剂1、仪器超级恒温器;读数显微镜(0.01mm);毛细管膨胀计(见图3-1示意);精密温度计(100℃,精度0.1℃)1支;移液管(10ml);烧杯(50ml);称量瓶;注射器;秒表;吸球等。
2、试剂苯乙烯(CP,经新蒸馏);偶氮二异丁腈(CP,经重结晶,熔点为103-104℃)四、实验步骤膨胀计体积及毛细管直径的测定毛细管直径的测定是将水银装入膨胀计(见图3-1)的毛细管中(长约2-3cm),在读数显微镜下读出该段的长度。
如此反复,读出毛细管各段长度Li,倒出水银并称重W,记录当时室温t,查出该温度下水银的密度(d),则各段毛细管直径Di为:膨胀计毛细管直径D取Di的算术平均值。
膨胀计法测定聚合物的玻璃化温度实验报告
实验目的:使用膨胀计法测定聚合物的玻璃化温度。
实验原理:聚合物的玻璃化温度是指聚合物在加热过程中从玻璃态转变为高分子状态的温度。
膨胀计法是一种常用的测定玻璃化温度的方法。
其原理是利用聚合物在加热过程中由于温度升高而产生的膨胀变化来判断玻璃化转变的温度。
实验步骤:
1. 将聚合物样品剪成适当大小的片状,保持样品的一致性。
2. 将膨胀计探头插入样品,并将样品与膨胀计固定。
3. 将膨胀计连接到温度控制器上,并将温度控制器设定为从室温开始以一定速率升温。
4. 在实验过程中记录膨胀计示数随温度变化的曲线。
5. 观察曲线中的突变点,即玻璃化转变点,这一点对应的温度即为聚合物的玻璃化温度。
实验结果:根据实验数据记录的膨胀计示数随温度变化的曲线,确定聚合物的玻璃化温度。
讨论与分析:根据实验结果得到的玻璃化温度,可以判断聚合物的性质、稳定性和应用范围。
结论:利用膨胀计法可以测定聚合物的玻璃化温度,本实验得到的结果为聚合物的玻璃化温度为X℃。
膨胀计法测定苯乙烯本体聚合反应速率(自动保存的
膨胀计法是一种常用的化学反应速率测定方法,适用于热起始的低聚和高聚反应以及聚合物降解反应的速率测定。
在苯乙烯本体聚合反应中,膨胀计法可以通过测量
反应体系体积的变化来计算反应速率。
测定苯乙烯本体聚合反应速率的步骤如下:
1. 实验器材准备:需要一台膨胀计仪、移液管、计时器、恒温水槽、分液漏斗等。
2. 实验样品准备:取少量苯乙烯本体和过氧化氢,加入反应瓶中,搅拌至完全溶解。
3. 实验条件设定:将膨胀计器安装在恒温水槽中,调整温度至实验所需温度。
将反应瓶挂于膨胀计仪顶部,其中溶液顶部与仪器顶部呈水平状态。
4. 实验开始:打开膨胀计仪的阀门,将反应瓶中的反应液注入仪器中,反应开始计时。
5. 测量反应体积变化:随着反应的进行,反应体系的体积将逐渐增加,此时需要用移液管将溢出的液体移回到反应瓶中,保持体系体积不变。
6. 结束反应:当反应达到一定时间时,关闭膨胀计仪的阀门,停止反应,并记录此时体系的总体积。
7. 数据处理:通过计算反应前后体系体积的差值,以及实验中所设定的时间间隔,可以计算出反应速率。
膨胀计法的测定结果受很多因素影响,例如反应温度、反应物浓度、催化剂种类和浓度等,因此需要进行多次实验来确定最终的反应速率。
此外,由于苯乙烯本体聚合反应是一个多步反应,其中包含自由基反应、传递反应、氧化反应等多个过程,因此需要对反应机理进行深入的研究,才能准确地测定反应速率。
膨胀计测定原理及使用方法哇塞,今天咱就来好好聊聊膨胀计测定原理及使用方法。
膨胀计测定呀,简单来说就是利用物体在受热或受冷时会发生膨胀或收缩的特性来进行测量和分析。
使用膨胀计的步骤呢,首先要准备好膨胀计和待测样品,将样品放入膨胀计中,然后根据具体的实验要求进行加热或冷却操作。
在这个过程中可得注意啦,要确保膨胀计的安装和操作正确无误,不然得出的数据可就不准确喽!同时,还要注意控制温度变化的速率,不能太快也不能太慢,就像跑步一样,得保持一个合适的节奏。
说到安全性和稳定性,这可太重要啦!在使用膨胀计的过程中,一定要严格遵守操作规程,避免发生意外。
就好像走钢丝一样,得小心翼翼地保持平衡,稍有不慎可能就会出问题呢。
而且要保证膨胀计本身的质量可靠,这样才能确保实验过程稳定进行呀。
那膨胀计都有哪些应用场景和优势呢?它的应用场景那可多了去了,比如在材料科学领域,可以用来研究材料的热膨胀性能;在化学领域,可以监测化学反应过程中的体积变化。
它的优势就在于能够非常精确地测量微小的体积变化,这就好比是在茫茫人海中精准地找到那个特别的人一样厉害!而且操作相对简单,成本也不高,多好呀!
咱来举个实际案例吧,在研究一种新型材料的热膨胀性能时,使用膨胀计进行测定。
通过实验,清楚地了解到这种材料在不同温度下的膨胀情况,为进一步的研究和应用提供了重要的数据支持。
你看,这效果多明显呀!
膨胀计测定真的是一种非常有用的技术呀,它就像是一把神奇的钥匙,可以打开很多科学领域的大门,让我们更深入地了解物质的性质和变化。
所以呀,大家一定要重视和好好利用它哟!。
锂电池电化学膨胀计是一种用于测量锂电池在充放电过程中膨胀和收缩变化的仪器。
它的主要用途包括:
1. 研究锂电池的充放电行为:通过测量锂电池在充放电过程中的膨胀和收缩变化,可以了解锂电池的充放电机制、容量衰减规律等。
2. 评估锂电池的性能:锂电池的膨胀和收缩变化可以反映出电池内部的结构变化和化学反应,因此可以通过膨胀计来评估锂电池的性能,如容量、循环寿命、内阻等。
3. 优化锂电池的设计:通过测量锂电池在不同条件下的膨胀和收缩变化,可以为锂电池的设计提供参考,优化电池的结构和材料选择,提高电池的性能和安全性。
4. 质量控制:在锂电池的生产过程中,膨胀计可以用于监测电池的膨胀和收缩变化,以确保电池的质量符合标准。
总之,锂电池电化学膨胀计是一种重要的测试仪器,可以为锂电池的研究、开发、生产和质量控制提供重要的参考。
混凝土中膨胀率检测技术规程一、前言混凝土是建筑工程中常用的构造材料之一,其性能的稳定性和可靠性对工程质量有着至关重要的影响。
其中,混凝土中膨胀率是衡量混凝土性能的重要指标之一,对于保证混凝土的耐久性和安全性具有重要的作用。
为了保证混凝土的质量,需要对混凝土中膨胀率进行检测。
本文将介绍混凝土中膨胀率检测的技术规程。
二、检测仪器1. 膨胀计膨胀计是测量混凝土膨胀率的重要仪器,其主要由钢筒、活塞、缸盖、导杆、指针和刻度盘等组成。
常用的膨胀计有JGJ/T70-2009标准规定的直接读数式膨胀计和JC/T529-2006标准规定的电子式膨胀计。
2. 温度计温度计是用于测量混凝土温度的仪器,其主要由测温头、导线、显示仪表等组成。
常用的温度计有数字式温度计和玻璃式温度计。
三、检测前准备工作1. 混凝土试件制备混凝土试件制备应符合GB/T50082-2009《混凝土试件制备规程》和GB/T50081-2002《混凝土配合比与性能检验方法标准》的规定,试件宜选用标准立方体试件。
2. 试验环境准备试验环境应符合GB/T50082-2009《混凝土试件制备规程》和JGJ/T70-2009《混凝土膨胀率试验方法标准》的规定,试验环境的温度应在20°C左右,相对湿度应在50%~60%之间。
3. 仪器校验膨胀计和温度计应在试验前进行校验,校验方法参照膨胀计和温度计的说明书。
四、检测步骤1. 检测前准备将试件从水中取出,用干净的毛巾擦干表面水分,然后将试件放置在试验室内静置24h以上,使其达到试验环境的温度和湿度。
2. 测量试件尺寸和质量测量试件的尺寸和质量,记录在试验记录单上。
3. 安装膨胀计将膨胀计安装在试件表面,使其与试件表面紧密贴合。
注意:膨胀计的导杆应与试件的长轴平行。
4. 连接电子式膨胀计如果使用电子式膨胀计,需要将膨胀计与电脑或数据处理器连接。
5. 测量温度使用温度计测量试件表面和试件中心的温度,并记录在试验记录单上。
混凝土膨胀率检测标准一、前言混凝土是一种广泛应用于建筑工程中的材料,其性能对工程质量和安全至关重要。
混凝土的膨胀率作为混凝土性能的一个重要指标,对于工程设计和施工具有重要意义。
本文将介绍混凝土膨胀率检测的标准,以期为相关人员提供参考。
二、混凝土膨胀率的含义混凝土膨胀率是指混凝土在受到热胀冷缩、干缩、水泥石膏反应等因素影响下,长度或体积发生变化的程度。
通常用百万分之一(μm/m)或百分之一(%)表示。
三、混凝土膨胀率检测的方法1.线性膨胀计法线性膨胀计法是一种常用的混凝土膨胀率检测方法,其原理是利用线性膨胀计测量混凝土在热胀冷缩或水泥石膏反应等因素影响下的长度变化。
该方法适用于测量混凝土的线性膨胀率。
2.浸水法浸水法是一种测量混凝土干缩率的方法。
其原理是将混凝土试件放入水中,记录试件在水中的长度,待试件吸收了足够的水分后,再测量试件在空气中的长度。
试件在水中的长度与在空气中的长度的差值即为试件的干缩量。
3.水泥石膏反应试验法水泥石膏反应试验法是一种测量混凝土膨胀率的方法。
其原理是将混凝土试件与水泥石膏混合,观察试件的膨胀情况。
该方法适用于测量混凝土的水泥石膏反应膨胀率。
四、混凝土膨胀率检测标准1.混凝土线性膨胀率检测标准混凝土线性膨胀率检测应参照以下标准:(1)GB/T 50082-2009《混凝土结构工程施工质量验收规范》;(2)JGJ/T 152-2008《混凝土结构工程施工质量检验规程》;(3)GB/T 50367-2013《混凝土结构工程施工质量评定标准》;(4)GB/T 17671-1999《混凝土试验方法标准》。
2.混凝土干缩率检测标准混凝土干缩率检测应参照以下标准:(1)GB/T 50082-2009《混凝土结构工程施工质量验收规范》;(2)JGJ/T 152-2008《混凝土结构工程施工质量检验规程》;(3)GB/T 50367-2013《混凝土结构工程施工质量评定标准》;(4)GB/T 1346-2011《混凝土干缩试验方法标准》。
实验十膨胀计法测定聚合物的玻璃化温度一.实验目的1.掌握膨胀计法测定聚合物玻璃化温度的方法。
2.了解升温速度对玻璃化温度的影响。
3. 深入理解自由体积概念在高分子学科中的重要性。
二.实验原理某些液体在温度迅速下降时被固化成为玻璃态而不发生结晶作用就叫做玻璃化转变,其发生转变时的温度称玻璃化温度,记作T g。
聚合物具有玻璃化转变现象。
聚合物的玻璃化转变对非晶态聚合物而言,是指其从玻璃态到高弹态的转变(温度由低到高),或从高弹态到玻璃态的转变(温度由高到低);对晶态聚合物来说,是指其中非晶部分的这种转变。
玻璃化温度T g是聚合物的特征温度之一,它是高分子链柔性的指标,可以作为聚合物的特征指标,。
从工艺角度来看,T g是非晶态热塑性塑料(如聚苯乙烯、聚甲基丙烯酸甲酯和硬质聚氯乙烯等)使用温度的上限,是橡胶使用温度的下限,具有重要的工艺意义。
当聚合物由玻璃态转变为高弹态时,模量下跌3~4个数量级,材料从坚硬的固体转变成柔软的弹性体。
许多其它物理性质,如体积(比容)、热力学性质(比热、焓) 和电磁性质(介电系数、介电损耗、核磁共振吸收谱线宽度等)都有明显的变化。
聚合物的玻璃化转变现象是一个极为复杂的现象,它的本质至今还不完全了解。
对聚合物玻璃化转变本质的看法集中起来有两种,一种观点认为玻璃化转变本质上是个动力学问题,是一个弛豫过程。
聚合物有自己的分子内部时间尺度,当外力作用时间(或实验观察时间、或实验时间)与这内部时间尺度同数量级时即发生松弛转变。
玻璃化转变就是外力作用时间与聚合物链段运动的松弛时间同数量级时的松弛转变。
另一种观点认为玻璃化转变本质上是一个平衡热力学二级相变,而实验观测到的具有动力学性质的T g是需要无限长时间的热力学转变温度的一个显示。
的确,从实验上来观察,我们确实只能发现玻璃化转变的速率特征,但是,认为玻璃化转变是一个平衡态热力学转变,并以此为基础做出的理论推导在解释玻璃化温度与共聚、增塑、交联等因素的关系上取得了满意的结果。
实验五膨胀计法测定聚合物的玻璃化温度聚合物的玻璃化转变是指非晶态聚合物从玻璃态到高弹态的转变,是高分子链段开始自由运动的转变。
在发生转变时,与高分子链段运动有关的多种物理量(例如比热、比容、介电常数、折光率等)都将发生急剧变化。
显而易见,玻璃化转变是聚合物非常重要的指标,测定高聚物玻璃化温度具有重要的实际意义。
目前测定聚合物玻璃化转变温度的主要有扭摆、扭辫、振簧、声波转播、介电松弛、核磁共振和膨胀计等方法。
本实验则是利用膨胀计测定聚合物的玻璃化转变温度,即利用高聚物的比容-温度曲线上的转折点确定高聚物的玻璃化温度(T g)。
一、实验目的与要求1、掌握膨胀计法测定聚合物T g的实验基本原理和方法。
2、了解升温速度对玻璃化温度的影响。
3、测定聚苯乙烯的玻璃化转变温度。
二、实验原理当玻璃化转变时,高聚物从一种粘性液体或橡胶态转变成脆性固体。
根据热力学观点,这一转变不是热力学平衡态,而是一个松弛过程,因而玻璃态与转变的过程有关。
描述玻璃化转变的理论主要有自由体积理论、热力学理论、动力学理论等。
本实验的基本原理来源于应用最为广泛的自由体积理论。
根据自由体积理论可知:高聚物的体积由大分子己占体积和分子间的空隙,即自由体积组成。
自由体积是分子运动时必需空间。
温度越高,自由体积越大,越有利于链段中的短链作扩散运动而不断地进行构象重排。
当温度降低,自由体积减小,降至玻璃化温度以下时,自由体积减小到一临界值以下,链段的短链扩散运动受阻不能发生(即被冻结)时,就发生玻璃化转变。
图5-1高聚物的比容—温度关系曲线能够反映自由体积的变化。
图中上方的实线部分为聚合物的总体积,下方阴影区部分则是聚合物己占体积。
当温度大于α段部分。
T g时,高聚物体积的膨胀率就会增加,可以认为是自由体积被释放的结果,图中r当T<T g时,聚合物处于玻璃态,此时,聚合物的热膨胀主要由分子的振动幅度和键长的变化的贡献。
在这个α段部分。
显然,两条直线的斜率发生极大的变阶段,聚合物容积随温度线性增大,如图g化,出现转折点,这个转折点对应的温度就是玻璃化温度T g。
膨胀计法测定甲基丙烯酸甲酯本体聚合反应速率
一、实验目的
1. 掌握膨胀计法测定聚合反应速率的原理和方法
2. 验证聚合速率与单体浓度间的动力学关系,求得MMA本体
聚合反应平均聚合速率
二、实验原理
根据自由基聚合反应机理可以推导出聚合初期的动力学微分
方程:
即聚合反应速率Rp与引发剂浓度[I]1/2、单体浓度[M]成正
比。
在转化率低的情况下,可假定引发剂浓度保持恒定,将
微分式积分可得:
式中:[M]0为起始单体浓度;[M]为t时刻单体浓度,K为常
数。
如果从实验中测定不同时刻的单体浓度[M],求出不同时刻的
数值,并对时间t作图应得一条直线,由此可验证聚合反应
速率与单体浓度的动力学关系式。
聚合反应速率的测定对工业生产和理论研究具有重要的意
义。
实验室多采用膨胀计法测定聚合反应速率:由于单体密
度小于聚合物密度,因此在聚合过程中聚合体系体积不断缩
小,体积降低的程度依赖于单体和聚合物的密度差,即体积
的变化是和单体的转化率成正比。
如果使用一根直径很小的
毛细管来观察体积的变化(参见图5-1),测试灵敏度将大
大提高,这种方法就叫膨胀计法。
若以ΔV表示聚合反应t时刻的体积收缩值,为单体完全转
化为聚合物时的体积收缩值,则单体转化率C可以表示为:
式中,V0为聚合体系的起始体积; r为毛细管半径;h为某
时刻聚合体系液面下降高度;dp为聚合物密度;dm为单体密
度。
因此,聚合反应速率为:
因此,通过测定某一时刻聚合体系液面下降高度,即可计算
出此时刻的体积收缩值和转化率,进而作出转化率与时间关
系曲线,根据直线部分斜率,即可求出平均聚合反应速率。
应用膨胀计法测定聚合反应速率既简单又准确,需要注意的
是此法只适用于测量转化率在10%反应范围内的聚合反应速
率。
因为只有在引发剂浓度视为不变的阶段(10%以内的转化
率)体积收缩与单体浓度呈线性关系,才能用上式求取平均
速率;特别是在较高转化率下,体系粘度增大,导致聚合反应自动加速,用上式计算的速率已不是体系的真实速率。
三、仪器与试剂
膨胀计(内径已标定,r =0.2 ~ 0.4mm, 如图5-1所示)一个,恒温水浴装置一套,25ml磨口锥形瓶一个,1ml和2ml 注射器各一支,称量瓶一个,20ml移液管一支,分析天平(最小精度0.1mg)一台。
甲基丙烯酸甲酯单体(除去阻聚剂)15mL,过氧化二苯甲酰(精制)0.12g,丙酮
图5-1 毛细管膨胀计
四、实验步骤
1、用移液管将15ml甲基丙烯酸甲酯移入洗净烘干的25ml 磨口锥形瓶中,在天平上称0.12g已精制的过氧化二苯甲酰放入锥形瓶中,摇匀溶解。
2、在膨胀计毛细管的磨口处均匀涂抹真空油脂(磨口上沿往下1/3范围内),将毛细管口与聚合瓶旋转配合,检查是否严密,防止泄漏,再用橡皮筋把上下两部分固定好,用分析天平精称m1,另外备一个小称量瓶和1毫升注射器一起称量备用。
3、取下膨胀计的毛细管,用注射器吸取已加入引发剂的单体溶液缓慢加入聚合瓶至磨口下沿往上1/3处(注意不要将磨口处的真空油脂冲入单体溶液中),再将毛细管垂直对准聚合瓶,平稳而迅速地插入聚合瓶中,使毛细管中充满液体。
然后仔细观察聚合瓶和毛细管中的溶液中是否残留有气泡。
如有气泡,必须取下毛细管并将磨口重新涂抹真空油脂再配合好。
若没有气泡则用橡皮筋固定好,用滤纸把膨胀计上溢出的单体吸干,再用分析天平称量,记为m2。
4、将膨胀计垂直固定在夹具上,让下部容器浸于已恒温的(50±0.1)℃水浴中,水面在磨口上沿以下。
此时膨胀计毛细管中的液面由于受热而迅速上升,这时用刚才备好的1ml的注射器将毛细管刻度以上的溶液吸出,放入同时备好的称量瓶中。
仔细观察毛细管中液面高度的变化,当反应物与水浴温度达到平衡时,毛细管液面不再上升。
准确调至零点,记录此刻液面高度,即为反应的起始点。
将抽出的液体称量(即抽液后注射器+称量瓶重量减去抽液前注射器+称量瓶重量),记为m3。
5、当液面开始下降时,聚合反应开始,记下起始时刻和此时的刻度,以后每隔5分钟记录一次,随着反应进行,液面高度与时间呈线性关系,1小时后结束读数。
(反应初期,可能会有一段诱导期)
6、从水浴中取出膨胀计,将聚合瓶中的聚合物倒入回收瓶,在小烧杯中用少量丙酮浸泡,用吸耳球不断地将丙酮吸入毛细管中反复冲洗,后干燥即可。
公式待处理。