vissim驾驶行为参数调整和模型校正
- 格式:pdf
- 大小:2.86 MB
- 文档页数:22
Vissim使用说明目录目录 (2)第一章Vissim使用概况 (4)1.1 Vissim快速启动清单 (4)1.2 Vissim桌面 (4)第二章网络 (8)2.1 概况 (12)2.2 网络编辑 (12)2.2.1 背景图 (12)2.2.2 link (13)2.3 机动车 (14)2.3.1 分布 (14)2.3.2 车辆加速度 (15)2.3.3 车辆类型(type),种类(class)和类别(category) (15)2.3.4 交通组成 (17)2.3.5 交通量 (17)2.3.6 期望速度变化 (18)2.4 机动车路径选择/转弯运动 (18)2.4.1 路线定义 (18)2.4.2 方向定义 (18)2.4.3 路线定义和方向定义比较 (19)2.5 公共交通 (19)2.5.1 公交站 (19)2.5.2 公交线路 (20)2.5.2.1 公交线路的定义 (20)2.5.2.2 公共汽车停留时间计算 (22)2.6 无信号控制的交叉口 (22)2.6.1 优先权规则(Right-of-way Designation) (22)2.6.2 停车标志控制 (23)2.7 信号控制交叉口 (23)2.7.1 信号组和信号灯 (24)2.7.2 检测器 (24)2.7.3 信号控制器 (25)2.7.3.1 定时信号控制 (25)2.7.3.2 车辆感应信号控制(可选模块V AP) (25)2.7.4 信号控制类型的切换 (25)2.7.5 信号控制通讯 (26)第三章全局设定 (27)3.1 仿真参数 (27)3.2 驾驶行为 (27)3.3 图形显示 (29)3.3.1 3D显示 (31)3.3.2 3D车辆 (31)第四章仿真和测试 (33)4.1 仿真 (33)4.2 Animation (33)4.3 记录3D录像 (33)第五章结果 (35)5.1 评价设置 (35)5.1.1 屏幕输出 (35)5.1.2 文件输出 (35)5.2 运行错误 (36)第六章评价类型 (37)6.1 行程时间 (37)6.1.1 定义 (37)6.1.2 配置 (37)6.1.3 结果 (37)6.2 延误时间 (38)6.2.1 定义 (38)6.2.2 配置 (38)6.2.3 结果 (39)6.3 数据采集 (39)6.4 排队计算器 (40)6.5 绿时分配 (41)6.6 车辆信息记录 (43)6.7 动态信号配时 (44)6.8 信号变化 (45)6.9 link评价 (47)6.10 观察者 (48)6.11 变换车道 (48)6.12 公共汽车/电车等待时间 (48)6.13 车辆输入 (48)6.14 时间--空间图(x—t图) (49)6.14.1 定义 (49)6.14.2 配置 (49)6.14.3 结果 (49)6.15 速度—距离图(x-v图) (49)6.15.1 定义 (50)6.15.2 配置 (50)6.15.3 结果 (50)6.16 加速度数据 (51)6.17 加速度/速度综合评价 (51)6.18 文件汇总 (51)6.18.1 仿真输出文件 (51)6.18.2 测试状态文件 (54)6.18.3 其他数据文件 (54)第一章Vissim简介1.1 Vissim快速启动清单1.创建BMP格式的背景图。
第四章微观交通仿真软件VISSIM使用介绍第一节 VISSIM微观仿真软件介绍1.VISSIM仿真系统基本原理VISSIM是由德国PTV公司开发的微观交通流仿真系统。
该系统是一个离散的、随机的、以十分之一秒为时间步长的微观仿真软件。
车辆的纵向运动采用了德国Karlsruhe大学Wiedemann教授的“心理—生理跟车模型”;横向运动(车道变换)采用了基于规则(Rule-based)的算法。
不同驾驶员行为的模拟分为保守型和冒险型。
VISSIM软件系统内部由交通仿真器和信号状态发生器两大程序组成,它们之间通过接口来交换检测器的呼叫和信号状态。
"交通仿真器"是一个微观的交通流仿真模型,它包括跟车模型和车道变换模型。
"信号状态发生器"是一个信号控制软件,它以仿真步长为基础不断地从交通仿真器中获取检测信息,决定下一仿真时刻的信号状态并将这信息传送给交通仿真器。
图4.1 VISSIM中交通仿真器和信号状态发生器2.VISSIM仿真系统基本功能VISSIM可以作为许多交通问题分析的有力工具,它能够分析在诸如车道特性、交通组成、交通信号灯等约束条件下交通运行情况,不仅能对交通基础设施实时运行情况进行交通模拟,而且还可以以文件的形式输出各种交通评价参数,如行程时间、排队长度等。
因此,它是分析和评价交通基础设施建设中各种方案的交通适应性情况的重要工具。
以下是VISSIM的主要交通分析功能:1、固定式信号灯配时方法的开发、评价及优化。
2、能对各种类型的信号控制进行模拟,例如:定时控制方法、车辆感应信号控制方法、SCA TS和SCOOT控制系统中的信号控制等。
在VISSIM中,交通信号配时策略还可以通过外部信号状态发生器(V AP)来进行模拟,V AP允许用户设计自己定义的信号控制方法。
3、可用来分析慢速区域的交通流交织和合流情况。
4、可对各种设计方案进行对比分析,包括信号灯控制以及停车控制交叉口、环形交叉口以及立交等5、分析公共交通系统的复杂站台设施的通行能力和运行情况。
VISSIM实验指导书交通工程系1、 VISSIM简介 (1)2定义路网属性 (4)2、1物理路网 (4)2、1、1准备底图的创建流程 (4)2、1、2添加路段(Links) (7)2、1、3连接器 (9)2、2定义交通属性 (10)2、2、1定义分布 (10)2、2、2目标车速变化 (12)2、2、3 交通构成 (14)2、2、4 交通流量的输入 (15)2、3路线选择与转向 (15)2、4 信号控制交叉口设置 (17)2、4、1信号参数设置 (17)2、4、2信号灯安放及设置 (20)2、4、3优先权设置 (21)3仿真 (24)3、1 参数设置 (24)3、2 仿真 (25)4评价 (26)4、1 行程时间 (26)4、2 延误 (28)4、3 数据采集点 (30)4、4 排队计数器 (32)1、 VISSIM简介VISSIM为德国PTV公司开发的微观交通流仿真软件系统,用于交通系统的各种运行分析。
该软件系统能分析在车道类型、交通组成、交通信号控制、停让控制等众多条件下的交通运行情况,具有分析、评价、优化交通网络、设计方案比较等功能,就是分析许多交通问题的有效工具。
VISSIM采用的核心模型就是Wiedemann于1974年建立的生理-心理驾驶行为模型。
该模型的基本思路就是:一旦后车驾驶员认为她与前车之间的距离小于其心理(安全)距离时,后车驾驶员开始减速。
由于后车驾驶员无法准确判断前车车速,后车车速会在一段时间内低于前车车速,直到前后车间的距离达到另一个心理(安全)距离时,后车驾驶员开始缓慢地加速,由此周而复始,形成一个加速、减速的迭代过程。
图1、1 VISSIM中的跟车模型(Wiedemann 1974)VISSIM的主要应用包括:➢除了内建的定时信号控制模块外,还能够应用VAP、TEAPAC、VS-PLUS等感应信号控制模块。
➢在同时应用协调信号控制与感应信号控制的路网中,评价与优化(通过与Signal97/TEAPAC的接口)交通运行状况。
VISSIM 驾驶行为参数调整和模型校正
居菲
上海,2013-3
VISSIM中的驾驶行为模型
生理—心理跟车模型
生理—心理跟车模型
VISSIM中的停车时平均间距已经默认附加了
±的变化幅度,因此
可由实测停车间距标定。
生理—心理跟车模型
CC7、CC8、CC9不超过加速度定义中的范围
生理—心理跟车模型Psycho-physical car following model
前视最大值:少数情况要加大,比如铁路信号建模后视最大值:路网复杂情况下减小可提高仿真速度30 30
生理—心理跟车模型
后车驾驶员在一段时间内除急刹车外不对前车行为作出反应
车道变换
车道变换
车道变换
车道变换
车辆换道时慢车道上的车辆协调刹车的最
车道变换
在减速区域超车:不选:车辆在减速区上
横向行为
观察相邻车道上车辆的位置调整横向空间
横向行为
>超车时考虑下一个转向方向
横向行为
超车时相邻车道车辆间的最小横向距离
信号控制
信号控制
调整饱和流率
调整饱和流率
99 Car Following Model
居菲
上海,2013-3。
Vissim4.3操作手册(初级)2015年7月目录1 交通流仿真及VISSIM基本原理 (1)1.1 交通流仿真原理 (1)1.2 Vissim基本原理 (1)2 Vissim软件简介 (2)2.1 Vissim主要术语介绍 (2)2.2 Vissim软件功能介绍 (3)2.3 Vissim操作界面介绍 (4)2.4 Vissim仿真基本操作流程 (9)2.5 Vissim模型数据需求 (10)2.5.1准备阶段 (10)2.5.2 网络数据 (10)2.5.3 交通流数据 (10)2.5.4 信号控制数据 (11)2.5.5 公交数据 (11)3 路网属性 (11)3.1 物理路网 (11)3.1.1准备底图的创建流程 (11)3.1.2添加路段(Links) (14)3.1.3连接器 (16)3.2 定义交通属性 (17)3.2.1定义分布 (17)3.2.2目标车速变化 (19)3.2.3 交通构成 (21)3.2.4 交通流量的输入 (21)3.3 路线选择与转向 (22)3.4 信号控制设置 (24)3.4.1信号参数设置 (24)3.4.2信号灯安放及设置 (27)3.4.3优先权设置 (28)4仿真 (30)4.1 参数设置 (30)4.2 仿真 (31)5评价 (32)5.1 行程时间 (32)5.2 延误 (34)5.3 数据采集点 (36)5.4 排队计数器 (38)Vissim4.3操作手册VISSIM为德国PTV公司开发的微观交通流仿真软件系统,用于交通系统的各种运行分析。
该软件系统能分析在车道类型、交通组成、交通信号控制、停让控制等众多条件下的交通运行情况,具有分析、评价、优化交通网络、设计方案比较等功能,是分析许多交通问题的有效工具。
1 交通流仿真及VISSIM基本原理1.1 交通流仿真原理交通流仿真通过构建车辆的通行环境(道路网、交通控制、限速等)、驾驶员行为(跟车、换道超车等)、车辆性能特性、交通需求特性等交通要素的计算机模型,通过“再现”或“预演”交通流在不同的交通流组织方案、交通控制管理方案下的运行特性,达到评价、优选方案的目的。
VISSIM 驾驶行为参数调整和模型校正
居菲
上海,2013-3
VISSIM中的驾驶行为模型
生理—心理跟车模型
生理—心理跟车模型
VISSIM中的停车时平均间距已经默认附加了
±的变化幅度,因此
可由实测停车间距标定。
生理—心理跟车模型
CC7、CC8、CC9不超过加速度定义中的范围
生理—心理跟车模型Psycho-physical car following model
前视最大值:少数情况要加大,比如铁路信号建模后视最大值:路网复杂情况下减小可提高仿真速度30 30
生理—心理跟车模型
后车驾驶员在一段时间内除急刹车外不对前车行为作出反应
车道变换
车道变换
车道变换
车道变换
车辆换道时慢车道上的车辆协调刹车的最
车道变换
在减速区域超车:不选:车辆在减速区上
横向行为
观察相邻车道上车辆的位置调整横向空间
横向行为
>超车时考虑下一个转向方向
横向行为
超车时相邻车道车辆间的最小横向距离
信号控制
信号控制
调整饱和流率
调整饱和流率
99 Car Following Model
居菲
上海,2013-3。
1.设定1.1图形设定打开图形设定对话框,标定参数车道标识 车道显示方式(ctrl-d)(0 pix) (1 pix)1.2仿真参数设定Period 仿真的总时间Start time 仿真开始时间Sim.sec/s 仿真秒/秒,控制仿真的速度Time steps/sim.sec 步数/仿真秒,控制仿真的精细程度,默认值为0.1s Random seed 随机数种子数,相同的输入信息和相同的种子数会产生相同的结果。
在重复仿真中,如果改变随机数种子,情况也变化。
Break at 中断时刻Right-side traffic/left-side traffic 右行和左行规则,对相向而行的车道,港湾式公交站点和高速公路上的超车行为有影响(选择左或右侧车道作为超车道)1.3 驾驶行为设定预设有下列几种行为:1 urban (motorized) 城市道路中机动车的行为2 right side rule(motorized)高速路中遵循右行规则车辆行为3 interurban(free lane section) 高速路中自由变道的车辆行为4 footpath(no interaction) 不互相影响的步行5 cycle path(free overtaking) 自由的超车行为,用于模拟自行车和行人也可以在下列对话框中设定新的驾驶行为:2.基本操作2.1 建立路网 建立link 12.1 建立交通流点击,可以看到车辆在路2.2 设置信号灯2.2.1建立一组信号灯按下,左键点选信号灯所在的路段,右键点击路段上等参数2.3车辆路径的控制点击,须一致)2.4让行标志的使用左键点击按下,在对应的位置右键点击设置支路车辆的停车点(红色)2.5 公共交通的设置按下,设置公交线路的,确定公交线路在路网中的起点和终点,并设置公按下,。
Vissim4.3操作手册(初级)2015年7月目录1 交通流仿真及VISSIM基本原理 (1)1.1 交通流仿真原理 (1)1.2 Vissim基本原理 (1)2 Vissim软件简介 (2)2.1 Vissim主要术语介绍 (2)2.2 Vissim软件功能介绍 (3)2.3 Vissim操作界面介绍 (4)2.4 Vissim仿真基本操作流程 (9)2.5 Vissim模型数据需求 (10)2.5.1准备阶段 (10)2.5.2 网络数据 (10)2.5.3 交通流数据 (10)2.5.4 信号控制数据 (11)2.5.5 公交数据 (11)3 路网属性 (11)3.1 物理路网 (11)3.1.1准备底图的创建流程 (11)3.1.2添加路段(Links) (14)3.1.3连接器 (16)3.2 定义交通属性 (17)3.2.1定义分布 (17)3.2.2目标车速变化 (19)3.2.3 交通构成 (21)3.2.4 交通流量的输入 (21)3.3 路线选择与转向 (22)3.4 信号控制设置 (24)3.4.1信号参数设置 (24)3.4.2信号灯安放及设置 (27)3.4.3优先权设置 (28)4仿真 (30)4.1 参数设置 (30)4.2 仿真 (31)5评价 (32)5.1 行程时间 (32)5.2 延误 (34)5.3 数据采集点 (36)5.4 排队计数器 (38)Vissim4.3操作手册VISSIM为德国PTV公司开发的微观交通流仿真软件系统,用于交通系统的各种运行分析。
该软件系统能分析在车道类型、交通组成、交通信号控制、停让控制等众多条件下的交通运行情况,具有分析、评价、优化交通网络、设计方案比较等功能,是分析许多交通问题的有效工具。
1 交通流仿真及VISSIM基本原理1.1 交通流仿真原理交通流仿真通过构建车辆的通行环境(道路网、交通控制、限速等)、驾驶员行为(跟车、换道超车等)、车辆性能特性、交通需求特性等交通要素的计算机模型,通过“再现”或“预演”交通流在不同的交通流组织方案、交通控制管理方案下的运行特性,达到评价、优选方案的目的。
vissim使用手册教程VISSIM 实验报告说明书VISSIM 是一种微观、基于时间间隔和驾驶行为的仿真建模工具,用以建模和分析各种交通条件下(车道设置、交通构成、交通信号、公交站点等),城市交通和公共交通的运行状况,是评价交通工程设计和城市规划方案的有效工具。
本实验在交通设施设计课程设计的基础上,对所设计的道路进行一个Vissim仿真,以获取一定的评价结果,从中看出交通设施设计方案的好坏,在此基础上进行反复修改,以达到最好的设计效果。
一、准备资料:1、设计好的CAD底图2、具体的交通量:路段每个车道流量为1000辆/h(大型车率6,,小型车率94,),左转流量10,,右转流量10,。
二、操作流程本次实验以课堂知识、天空教室以及老师现场答疑指导等环节背景进行操作,最后生成具体Vissim仿真成果。
- 1 -1、打开软件,导入CAD 底图在查看下拉菜单中选取“背景”选项- 2 -点“读取”到入CAD底图,然后关闭对话框。
- 3 -点显示整个路网。
再点击“背景”--“编辑”—“比例尺”输入相关尺度。
2、路段VISSIM路网编码的第一步工作是描绘路段轨迹,寻找进出交叉口的所有道路,确定进口以及交叉口内的车道数。
每条道路表示为一个路段,从主要道路开始编码。
路段上的车道数始终保持恒定,若车道数发生变化,必须重新建立一个路段。
如果要改变已有路段上的车道数,依次选择:编辑?打断路段,在车道数变化位置打断路段(默认快捷键为<F8>)。
建模技巧:? 创建一条单向路段并调整曲率,然后利用生成相反方向选项,创建一个具有相似形状的反向路段。
? 连接器(而不是路段)可用来建模转向车流。
? 路段不应在交叉口转弯,而应该延伸到交叉口中央 (如果是“直达路段”,不允许不同数量的车道数)。
- 4 -对与高架路段的处理:选取相应的高架段,选中路段,右击在一段路上等间距打点,然后同时Alt+鼠标(左击两次),出现对话框,输入相应的高程,这样就形成了一定的高度。
基于VISSIM下微观交通仿真模型参数校正分析作者:胡艳樊亚云张晓卫来源:《现代信息科技》2019年第07期摘; 要:如何对微观交通仿真模型参数进行校正和选择合适的校正算法,决定仿真结果质量。
本文重点分析微观交通仿真模型、校正指标选取和模型校正算法,详细分析了跟驰模型和换道模型的重要参数,具体阐述了如何选取校正评价指标和待校正参数,从而保证校正后仿真模型的精度和仿真结构的可性。
关键词:VISSIM;仿真模型;参数校正;微观仿真中图分类号:U491.123; ; ; 文献标识码:A 文章编号:2096-4706(2019)07-0005-03Abstract:How to correct the parameters of microscopic traffic simulation model and select the appropriate correction algorithm determines the quality of simulation results. This paper focuses on the analysis of microscopic traffic simulation model,correction index selection and model correction algorithm,and analyzes the important parameters of the car-following model and the lane-changing model in detail,and how to select the calibration evaluation index and the parameters to be calibrated is expounded in detail,so as to ensure the accuracy of the calibrated simulation model and the reliability of the simulation structure.Keywords:VISSIM;simulation model;parameter correction;microscopic simulation0; 引; 言微觀交通仿真软件是评估交通解决方案的有力工具,仿真模型的参数会影响仿真结果,用户通过实际交通情况对模型参数进行修正,使得描述交通系统运行、交通流特性以及驾驶员行为等更加真实和有效。
VISSIIM系统功能介绍1.程序介绍1.1VISSIIM Desktop(VISSIIM的桌面)一、标示列:显示程序的标题、解释及输入的档案问称(如果合适的话)二、功能选单(Menu):可按鼠标或热键选取显示出接下来的附属功能选单显示出接下来的对话框三、状态列(Status bar):显示编辑结构及仿真状态光标所在位置的公尺数路网编辑:在选择的节点内的位置及数字仿真状态:现在的仿真时间及当地循环时间网络节点:编辑教育、指导仿真状态:网页上现有的交通工具数量及在真正的时间内可能被仿真的交通工具可能之数量四、滚动条(Scroll bar):在网页可见范围内的水平及垂直滚动条五、工具列(Tool bar):图片编辑的功能六、工具列上的这些分开的按扭可以用鼠标的左键在它们的按扭上点选,其解释如表一:表一、工具列上按钮简介1.2 键盘、鼠标键作业(Keyboard and Mouse Click Operation)接下来的信息适用于在一般的原理,透过VISSIM路网编辑。
一、鼠标右键:插入一个新的要素(对象)二、左键:一下为选择一个存在的(对象)二下为打开连结的资料盒三、RETURN(返回):相当于使用鼠标在Highlight按钮上按键ESC:相当于鼠标在取消的按钮上按键DEL:删除一个选择要素(对象)注意:有些路网要素不能被DEL键删除,这样的要素要靠选择它并移走它的基本要素去删除掉。
如表二的这些按钮,只能在仿真或测试进行时才可被利用:表二、仿真按钮1.3打印(Printing)输出文本文件能被观看并且打印在标准的WINDOWS应用例如Notepad。
而且,大部份输出档案被制造,图形为了容易输入伸展表格应用。
在图解的输出中,例如动画屏幕镜头,是借着使用打印功能和布置方式对话框去打印。
而计算机打印出的文字由流动屏幕区域和数据文件构成在测试档钮上为Project(主题)和Scenario(剧本)和Simulation Time,File Name(文件名)。
工程技术科技创新导报 Science and Technology Innovation Herald5DOI:10.16660/ki.1674-098X.2018.22.005VISSIM仿真软件中微观交通仿真模型参数校正研究①陈梅艳(云南开放大学机电工程学院 云南昆明 650223)摘 要:微观交通仿真模型具有较强的直观性和便捷性,且风险性较低,经济效益良好,在交通工程领域得到了日渐广泛的应用。
微观交通仿真模型需大量借助独立参数对交通系统实际运行状况、交通流呈现出的特性以及驾驶员的具体行为等进行描述,参数取值会严重影响仿真结果。
因此,必须加强对微观交通仿真模型的参数校正。
本文简述了VISSIM仿真软件的含义,浅析了微观交通仿真模型参数校正的概念和流程,探究了微观交通仿真模型校正参数选取与算法选择,以期为相关研究提供借鉴。
关键词:VISSIM仿真软件 微观交通仿真模型 参数校正中图分类号:U491.1 文献标识码:A 文章编号:1674-098X(2018)08(a)-0005-02①基金项目:云南省科技计划项目青年项目,基于vissim的交通安全仿真系统研究(项目编号:2017FD131)。
作者简介:陈梅艳(1986—),女,汉族,湖南衡阳人,硕士,讲师,研究方向:交通运输工程。
微观交通仿真模型,将秒或者分秒设定为时间刻度,对单个车辆相应的运行规则进行模拟,并对城市道路或者行人系统之间的相互作用进行科学评估,进而实现对道路网交通流状况的详细描述和客观评价。
相对于传统的数学模型,微观交通仿真模型具有显著的优越性。
对微观交通仿真模型实施科学有效的参数校正,能有效保障输出结果的有效性和质量。
其中,关键要选取模型校正的具体参数和适宜算法。
1 VISSIM仿真软件概述VISSIM仿真软件是基于行为驱动的多用途软件,能实现对交通流状况的科学分析和客观评价,在城市道路交通以及综合运输等各类系统分析中得到了广泛应用。