精选课件-2020版高考数学一轮复习第一章集合与常用逻辑用语不等式第四节基本不等式课件
- 格式:ppt
- 大小:887.50 KB
- 文档页数:35
第四节基本不等式【课标标准】 1.驾驭基本不等式≤ (a>0,b>0).2.结合详细实例,能用基本不等式解决简洁的最大值或最小值问题.必备学问·夯实双基学问梳理1.基本不等式:≤(1)基本不等式成立的条件:a>0,b>0.(2)等号成立的条件:当且仅当________时取等号.(3)其中,________称为正数a,b的算术平均数,________称为正数a,b的几何平均数.2.基本不等式的两种常用变形形式(1)ab≤________(a,b∈R,当且仅当a=b时取等号).(2)a+b≥________(a>0,b>0,当且仅当a=b时取等号).3.利用基本不等式求最值已知x>0,y>0,则(1)假如积xy是定值P,那么当且仅当________时,x+y有最小值__________.(简记:积定和最小).(2)假如和x+y是定值S,那么当且仅当______时,xy有最大值________.(简记:和定积最大).[常用结论]1.+≥2(ab>0),当且仅当a=b时取等号.2.应用基本不等式求最值要留意“一正、二定、三相等”,忽视某个条件,就会出错.夯实双基1.思索辨析(正确的打“√”,错误的打“×”)(1)不等式a2+b2≥2ab与成立的条件是相同的.( )(2)函数y=x+的最小值是2.( )(3)x>0且y>0是≥2的充分不必要条件.( )(4)函数y=sin x+,x∈的最小值为4.( )2.(教材改编)已知0<x<1,则x(3-3x)取得最大值时x的值为( )A.B.C.D.3.(教材改编)若用总长为20 m的篱笆围成一个矩形场地,则矩形场地的最大面积是________m2.4.(易错)若函数f(x)=x+(x>2)在x=a处取最小值,则a=( )A.1+B.1+C.3 D.45.(易错)y=2+x+(x<0)的最大值为________.关键实力·题型突破题型一利用基本不等式求最值角度一拼凑法求最值例 1(1)(多选)下列说法正确的是( )A.x+(x>0)的最小值是2B.的最小值是C.的最小值是2D.2-3x-的最大值是2-4(2)设0<x<,则函数y=4x(3-2x)的最大值为________.题后师说拼凑法求最值的策略巩固训练1[2024·辽宁沈阳三十一中月考]下列函数中,最小值为4的是( )A.y=x+B.y=x++4(x>-2)C.y=cos2x+D.y=x2+2x+4角度二常值代换法求最值例 2 [2024·河南信阳模拟]设a>0,b>0,且a+b=1,则的最大值为( )A.B.C.D.题后师说常数代换法求最值的一般步骤巩固训练2(1)[2024·辽宁鞍山模拟]已知正实数a、b满意a+b=2,则的最小值是( )A. B. C.5 D.9(2)a>0,b>0,a+b=4ab,则a+b的最小值为________.角度三消元法求最值例 3[2024·安徽合肥八中模拟]已知x>0,y>0,满意x2+2xy-1=0,则3x+2y的最小值是( )A. B. C.2 D.2题后师说当已知条件是含有两个变量的等式时,可以采纳把其中一个量用另一个量表示,代入所求代数式中再结合基本不等式求解.巩固训练3已知正实数a,b满意ab-b+1=0,则+4b的最小值是________.题型二利用基本不等式证明不等式例 4[2024·安徽寿县一中模拟]已知a,b,c∈R+,且a+b+c=2.(1)求a2+b+c的取值范围;(2)求证:≥18.题后师说利用基本不等式证明不等式,先视察题中是否有符合基本不等式的条件.若有,则可以干脆利用基本不等式证明;若没有,则对代数式进行拆项、变形、配凑等,使之达到运用基本不等式的条件.巩固训练4[2024·江西金溪一中模拟]已知正实数m,n满意m2+n2=4m2n2.证明:(1)mn≥;(2)≥8.题型三基本不等式的实际应用例 5某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度肯定,池的四周墙壁建立单价为每米400元,中间一条隔壁建立单价为每米100元,池底建立单价每平方米60元(池壁厚忽视不计).(1)污水处理池的长设计为多少米时,可使总造价最低;(2)假如受地形限制,污水处理池的长、宽都不能超过14.5米,那么此时污水处理池的长设计为多少米时,可使总造价最低.题后师说利用基本不等式解实际应用问题的技巧巩固训练5[2024·江西吉安模拟]春节期间,车流量较大,可以通过管控车流量,提高行车平安,在某高速马路上的某时间段内车流量y(单位时间内经过测量点的车辆数,单位:万辆/小时)与汽车的平均速度v(单位:千米/小时)、平均车长l(单位:米)之间满意的函数关系y=(0<v≤120),已知某种车型的汽车的平均速度为100千米/小时,车流量为1万辆/小时.(1)求该车型的平均车长l;(2)该车型的汽车在该时间段内行驶,当汽车的平均速度v为多少时车流量y达到最大值?1.[2024·全国乙卷]下列函数中最小值为4的是( )A.y=x2+2x+4B.y=|sin x|+C.y=2x+22-xD.y=ln x+2.[2024·新高考Ⅱ卷](多选)若x,y满意x2+y2-xy=1,则( )A.x+y≤1 B.x+y≥-2C.x2+y2≤2 D.x2+y2≥13.[2024·新高考Ⅰ卷](多选)已知a>0,b>0,且a+b=1,则( )A.a2+b2≥B.2a-b>C.log2a+log2b≥-2D.第四节基本不等式必备学问·夯实双基学问梳理1.(2)a=b(3)2.(1)(2)23.(1)x=y2(2)x=y S2夯实双基1.(1)×(2)×(3)√(4)×2.解析:因为0<x<1,所以x(3-3x)==.当且仅当x=1-x,即x=时,等号成立.故选B.答案:B3.解析:设矩形的一边长为x m,矩形场地的面积为y m2,则矩形另一边长为×(20-2x)=(10-x)m,所以y=x(10-x)≤=25(m2),当且仅当x=10-x,即x=5时,y max=25.答案:254.解析:f(x)=x+=x-2++2≥2 +2=4,当x-2=1时,即x=3时等号成立.∴a=3.故选C.答案:C5.解析:∵x<0,∴-x>0,∴y=2+x+=2-,又-x-≥2 =2,∴y=2+x+=2-≤2-2,当且仅当-x=-,且x<0,即x=-时等号成立.答案:2-2关键实力·题型突破例1 解析:(1)对于A,由基本不等式可知,当x>0时,x+≥2,当且仅当x=,即x =1时取等号,故A正确;对于B,=,当x=0时取得等号,故B正确;对于C,==,令=t,则t≥2,因为y=t+在[2,+∞)上单调递增,当t=2时,y取得最小值,故C错误;对于D,2-在x<0时,没有最大值,故D错误.故选AB.(2)y=4x(3-2x)=2[2x(3-2x)]≤2=,当且仅当“2x=3-2x,即x=”时,等号成立.∵∈,∴函数y=4x(3-2x)的最大值为.答案:(1)AB (2)巩固训练1 解析:对于A:当x<0时y=x+<0,明显最小值不为4,解除;对于B:由x+2>0,则y=(x+2)++2≥2 +2=4,当且仅当x=-1时等号成立,满意;对于C:由题意0<t=cos2x≤1,而y=t+在(0,1]上递减,故t=1时函数最小值为5,不满意;对于D:由y=(x+1)2+3≥3,当x=-1时最小值为3,不满意.故选B.答案:B例2 解析:∵a+b=1,=,=(a+b)=5+≥5+2=9,当且仅当a=,b=时取等号,∴.故选B.答案:B巩固训练2 解析:(1)=(a+b)=(4+5)=,当且仅当=时等号成立.故选B.(2)∵a>0,b>0,a+b=4ab,∴同除以ab得=4,∴a+b=(a+b)·=≥×2==1.当且仅当=即a=b=时取等号.答案:(1)B (2)1例3 解析:由x2+2xy-1=0,得y=,而x>0,y>0,则有0<x<1,因此3x+2y=3x+=2x+≥2=2,当且仅当2x=,即x=时取“=”,所以3x+2y的最小值为2.故选D.答案:D巩固训练3 解析:∵正实数a,b满意ab-b+1=0,∴a=>0,即b>1,∴+4b=+4b=+4b=1++4(b-1)+4=5++4(b-1)≥5+2 =9,当且仅当b=,a=时取等号,故+4b的最小值是9.答案:9例4 解析:(1)∵a>0,b>0,c>0且a+b+c=2,则b+c=2-a,a2+b+c=a2+2-a =+,又0<a<2,故≤a2+b+c<+=4,故a2+b+c的取值范围为.(2)证明:∵a>0,b>0,c>0,=(a+b+c)=≥=×(14+4+6+12)=18,当且仅当,即a=,b=,c=1时等号成立.故≥18.巩固训练4 证明:(1)由m2+n2=4m2n2,得=4,又,所以mn≥,当且仅当m=n=时等号成立.(2)=-=16-≥16-=8,当且仅当m=n=时等号成立.故≥8.例5 解析:(1)设污水处理池的长为x米,则宽为米,总造价为f(x)元,则f(x)=400×+100×+60×200=800×+12 000≥1 600+12 000=36 000(元),当且仅当x=(x>0),即x=15时等号成立.即污水处理池的长设计为15米时,可使总造价最低.(2)记g(x)=x+(0<x≤14.5),明显g(x)是减函数,所以当x=14.5时,g(x)有最小值,相应总造价f(x)有最小值,此时宽也不超过14.5米.巩固训练5 解析:(1)由题意:当v=100时,y=1,∴1=,∴l=5.∴该车型的平均车长为5米.(2)由(1)知,函数的表达式为y=(0<v≤120).∵v>0,∴y===.当且仅当v=,即v=80时取等号.故当汽车的平均速度为80千米/小时时车流量y达到最大值.真题展台——知道高考考什么?1.解析:对于A,y=x2+2x+4=(x+1)2+3≥3,当且仅当x=-1时取等号,所以其最小值为3,A不符合题意;对于B,因为0<|sin x|≤1,y=|sin x|+≥2=4,当且仅当|sin x|=2时取等号,等号取不到,所以其最小值不为4,B不符合题意;对于C,因为函数定义域为R,而2x>0,y=2x+22-x=2x+≥2=4,当且仅当2x=2,即x=1时取等号,所以其最小值为4,C符合题意;对于D,y=ln x+,函数定义域为(0,1)而ln x∈R且ln x≠0,如当ln x=-1,y=-5,D不符合题意.故选C.答案:C2.解析:由x2+y2-xy=1,得(x-)2+(y)2=1.令则所以x+y=sin θ+cos θ=2sin (θ+)∈[-2,2],所以A错误,B正确.x2+y2=(sin θ+cos θ)2+(sin θ)2=sin 2θ-cos 2θ+=sin (2θ-)+∈[,2],所以C正确,D错误.故选BC.答案:BC3.解析:对于A,a2+b2=a2+(1-a)2=2a2-2a+1=2(a-)2+,当且仅当a=b=时,等号成立,故A正确;对于B,a-b=2a-1>-1,所以2a-b>2-1=,故B正确;对于C,log2a+log2b=log2ab≤log2=log2=-2,当且仅当a=b =时,等号成立,故C不正确;对于D,因为()2=1+2≤1+a+b=2,所以,当且仅当a=b =时,等号成立,故D正确.故选ABD.答案:ABD。