中心对称(1)
- 格式:docx
- 大小:44.60 KB
- 文档页数:3
中心对称和轴对称的几何性质在几何学中,中心对称和轴对称是两种重要的对称性质。
它们在数学、物理、化学等领域中都有着广泛的应用。
本文将详细介绍中心对称和轴对称的几何性质,以及它们之间的区别和联系。
1. 中心对称中心对称是指图形相对于一个中心点进行对称,即图形中的每个点与中心点之间的连线都会与另一个点对称。
中心对称特性使得图形能够在某个中心点进行旋转180度后不变。
1.1 中心对称的判定条件一个图形是否具有中心对称可以通过以下两个判定条件来验证:1)图形中存在至少一个点,它与中心点之间的连线与该点与另一个点之间的连线对称。
2)图形中的每个点都与中心点之间的连线都能够与另一个点对称。
1.2 中心对称的性质中心对称具有以下几何性质:1)中心对称的图形具有镜像对称性,即图形可以关于中心点进行对称,将其中一个点对称到另一个位置。
2)中心对称的图形无论进行旋转多少度,都不会改变其形状和大小,只会改变位置。
2. 轴对称轴对称是指图形相对于一个轴线进行对称,即图形中的每个点与轴线之间的连线都会与另一个点对称。
轴对称特性使得图形能够在轴线上进行翻转后不变。
2.1 轴对称的判定条件判断一个图形是否具有轴对称可以通过以下两个条件来验证:1)图形中存在一个轴线,使得图形中的每个点与轴线之间的连线与该点与另一个点之间的连线对称。
2)图形中的每个点都与轴线之间的连线都能够与另一个点对称。
2.2 轴对称的性质轴对称具有以下几何性质:1)轴对称的图形具有镜像对称性,即图形可以关于轴线进行对称,将其中一部分镜像到另一部分。
2)轴对称的图形无论进行旋转多少度,只要不改变轴线的位置和方向,都不会改变图形的形状和大小,只会改变位置。
3. 中心对称和轴对称的区别和联系尽管中心对称和轴对称都是几何形状的对称性质,它们之间存在一些区别和联系。
区别:1)中心对称是相对于一个点进行对称,而轴对称是相对于一个轴线进行对称。
2)中心对称的图形无论进行旋转多少度,都不会改变其形状和大小,但轴对称的图形必须在轴线上进行翻转才能保持不变。
第2课时中心对称与中心对称图形(1)【基础巩固】1.判断:(1)如果两个图形关于某点成中心对称,那么这两个图形全等.( )(2)如果两个图形全等,那么这两个图形一定关于某点成中心对称.( )(3)如果一个图形绕某一定点旋转后与另一个图形重合,那么这两个图形成中心对称.( )(4)成中心对称的两个图形,对称点连线都经过对称中心,且被对称中心平分.( )(5)成中心对称的两个图形具有图形旋转的一切性质.( )2.已知三点A、B、O,如果点A'与点A关于点O对称,点B'与点B关于点O对称,那么线段AB与A'B'的关系是_______.3.在等腰三角形ABC中,∠C=90°,BC=20 cm,如果以AC的中点O为旋转中心,将这个三角形旋转180°,点B落在B'处,那么点B'与点B原来位置相距_______.4.在数轴上,点A.B对应的数分别为2,51xx-+,且A、B两点关于原点对称,则x的值为_______.5.如图,□ABCD中,点A关于点O的对称点是点_______.6.下列说法中,正确的是( )A.在成中心对称的图形中,连接对称点的线段不一定都经过对称中心B.在成中心对称的图形中,连接对称点的线段都被对称中心平分C.若两个图形的对应点连成的线段都经过某一点,那么这两个图形一定关于这一点成中心对称D.以上说法都正确7.如图,△ABC是一个中心对称图形的一部分,O点是对称中心,点A和点B是一对对应点,∠C=90°,那么将这个图形补成一个完整的图形是( )A.矩形B.菱形C.正方形D.梯形8.已知线段AB与点O的位置如图所示,试画出线段AB关于点O的对称线段A'B'.9.已知四边形ABCD和点O,画出四边形ABCD关于O点的对称图形.10.如图,△ABC是等腰直角三角形,∠C=90°,点D是AB的中点,试作出△ABC绕点D顺时针旋转90°所得的图形,并指出图形中有多少个等腰直角三角形.11.如图,将几根火柴棒移动x根变成一个中心对称图形,怎样移动?x的最小值是多少?【拓展提优】12.如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=1,则BB'的长为( )A.4BC D13.如图,在四边形ABCD中,AD∥BC,DF=CF,连接AF并延长交BC延长线于点E.(1)图中哪两个三角形可以通过怎样的旋转而相互得到?(2)四边形ABCD的面积与图中哪个三角形的面积相等?(3)若AB=AD+BC,∠B=70°,试求∠DAF的度数.14.如图,方格纸中的每个小正方形的边长均为1.(1)观察图①、②中所画的“L”型图形,然后各补画一个小正方形,使图①中所成的图形是轴对称图形,图②中所成的图形是中心对称图形;(2)补画后,图①、②中的图形是不是正方体的表面展开图:(填“是”或“不是”)答:①中的图形_______,②中的图形_______.15.图①、图②均为7×6的正方形网格,点A、B、C在格点(小正方形的顶点)上.(1)在图①中确定格点D,并画出一个以A、B、C、D为顶点的四边形,使其为轴对称图形;(2)在图②中确定格点E,并画出一个以A、B、C、E为顶点的四边形,使其为中心对称图形.16.)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△DEF关于点O 成中心对称,△ABC与△DEF的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O的位置;(2)将△ABC先向右平移4个单位长度,再向下平移2个单位长度,得到△A1B1C1,请画出△A1B1C1;(3)在网格中画出格点M,使A1M平分∠B1A1C1.参考答案【基础巩固】1.(1)√(2)×(3)×(4) √(5) √2.平行且相等或在同一直线上3.cm4.15.C 6.B 7.A 8-9.略10.5个11.x的最小值是2,图略【拓展提优】12 D13.(1)将△ADF绕点F旋转180°可得△ECF (2)△ABE (3)55°14.(1)如图:(2)略15.(1)有以下答案供参考:(2)有以下答案供参考:16.(1)图中点O为所求.(2)图中△A1B1C1为所求.(3)图中点M为所求.(答案不唯一)。
10.4.中心对称图形(1)
1.了解什么是中心对称图形,能判断一个图形是否是中心对称图形;
2.掌握中心对称的慨念,能找出图形对应的点和线段;
3.理解轴对称、中心对称、旋转对称这三种变换的区别和联系。
教材第127-129页,完成填空。
1.在下图右侧的四个三角形中,不能由△
ABC经过旋转或平移得到的是()
A B C D
2. 教材第129页练习1,练习2
3.如图,正方形ABCD旋转后能与正方形CDEF重合,G为DC中点,
那么图形所在的平面上不能作为旋转中心
的点是().
A.A点B.C点C.D点D.G点
4. 在下列图形中,为中心对称图形的是( )
A.等腰梯形 B.平行四边形
C.正五边形 D.等腰三角形5.下面的图形中,既是轴对称图形又是中心对称图形的是( )
6. 教材第132页习题3
7. 教材第132页习题4
8.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,该小正方形的序号是(
)
A.① B.②
C.③ D.④
9. 在上面方格纸中,选择标有序号①②③
④中的一个小正方形涂黑,与图中阴影部分构成轴对称图形,又如何呢?
10. 如图,是中心对称图形的个数
是()
11.下列图案中,既是轴对称图形又是中心对称图形的是()
A.B.
C.D.
12.下列图形中,是中心对称图形但不是轴对称图形的是
答案:
1.B;3.A;4.B.5.C;8.B;9.有两种情
况:②左边第二格或②上边第二格;
10.B;11.B;12.A.。
中心对称知识点总结
嘿,朋友们!今天咱们来聊聊中心对称这个超有意思的知识点呀!
中心对称就像是一面神奇的镜子,能让图形变得对称又好看!比如说,一个圆形就是中心对称图形呀,它的圆心就是那个对称中心,不管从哪个角度看,都像是照镜子一样完美对称呢!
咱想想,如果一个图形绕着一个点旋转 180 度后,能和原来的图形完
全重合,哇塞,那这就是中心对称呀!就像我们照镜子,转个身后还是那个我们呀!举个例子呗,正方形也是中心对称图形呢,是不是很神奇?
中心对称在生活中也到处都是呀!你看那些美丽的建筑,很多不就是有着中心对称的美感吗?还有那些漂亮的图案设计,很多都利用了中心对称呢,这可不是随随便便就有的呀,这是设计师们的巧妙心思哟!
中心对称还有个重要的特点呢,就是对称点的连线都经过对称中心,而且被对称中心平分。
哎呀呀,这就好像是有根线把它们都串起来啦,有意思吧!比如说一个平行四边形,它的对角线就是这样的呀,这可不是瞎说说,这是确确实实存在的呀!
你们说,中心对称是不是特别奇妙?它就像一个隐藏在图形世界里的小精灵,等着我们去发现它的秘密呢!我觉得呀,中心对称真的是数学里超级有趣的一部分,它让我们看到了图形不一样的美,也让我们对数学更加着迷啦!
总之,中心对称就是这么棒,这么有趣!大家可得好好掌握它哦!。
图形的平移轴对称(图形)中心对称(图形)对称轴——直线对称中心——点图形沿某方向平移一定距离图形沿对称轴对折(翻折180°)后重合图形绕对称中心旋转180°后重合对应点的连线平行或在同一直线上,对称点的连线被对称轴垂直平分对应点的连线段相等。
对称点连线经过对称中心,且被对称中心平分中心对称图形(一)知识点一.图形旋转1.图形旋转的有关概念:图形的旋转、旋转中心、旋转角;在平面内,将一个图形一个定点转动一定的角度,这样的图形运动称为图形的旋转。
这个定点称为旋转中心,旋转的角度称为旋转角。
注意点:旋转角通常与旋转方向有关,因此在写旋转角时通常要说明旋转方向。
2.旋转图形的性质:(1)旋转前、后的图形全等。
(2)对应点到旋转中心的距离相等。
(3)每一对对应点与旋转中心的边线所成的角彼此相等。
二.中心对称 1.中心对称的有关概念:中心对称、对称中心、对称点把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。
2.中心对称的基本性质:(1)成中心对称的两个图形具有图形旋转的一切性质。
(2)成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
三.中心对称图形1.中心对称图形的有关概念:中心对称图形、对称中心把一个平面图形绕某一点旋转180 °,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。
这个点就是它的对称中心。
2.中心对称与中心对称图形的区别与联系如果将成中心对称的两个图形看成一个图形,那么这个整体就是中心对称图形;反过来,如果把一个中心对称图形沿着过对称中心的任一条直线分成两个图形,那么这两个图形成中心对称。
3.图形的平移、轴对称(折叠)、中心对称(旋转)的对比四.平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形。
23.2 中心对称(1)
第一课时
教学内容
两个图形关于这个点对称或中心对称、对称中心、关于中心的对称点等概念及其运用它们解决一些实际问题.
教学目标
了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题. 复习运用旋转知识作图,•旋转角度变化,•设计出不同的美丽图案来引入旋转180°的特殊旋转──中心对称的概念,并运用它解决一些实际问题.
重难点、关键
1.重点:利用中心对称、对称中心、关于中心对称点的概念解决一些问题.
2.难点与关键:从一般旋转中导入中心对称.
教具、学具准备
小黑板、三角尺
教学过程
一、复习引入
请同学们独立完成下题.
如图,△ABC 绕点O 旋转,使点A 旋转到点D 处,画出旋转
后的三角形,•并写出简要作法.
老师点评:分析,本题已知旋转后点A 的对应点是点D ,且
旋转中心也已知,所以关键是找出旋转角和旋转方向.显然,
逆时针或顺时针旋转都符合要求,•一般我们选择小于180°的旋转角为宜,故本题选择的旋转方向为顺时针方向;•已知一对
对应点和旋转中心,很容易确定旋转角.如图,连结OA 、OD ,则∠AOD 即为旋转角.接下来根据“任意一对对应点与旋转中心的连线所成的角都是旋转角”和“对应点到旋转中心的距离相等”这两个依据来作图即可.
作法:(1)连结OA 、OB 、OC 、OD ;
(2)分别以OB 、OB 为边作∠BOM=∠CON=∠AOD ;
(3)分别截取OE=OB ,OF=OC ;
(4)依次连结DE 、EF 、FD ;
即:△DEF 就是所求作的三角形,如图所示.
二、探索新知
问题:作出如图的两个图形绕点O 旋转180°的图案,并回答下列的问题:
1.以O 为旋转中心,旋转180°后两个图形是否重合?
2.各对称点绕O 旋转180°后,这三点是否在一条直线上?
老师点评:可以发现,如图所示的两个图案绕O 旋转180°都是重合的,即甲图与乙图重合,△OAB 与△COD 重合.
像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.
这两个图形中的对应点叫做关于中心的对称点.
例1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由.
(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点.
分析:(1)根据中心对称的定义便直接可知这两个图形是中心对称图形,•对称中心就是旋转中心.
(3)旋转后的对应点,便是中心的对称点.
解:作法:(1)延长AD,并且使得DA′=AD
(2)同样可得:BD=B′D,CD=C′D
(3)连结A′B′、B′C′、C′D,则四边形A′B′C′D为所求的四边形,如图23-44所示.
答:(1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是D点.
(2)A、B、C、D关于中心D的对称点是A′、B′、C′、D′,这里的D′与D重合.例2.如图,已知AD是△ABC的中线,画出以点D为对称中心,与△ABD•成中心对称的三角形.
分析:因为D是对称中心且AD是△ABC的中线,所以C、B为一对的对应点,因此,只要再画出A关于D的对应点即可.
解:(1)延长AD,且使AD=DA′,因为C点关于D的中心对称点是B(C′),B•点关于中心D的对称点为C(B′)
(2)连结A′B′、A′C′.
则△A′B′C′为所求作的三角形,如图所示.
三、巩固练习
教材P74 练习2.
四、归纳小结(学生归纳,老师点评)
本节课应掌握:
1.中心对称及对称中心的概念;
2.关于中心的对称点的概念及其运用.
五、布置作业
1.教材P73 练习1.
2.选作课时作业设计.。