江苏省宿迁市泗洪县中考数学专题复习 第一章 数与式(第4课时)练习(无答案)
- 格式:doc
- 大小:134.00 KB
- 文档页数:3
考试时间:120分钟满分:150分一、选择题(每小题3分,共30分)1. 下列选项中,不属于有理数的是()A. -5/3B. √4C. 0.25D. π2. 下列函数中,与y=2x-1的图象平行的是()A. y=2x+1B. y=2x-2C. y=x+1D. y=x-13. 在直角坐标系中,点A(-2,3)关于y轴的对称点是()A. (2,3)B. (-2,-3)C. (-2,3)D. (2,-3)4. 下列命题中,正确的是()A. 平行四边形的对角线互相垂直B. 等腰三角形的底角相等C. 相似三角形的面积比等于边长比D. 全等三角形的对应边角相等5. 下列各数中,是正数的是()A. -√9B. 0C. √(-1)D. -1/26. 下列各式中,正确的是()A. (a+b)^2 = a^2 + 2ab + b^2B. (a-b)^2 = a^2 - 2ab + b^2C. (a+b)(a-b) = a^2 + b^2D. (a+b)(a-b) = a^2 - b^27. 下列各式中,正确的是()A. 3a + 2b = 5(a + b)B. 2(a + b) = 2a + 2bC. a + b = abD. a - b = ab8. 下列各式中,正确的是()A. √(a^2) = aB. √(a^2) = |a|C. √(-a^2) = aD. √(-a^2) = -a9. 下列各式中,正确的是()A. (a + b)^2 = a^2 + b^2 + 2abB. (a - b)^2 = a^2 - b^2 + 2abC. (a + b)^2 = a^2 + b^2 - 2abD. (a - b)^2 = a^2 - b^2 - 2ab10. 下列各式中,正确的是()A. (a + b)(a - b) = a^2 + b^2B. (a + b)(a - b) = a^2 - b^2C. (a + b)(a - b) = a^2 - 2abD. (a + b)(a - b) = 2ab二、填空题(每小题3分,共30分)11. 若a、b是方程x^2 - 3x + 2 = 0的两个根,则a + b = _______。
中考泗洪数学试卷真题答案【正文】一、选择题部分1. 答案:B解析:根据题目中的图片可知,方格中心内数字之和是25,因此,A+B=25,且A-B=7。
解此方程组可得A=16,B=9。
2. 答案:C解析:首先确定逐差的公差为4,因此第2个数为3+4=7,第3个数为7+4=11,第4个数为11+4=15,第5个数为15+4=19。
因此,第8个数为19+4=23。
3. 答案:D解析:根据题意,如果一个数加7后,再加1/3倍的8,得到的结果是6。
设这个数为x,可列出等式:(x+7)+1/3×8=6。
解此方程可得x=-9。
4. 答案:A解析:首先列出方程:2x-1=3。
解此方程可得x=2。
5. 答案:C解析:根据题目中的长方形示意图可知,在等式2x+3x=60中,2x 代表长方形的长度,3x代表长方形的宽度。
因此,长方形的长度为2x=30,宽度为3x=45,而周长等于两者之和的2倍,即30+45=75。
二、填空题部分6. 答案:5解析:根据题意可知,正方形共有4个顶点和6个中心点。
因此,每个正方形内共有10个点,而5个正方形共有10×5=50个点。
7. 答案:2解析:根据题意可知,无论曲线与y轴相交多少次,都可以用两条线段连接成一圈。
因此,曲线和y轴的交点个数为2。
8. 答案:14解析:根据题意可知,每个圆内的每个顶点都与其他6个圆的顶点相连,且每个圆内共有6个顶点。
因此,20个圆的顶点之间可以组成20×6 / 2= 60条线段,而每条线段都包含2个顶点,因此线段数为60×2=120。
同时,正方形的4个顶点也可以组成4×3 / 2=6条线段。
总共线段数为120+6=126条。
三、解答题部分9. 答案:30解析:设AB = x,BC = y。
根据题目中的直线等分关系可得:x = 2y (1)根据勾股定理可得:x² + y² = 28²(2)将(1)式代入(2)式,得到:(2y)² + y² = 28²4y² + y² = 28²5y² = 28²y² = (28² / 5)y = 28 × (2 / √5)y = 28 × (2√5 / 5)y = 8√5因此,BC = 8√5,而整个正方形的边长等于2y + x = 16 + 2y = 16 + 2 × 8√5 = 16 + 16√5 = 16(1 + √5),即边长为16(1 + √5)。
一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列方程中为一元二次方程的是( )A. B. C. D.2.已知,以O 为圆心,r 为半径作若使点A 在内,则r 的值可以是( )A. 2B. 3C. 4D. 53.用配方法解方程时,原方程应变形为( )A.B.C.D.4.如图,图中的弦共有( )A. 1条B. 2条C. 3条D. 4条5.如图,在半圆O 中,若,则的度数为( )A. B. C. D.6.如图,小明顺着大半圆从A 地到B 地,小红顺着两个小半圆从A 地到B 地,设小明、小红走过的路程分别为a 、b ,则a 与b 的大小关系是( )A. B. C.D. 不能确定7.某种服装,平均每天可销售50件,每件利润40元,若每件降价5元,则每天多售10件.如果要在扩大销量的同时,使每天的总利润达到2100元,每件应降价多少元?若设每件应降价x 元,则可列方程得2023-2024学年江苏省宿迁市泗洪县九年级(上)期中数学试卷( )A. B.C. D.8.如图,平面直角坐标系xOy中,点A的坐标为,与x轴相切.点P在y轴正半轴上,PB与相切于点若,则点P的坐标为( )A.B.C.D.二、填空题:本题共10小题,每小题3分,共30分。
9.一元二次方程的根是______.10.如图,圆的两条弦AB,CD相交于点E,且,,则的度数为______.11.如图,半径为2的中有弦AB,以AB为折痕对折,劣弧恰好经过圆心O,则弦AB的长度为______.12.如图为一个圆锥的三视图,这个圆锥的侧面积为______13.下列语句中:①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③锐角三角形、直角三角形、钝角三角形的内心都在三角形内部;④垂直于半径的直线是圆的切线;⑤E、F是的两边OA、OB上的两点,则E、O、F三点确定一个圆;⑥等腰三角形的外心一定在这个三角形内.正确的有______填序号14.两个连续整数的平方和为113,则这两个连续整数为______.15.如果关于x的一元二次方程有两个不相等的实数根,那么k的取值范围是______.16.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2450张相片,则全班共有______名学生.17.已知a、b,满足等式:,,则______.18.如图,点P是正方形ABCD外接圆的劣弧AD上的一点,则代数式的值是______.三、解答题:本题共10小题,共96分。
一、选择题1. 答案:A解析:由勾股定理可知,直角三角形的两条直角边长分别为3和4,斜边长为5,故选A。
2. 答案:B解析:根据二次函数的性质,当a>0时,抛物线开口向上,且顶点坐标为(-b/2a, f(-b/2a))。
将a=1, b=-2代入得顶点坐标为(1, 1),故选B。
3. 答案:C解析:由题意得,x^2 - 3x + 2 = 0,因式分解得(x-1)(x-2)=0,解得x=1或x=2,故选C。
4. 答案:D解析:根据三角函数的定义,sinθ = 对边/斜边,cosθ = 邻边/斜边。
由题意得,sinθ = 3/5,cosθ = 4/5,故选D。
5. 答案:B解析:根据有理数的乘除法则,同号得正,异号得负。
故选B。
二、填空题6. 答案:3解析:由题意得,3a - 2 = 5,移项得3a = 7,除以3得a = 7/3,故答案为7/3。
7. 答案:2解析:由题意得,x^2 - 2x - 3 = 0,因式分解得(x-3)(x+1)=0,解得x=3或x=-1,故答案为3或-1。
8. 答案:π解析:圆的周长公式为C = 2πr,代入r=1得C = 2π,故答案为π。
9. 答案:3解析:由题意得,|2x-1| = 5,分两种情况讨论:- 当2x-1≥0时,2x-1=5,解得x=3;- 当2x-1<0时,-(2x-1)=5,解得x=-2。
综合两种情况,答案为3。
10. 答案:4解析:由题意得,(x+2)^2 = 9,开方得x+2=3或x+2=-3,解得x=1或x=-5,故答案为4。
三、解答题11. 解答:设正方形的边长为a,则对角线长为a√2。
由题意得,a√2 = 10,解得a = 10/√2 = 5√2。
故正方形的面积为a^2 = (5√2)^2 = 50。
12. 解答:设x为等差数列的首项,d为公差,根据等差数列的求和公式,S_n =n/2(2a_1 + (n-1)d)。
代入n=5,a_1=x,d=2得:S_5 = 5/2(2x + 4) = 5x + 10。
第三课时分式一、选择题1.[2017·北京]若代数式xx -4有意义,则实数x 的取值范围是( )A .x =0B .x =4C .x≠0 D.x≠4 2.[2017·天津]计算a a +1+1a +1的结果为( ) A .1 B .a C .a +1 D.1a +13.[2017·淄博]若分式|x|-1x +1的值为零,则x 的值是( )A .1B .-1C .±1 D.2 4.[2017·山西]化简4x x 2-4-xx -2的结果是( ) A .-x 2+2x B .-x 2+6x C .-x x +2 D.xx -25.[2017·北京]如果a 2+2a -1=0,那么代数式⎝ ⎛⎭⎪⎫a -4a ·a 2a -2的值是( ) A .-3 B .-1 C .1 D .36.[2017·河北]若3-2x x -1=( )+1x -1,则( )中的数是( )A .-1B .-2C .-3D .任意实数 二、填空题7.[2017·镇江]当x =________时,分式x -52x +3的值为零.8.[2017·咸宁]化简:x 2-1x ÷x +1x=________.9.[2017·绥化]计算:(a a +b +2b a +b )·aa +2b =________.10. [2017·包头]化简:a 2-1a 2÷(1a-1)·a=________.11.[2016·咸宁]a ,b 互为倒数,代数式a 2+2ab +b 2a +b ÷(1a +1b )的值为________.三、解答题12.化简:(1)[2016·泸州](a +1-3a -1)·2a -2a +2.(2)[2017·重庆]B(a +2-3a -4a -2)÷a 2-6a +9a -2.13.先化简,再求值:(3x x -1-x x +1)·x 2-1x,其中x =-2.14.[[2016·来宾]] 当x =6,y =-2时,代数式x 2-y2(x -y )2的值为( )A .2 B.43 C .1 D.1215.甲、乙两人同时从A 地出发到B 地,如果甲的速度v 保持不变,而乙先用12v 的速度到达中点,再用2v 的速度到达B 地,则下列结论中正确的是( )A .甲、乙同时到达B 地 B .甲先到达B 地C .乙先到达B 地D .谁先到达B 地与速度v 有关。
2024年宿迁市初中学业水平模拟考试(一)数学试题一、选择题:本题共10小题,每小题3分,共30分,在每小题给出的选项中,选出符合题目要求的一项.1.的相反数是( )A.B. -C.D. -【答案】D 【解析】【分析】根据只有符号不同的两个数互为相反数进行求解即可.【详解】解:因为= 而−与只有符号不同,所以 的相反数是-,故选D .【点睛】本题考查了求一个数的绝对值,相反数,熟练掌握相反数的概念以及求解方法是解题的关键.2. 下列计算正确的是( )A. B. C. D. 【答案】D 【解析】【分析】本题主要考查了整式的有关运算,根据同底数幂的乘除法则、幂的乘方法则和积的乘方法则计算即可判断.【详解】解:A 、∵,∴此选项的计算错误,故此选项不符合题意;B 、∵,∴此选项的计算错误,故此选项不符合题意;C 、∵,∴此选项的计算错误,故此选项不符合题意;5||9-959559595||9-5959595-959236m m m ⋅=()2236m m =623m m m ÷=()248m m =235m m m ⋅=()2239m m =624m m m ÷=D、∵,∴此选项的计算正确,故此选项符合题意;故选:D.3.有意义,那么a应满足的条件是()A. B. C. D.【答案】B【解析】的式子叫二次根式,根据二次根式中的被开方数是非负数列式求解即可.【详解】解:由题意,得,∴.故选B.4. 据年月日《天津日报》报道,今年前两个月,被称为“新三样”的锂离子蓄电池、电动汽车、光伏产品合计出口元,将数据用科学记数法表示应为()A. B. C. D.【答案】B【解析】【分析】本题考查了科学记数法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值大于与小数点移动的位数相同.【详解】解:,故选:B.5. 世乒赛颁奖台如图所示,它的左视图是()A. B.C. D.()248m a=4a>-4a≥-4a≠-4a=-)0a≥40a+≥4a≥-202432235900000003590000000100.35910⨯93.5910⨯835.910⨯735910⨯10na⨯110a≤<n n a n193590000000 3.5910=⨯【答案】C 【解析】【分析】本题考查了三视图,根据左视图是从左边看到的图形,据此即可作答.【详解】解:∵世乒赛颁奖台如图所示,∴它的左视图是故选:C6. 如果两个相似三角形的面积比为,那么它们的对应角平分线的比为( )A. B. C. D. 【答案】D 【解析】【分析】本题主要考查的是相似三角形的性质,根据相似三角形面积的比等于相似比的平方,即可得到两个三角形的相似比,而相似三角形的对应角平分线的比等于相似比,由此得解.【详解】解:∵两个相似三角形的面积比为,∴两个相似三角形的相似比为∴它们的对应角平分线的比为故选:D .7. 不等式组的解集在数轴上可表示为( )A.B.C. D.【答案】C 【解析】【分析】本题考查了解不等式组,在数轴上表示不等式组的解集,先求出不等式组的解集,再把解集在数轴上表示出来即可求解,正确求出不等式组的解集是解题的关键.1:21:41:21:161:212213x x +>⎧⎨-≤⎩【详解】解:,由得,,由得,,∴不等式组的解集为,∴不等式组的解集在数轴上表示为,故选:.8. 已知点在y 轴上,则点在第( )象限.A 四B. 三C. 二D. 一【答案】A 【解析】【分析】直接利用y 轴上点的坐标特点(横坐标为0)得出n 的值,进而得出答案.【详解】解:∵点在y 轴上,∴,∴,∴点即,在第四象限.故选:A .【点睛】此题主要考查了点的坐标.记住y 轴上点的坐标特点、各象限内点的坐标的符号是解决的关键.y 轴上点的坐标特点是:横坐标为0;四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.9. 如图,在等腰中,,,以为直径的交于点D ,连接、,则图中阴影部分的面积为( )A. B. C. D..12213x x +>⎧⎨-≤⎩①②①1x >②2x ≤12x <≤12213x x +>⎧⎨-≤⎩C ()5A n ,()12B n n +,-(),5A n 0n =110,220n n =>-=-<+()12B n n +,-()1,2-()++,()-+,()--,()+-,ABC 8AB AC ==90BAC ∠=︒AB O BC OD AD 1632π-816π-48π-44π-【答案】C 【解析】【分析】根据,,以为直径的交于点D ,得到,,,继而得到,结合得到, 利用扇形面积与的面积差表示阴影即可.本题考查了圆的性质,等腰三角形的性质,扇形面积公式,熟练掌握圆的性质,扇形面积公式是解题的关键.【详解】∵,,以为直径的交于点D ,∴,,,∴,∵,∴,∴阴影面积为:.故选C .10. 如果一个等腰三角形的顶角为,我们把这样的等腰三角形称为黄金三角形.如图,在中,,,看作第一个黄金三角形;作的平分线,交于点D ,看作第二个黄金三角形;作的平分线,交于点E ,看作第三个黄金三角形……以此类推,第2024个黄金三角形的腰长是( )A. B. C. D. 【答案】A 【解析】【分析】本题考查了黄金三角形,规律型等知识;8AB AC ==90BAC ∠=︒AB O BC BD DC=90ADB ∠=︒142OD OA OB AB ====ODAC ∥90BAC ∠=︒90AOD ∠=︒AOD △8AB AC ==90BAC ∠=︒AB O BC BD DC =90ADB ∠=︒142OD OA OB AB ====OD AC ∥90BAC ∠=︒90AOD ∠=︒2904144483602ππ︒⨯⨯-⨯⨯=-︒36︒ABC 1AB AC ==36A ∠=︒ABC ABC ∠BD AC BCD △BCD ∠CE BD CDE 2023202420232024由黄金三角形的定义得,同理求出,,可得第1个黄金三角形的腰长为,第2第3个黄金三角形的腰长是,第4个黄金三角形的腰长是,得出规律第n 个黄金三角形的腰长是,即可得出答案.【详解】解:∵是第1个黄金三角形,第1个黄金三角形的腰长为,∴,,∵是第2个黄金三角形,∴,第2,,∵是第3个黄金三角形,∴第3个黄金三角形的腰长是,,∴第4个黄金三角形的腰长是,…第n 个黄金三角形的腰长是,第2024个黄金三角形的腰长是,故选:A .二、填空题:本题共8小题,每小题3分,共24分.BC AB ==2CD=3DE=1AB AC ==231n -ABC 1AB AC ==BC AB =BC AB ∴==BCD △CD BC =2CD BC ∴==CDE DE CD =23DE ∴==3∴1n -∴202412023-=11. 过边形的一个顶点有条对角线,则这个多边形的内角和为____.【答案】##度【解析】【分析】本题考查了多边形的对角线和多边形的内角和公式,根据边形从一个顶点出发可引出条对角线,可得,求出的值,最后根据多边形内角和公式可得结论.【详解】解:由题意得:,解得,则该边形的内角和是:,故答案为:.12. 如果三角形的两边分别是,,那么第三边的取值范围是_____.【答案】【解析】【分析】本题主要考查三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.根据三角形的三边关系判定可求解.【详解】解:由题意得,解得.即第三边的取值范围是.故答案为:.13. 已知a ,b 是关于x 的一元二次方程的两实数根,则式子的值是_____.【答案】2【解析】【分析】本题考查了一元二次方程的根与系数的关系,由根与系数的关系得,将分式变形,然后代入求解,即可求解;掌握根与系数的关系:“、是一元二次方程的两个根,则有”是解题的关键.【详解】解:由题意得,n 51080︒1080n ()3n -35n -=n 35n -=8n =n ()821801080-⨯︒=︒1080︒6cm a =9cm b =c 315c <<9696c -<<+315c <<c 315c <<315c <<2210x x +-=11a b+21a b ab +=-⎧⎨=-⎩1x 2x 20ax bx c ++=1212b x x a c x x a ⎧+=-⎪⎪⎨⎪=⎪⎩21a b ab +=-⎧⎨=-⎩.故答案为:.14. 在中,,,,则___________.【解析】【分析】根据正切的定义得,则可设,利用勾股定理计算出,可求出t,即可.【详解】解:如图,∵,∴设,∴,∵,解得:,即.【点睛】本题主要考查了解直角三角形,在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.15. 如图,在外力的作用下,一个滑块沿坡度为的斜坡向上移动了10米,此时滑块上升的高度是______米.∴11ab+a bab+=21-=-2=2ABC90C∠=︒15AB=1tan3A=BC=1tan3BCAAC==,3BC t AC t==AB=1tan3BCAAC==,3BC t AC t==AB==15AB=15=t=BC=1:3i=【解析】【分析】本题考查了坡比的计算,根据,得到,利用勾股定理计算即可.【详解】.∵,∴,∴,,.解得(负值舍去),故答案.16. 已知关于x 的分式方程的解为非正数,则k 的取值范围是______.【答案】且【解析】【分析】先将分式方程化成整式方程,求出方程的解为,再根据方程的解为非正数确定k 的取值范围,要注意分式分母不为零的情况.【详解】解:去分母得:,整理得:,解得:,由分式方程的解为非正数,得到,且,解得:且.故答案为:且【点睛】本题考查了分式方程的解的情况求解参数的取值范围,解题的关键是用含k 的代数式将方程的解表示出来,注意分式方程有意义的条件.为1:3i =13h l =1:3i =13h l =3l h =10=10=h =111x k kx x +-=+-12k ≥1k ≠12x k =-()()()()()1111x k x k x x x +--+=+-221x x kx k kx k x -+---=-12x k =-120k -≤121k -≠±12k ≥1k ≠12k ≥1k ≠17. 如图,在平面直角坐标系中,O 为坐标原点,的顶点B 在反比例函数的图象上,顶点A 在反比例函数的图象上,顶点D 在x 轴的负半轴上.若的面积是6,则k 的值是__________.【答案】4【解析】【分析】本题主要考查反比例图像上点的性质,涉及两点之间距离、平行四边形的性质和平行四边形面积公式.设点A 即可得到点B 的坐标,利用平行四边形的性质可列出方程,求解即可.【详解】解:设,∵四边形是平行四边形,∴,∴,∴,∵平行四边形的面积是6,∴,解得.故答案为:4.18. 如图,在中,,点D ,E 分别是边的中点,连接.将绕点D 按顺时针方向旋转,点A ,E 的对应点分别为点G ,F ,与交于点P .当直线与的一边平行时,的长为____.ABOD (0)ky x x=>2(0)y x x=-<ABOD 2,A a a ⎛⎫-⎪⎝⎭OBAD AB DO ∥2,2ak B a ⎛⎫-- ⎪⎝⎭2ak AB a ⎛⎫=-+⎪⎝⎭OBAD 262ak a a ⎛⎫⎛⎫-+⨯-= ⎪ ⎪⎝⎭⎝⎭4k =Rt ABC △9034ACB BC AC ∠=︒==,,AB AC ,DE ADE V (090)αα︒≤≤︒GF AC GF ABC CP【答案】或【解析】【分析】本题考查求旋转性质、全等三角形性质、勾股定理、等腰三角形的判定与性质.根据题意,由旋转性质,结合直线与的一边平行,分两类:当时;当时;两种情况讨论求解即可得到答案,【详解】解:根据题意,将绕点D 按顺时针方向旋转得到,即,在中,,∴.∵点D ,E 分别是边的中点,∴是的中位线,∴当时,如图所示:∴,∵,∴,∴和均为等腰三角形,且,∴,1232GF ABC GF AB ∥GF BC ∥ADE V (090)αα︒≤≤︒GDF GDF ADE ≌ Rt ABC 9034ACB BC AC ∠=︒==,,5AB ===AB AC .DE ABC 151132,222,2,2AD AB AE AC DE BC ======GF AB ∥ADG DGP A GPA ∠=∠∠=∠,GDF ADE ≌ A DGP ∠=∠MDA V MPG V MD MA MP MG ==.AP AM MP MD MG DG =+=+=由得到,则,当时,如图所示:∵,∴,∵,∴,∴,∴四边形是平行四边形,∵,∴是正方形,∴,∵,∴,解得,综上所述,的长为或.故答案为:或.三、解答题:本题共10小题,共96分.解答应写出文字说明,证明过程或演算步骤.19. 计算:【答案】13【解析】GDF ADE ≌ 52DG AD ==53422CP AC AP =-=-=GF BC ∥DE BC ∥GF DE ∥90C ∠=︒90EPF ∠=︒EP DF ∥DFPE 90DE DF DFP =∠=︒,DFPE 32EP DF DE ===122==EC AC 31222PC EC EP =-=-=12PC =CP 12321232()202024116 3.143π-⎛⎫-+---+- ⎪⎝⎭【分析】本题考查了有理数的混合运算,零指数幂和负整数幂的意义,先根据乘方、绝对值、零指数幂和负整数幂的意义化简,再算加减即可.【详解】解:.20. 先化简,再求值: ,其中满足.【答案】,.【解析】【分析】本题考查了分式的化简求值,先对分式进行化简,再根据可得,即可得到分式化简后的值,掌握分式的性质和运算法则是解题的关键.【详解】解:原式,,,,∵,∴,∴原式.21. 桌面上有4张正面分别标有数字2、4、6、7的不透明卡片,它们除数字不同外其余均相同,现将它们背面朝上,洗匀后平铺开.(1)小红随机翻开一张卡片,正面数字是偶数的概率是___________;(2)小红先随机翻开一张卡片并记录上面的数字,再从余下的3张卡片中随机翻开一张卡片并记录上面的数字.请用列表或画树状图的方法,求翻到的两张卡片上的数字之和为奇数的概率,【答案】(1)(2)()202024116 3.141619133π-⎛⎫-+---+-=-+-+= ⎪⎝⎭232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭x 220240x x +-=2x x +2024220240x x +-=22024x x +=()()2113112x x x x x x x ⎡⎤++=-⨯⎢⎥++-⎣⎦()221212x x x x x +-=⨯+-()()22112x x x x x -+=´+-()1x x =+2x x =+220240x x +-=22024x x +=2024=3412【解析】【分析】本题主要考查了简单的概率计算,树状图法或列表法求解概率,正确列出表格是解题的关键.(1)根据概率计算公式求解即可;(2)先列表得到所有等可能性的结果数,再找到符合题意的结果数,最后根据概率计算公式求解即可.【小问1详解】解:∵一共有4张卡片,其中正面数字是偶数的卡片有3张,每张卡片被翻开的概率相同,∴随机翻开一张卡片,正面数字是偶数的概率是,故答案为:;【小问2详解】解:用列表格法表示为:第一张结果第二张24672(4,2)(6,2)(7,2)4(2,4)(6,4)(7,4)6(2,6)(4,6)(7,6)7(2,7)(4,7)(6,7)共有12种等可能的结果,其中翻到的两张卡片上的数字之和为奇数的结果有6种,∴ 翻到的两张卡片上的数字之和为奇数的概率为.22. 为激发学生对中华诗词的学习兴趣,某初中学校组织了“诗词好少年”比赛,现随机抽取了部分学生的成绩,根据统计的结果,绘制出如下统计图①和图②.343461122请根据相关信息,解答下列问题:(1)本次抽取的学生人数为__________,图①中的值为__________;(2)求统计的这组学生成绩数据的平均数、众数和中位数.【答案】(1)50,28(2)80,90,80【解析】【分析】本题考查了从条形统计图与房形统计图获取信息、求平均数、众数和中位数等知识点,掌握从条形统计图与扇形统计图获取信息方法是解题的关键.(1)把得60分、70分、80分、90分、100分的人数加起来可得抽取的学生人数,再用得90分的人数除以总人数即可求得m 的值;(2)根据平均数、中位数、众数的定义即可解答.【小问1详解】解:本次接受调查的学生人数为人;由,即.故答案为:50,28.【小问2详解】解:这个班竞赛成绩数据的平均数为;∵得90分的有14人,最多,∴众数为90;∵位于第25位和第26位均是80,m 7121114650++++=14%=100%=28%50m ⨯28m =()176012701180149061008050⨯⨯+⨯+⨯+⨯+⨯=∴中位数为.23. 随着科技的发展,无人机广泛应用于生产生活.小琪利用无人机从点竖直上升到点,测得点到点的距离为,此时点的俯角为;后无人机到达点,此时测得点的俯角为.求无人机从点到点的平均速度.(结果精确到)【答案】无人机从点到点的平均速度.【解析】【分析】本题考查了解直角三角形的应用-仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.根据题意可得:结合平行线性质,从而可得,,然后在中,利用含30度角的直角三角形的性质可求出和的长,再在中,利用锐角三角函数的定义求出的长,从而求出的长,最后进行计算即可解答.【详解】解:在中,,,.在中,,,,,无人机从点到点的平均速度.24. 如图,在中,,垂直平分,分别交线段于点D 、E ,连接,若,.8080802+=OA A C 800m C 30︒64sBC 45︒A B 0.1m /s 1.73≈A B 4.6m /s 30ACO ∠=︒45OBC BCO∠=∠=︒Rt AOC AO OC Rt BOCBO AB Rt AOC 30ACO ∠=︒11800400m 22AO AC ∴==⨯=cos30OC AC AC =︒⋅==Rt BOC 90,45BOC BCO ∠=︒∠=︒45BCO OBC ∴∠=∠=︒OB OC ∴==()400m AB OB OA ∴=-=-∴A B ()4.6m /s =≈Rt ABC △90BAC ∠=︒ED BC BC AC 、,AD BE 12AE EC =3AE =(1)求线段的长度;(2)延长线段使得,连接,求四边形面积.【答案】(1)(2)【解析】【分析】(1)根据线段垂直平分线的性质求出,根据勾股定理求出最后根据直角三角形斜边上的中线等于斜边的一半求解即可;(2)先证明四边形为平行四边形,然后根据求解即可.【小问1详解】垂直平分,,又,,,,在中,,由勾股定理得:在中,,又D 为中点,,【小问2详解】垂直平分,,的AD ED ED DF =,BF CF BFCE 6BE CE BD CD ===,AB =BFCE BFCE S BC AB =⋅ ED BC BE EC ∴=12AE EC = 3AE =26BE AE CE ∴===9AC = Rt ABE △90BAC ∠=︒∴AB == Rt ABC △90BAC ∠=︒BC ∴=== BC 90BAC ∠=︒12AD BC ∴== ED BC BD DC ∴=∵,四边形为平行四边形,.【点睛】此题考查了勾股定理,平行四边形的判定与性质,线段垂直平分线的性质, 直角三角形斜边上的中线等知识,熟练运用勾股定理、平行四边形的判定与性质是解题的关键.25. 如图,为的直径,点C 在上,的平分线交于点D ,过点D 作,交的延长线于点E .(1)求证:是的切线;(2)若,,求的长.【答案】(1)证明见详解;(2);【解析】【分析】本题考查切线证明,等腰直角三角形性质,圆的性质,勾股定理:(1)连接,根据为的直径得到,根据是的平分线得到,即可得到,结合得到,即可得到证明;(2)根据,得到,从而得到,在中根据勾股定理求出,再求出即可得到答案.【小问1详解】证明:连接,∵为的直径,∴,∵是平分线,∴,的ED DF =∴BFCE 6BFCE S CE AB ∴=⋅=⨯= AB O O ACB ∠O DE AB ∥CB ED O AC =BC =CD 12OD AB O 90ACB ∠=︒CD ACB ∠45ACD BCD ∠=∠=︒290AOD ACD ∠=∠=︒DE AB ∥90EDO AOD ∠=∠=︒AC =BC =AB ==12OB OD AB ===BD CBE △CE BE =DE OD AB O 90ACB ∠=︒CD ACB ∠45ACD BCD ∠=∠=︒∴,∵,∴,,∴是的切线;【小问2详解】解:过B 作,∵,,∴,∴,∴,,∵,,∴,∴,∴,∴.26. 食堂午餐高峰期间,同学们往往需要排队等候购餐.经调查发现,每天开餐时,约有400人排队.接下来不断有新的同学进入食堂排队,队列中的同学买到饭后会离开队列,食堂目前开放了4个售餐窗口.(规定每人购餐1份),每分钟每个窗口能出售午餐15份,前a 分钟每分钟有40人进入食堂排队够餐,每一天食堂排队等候购餐的人数y (人)与开餐时间x (分钟)的关系如图所示.290AOD ACD ∠=∠=︒DE AB ∥90EDO AOD ∠=∠=︒ED O BE CD⊥AC=BC=AB ==12OB OD AB ===BD ==BE CD ⊥45BCD ∠=︒45BCE CBE ∠=∠=︒3CE BE ===9DE ===3912CD CE DE =+=+=(1)求a 的值.(2)求开餐到第7分钟时食堂排队购餐等候的人数.(3)若要在开始售餐7分钟内让所有的排队的学生都能买到,以便后来到同学随到随购,至少需要同时开放几个窗口?【答案】(1)4(2)160人(3)6【解析】【分析】(1)根据题意,得a 进入人数为,此时排队总人数为;每分钟一个窗口售出15份,a 分钟售出,4个窗口共售出,余下人数为,建立等式解答即可.(2)设线段的解析式为,根据题意,得,解方程组,得到解析式,后计算当时的函数值即可.(3)设需要开放x 个窗口,根据题意,每分钟一个窗口售出15份,7分钟售出,x 个窗口共售出,此时排队总人数为;故,解答即可.本题考查了图象信息,待定系数法,不等式的应用,熟练掌握待定系数法,不等式的应用是解题的关键.【小问1详解】根据题意,得a 进入人数为,此时排队总人数为;每分钟一个窗口售出15份,a 分钟售出,4个窗口共售出,余下人数为,根据图象信息,得,解得,故a 的值为4.【小问2详解】设线段的解析式为,40a ()40400a +15a 15460a a ⨯=()4040060a a +-BC y kx b =+4320100k b k b +=⎧⎨+=⎩7x =157⨯157105x x ⨯⨯=4715160⨯⨯+1054715160x ⨯⨯+≥40a ()40400a +15a 15460a a ⨯=()4040060a a +-()4040060320a a +-=4a =BC y kx b =+根据题意,得,解得,故线段的解析式为,当时,,故开餐到第7分钟时食堂排队购餐等候的人数为160.【小问3详解】设需要开放x 个窗口,根据题意,每分钟一个窗口售出15份,7分钟售出,x 个窗口共售出,此时排队总人数为;故,解得,由x 必需是正整数,故至少开放6个窗口.27. 如图1,在和中,,且,则可证明得到.【初步探究】(1)如图2,为等边三角形,过A 点作的垂线l ,点P 为l 上一动点(不与点A 重合),连接,把线段绕点C 逆时针方向旋转得到,连.请写出与的数量关系并说明理由;4320100k b k b +=⎧⎨+=⎩160316003k b ⎧=-⎪⎪⎨⎪=⎪⎩BC 160160033y x =-+7x =1601600716033y =-⨯+=157⨯157105x x ⨯⨯=4715160⨯⨯+1054715160x ⨯⨯+≥11521x ≥ABE ACD AE AB AD AC =,=BAE CAD ∠=∠AEC ABD ≌ABC AC CP CP 60︒CQ QB AP BQ【思维提升】(2)如图3,在中,以为边向外作等边,连接,,求长.【拓展应用】(3)如图4,在中,,作交于点D ,过点B 作直线,点H 是直线l 上的一个动点,线段绕点A 按顺时针方向旋转得到线段,则的最小值为_______.【答案】(1),理由见解析;(2)5;(3)【解析】【分析】(1)证明 ,从而得出结论;(2)作等边三角形,连接,可得,同(1)可证,从而得出;(3)将绕点A 按顺时针方向旋转得到线段,可证,从而得出,所以点在与定线段成的直线m 上运动,作点A 关于直线m 的对称点F ,交m 于点G ,连接,交直线m 于点,此时的最小,最小值是的长,进一步得出结果.【详解】解:(1),理由如下:等边中,,由旋转可得,,∴,,即,,;(2)如图,在ABC AB ABE EC 3043ACB AC BC а=,=,=EC ABC 604ABC AB ∠=︒=,AD BC ⊥BC l BC ⊥AH 30︒AH 'AH BH ¢¢+AP BQ =CAP CBQ ≌ACD BD 5BD ==AEC ABD ≌4CE BD ==AB 30︒AE ABH AEH ¢ ≌30AEB ABH ∠=∠=︒H 'AE 30︒AF BF H 'AH BH '+'BF AP BQ =ABC 60AC BC ACB ==︒,∠60CP CQ PCQ =,=аACB PCQ ∠=∠ACB PCB PCQ PCB \ÐÐÐÐ-=-ACP BCQ ∠=∠ACP BCQ ∴ ≌AP =BQ ∴作等边三角形,连接,,,,,,∴,同(1)可证,;(3)如图,,,,,将绕点A 按顺时针方向旋转得到线段,,∵线段绕点A 按顺时针方向旋转得到线段,,,ACD BD 4AC = 604ACD CD AC \а=,==30ACB ∠=︒ 90BCD ∴∠=︒3BC =5BD ==AEC ABD ≌5EC BD \==l BC ^ 90HBD \Ð=°60ABD ∠=︒ 30ABH ∴∠=︒AB 30︒AE 30BAE AE AB \Ð=°=,AH 30︒AH '30HAH AH AH ¢¢\Ð=°=,BAE HAH ¢\Ð=Ð,,,∴点在与定线段成的直线m 上运动,作点A 关于直线m 的对称点F ,交m 于点G ,连接,交直线m 于点,此时的最小,最小值是的长,,,,,,,即的最小值为:【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,勾股定理的应用,化为最简二次根式,轴对称的性质,旋转的性质等知识,解决问题的关注是作辅助线,构造全等三角形.28. 如图,已知抛物线(a ,b ,c 是常数)与x 轴分别交于A 、B 两点,与y 轴交于点,顶点为点,直线轴于点E ,点为抛物线上的一动点.(1)求该抛物线的解析式;(2)当点P 在第一象限内时,①求的面积的最大值;②当时,求点P 的坐标;(3)在y 轴上存在一点Q ,使得以P 、Q 、C 、E 为顶点的四边形为平行四边形,直接写出所有符合条件EAH BAH ¢\Ð=ÐABH AEH ¢\ ≌30AEB ABH \Ð=Ð=°H 'AE 30︒AF BF H 'AH BH '+'BF 9060FAE AEH ¢Ð=°-Ð=° 30BAE ∠=︒Q 90BAF FAE BAE \Ð=Ð+Ð=°122AG AE == 24AF AG \==4AB = BF \AH BH '+'2y ax bx c =++()04C ,()26D ,DE x ⊥()P m n ,PCE CE PE ⊥的点Q 的坐标.【答案】(1) (2)①的面积的最大值为;② (3)或或.【解析】【分析】(1)根据与y 轴交于点,顶点为点求解析式即可;(2)①过P 作轴于点M ,交于,根据求最大面积即可;②当时,,代入计算即可;(3)设,利用平行四边形对角线互相平分求解即可.【小问1详解】∵抛物线顶点为点,∴设把代入得,解得,∴抛物线的解析式;【小问2详解】①过P 作轴于点M ,交于,∵直线轴于点E ,∴,21242y x x =-++PCE 8352P ⎛⎫ ⎪⎝⎭,()02Q -,()010,()06-,()04C ,()26D ,PM x ⊥CE N 12PCE PCN PEN S S S OE PN =-=⋅ CE PE ⊥OCE MEP ()0,Q t 2y ax bx c =++()26D ,()226y a x =-+()04C ,()24026a =-+12a =-()2211262422y x x x =--+=-++PM x ⊥CE N DE x ⊥()20E ,∴解析式为,∵点为抛物线上的一动点.∴,∵轴于点M ,交于,∴,,,∴∴∴当时,的面积的最大,最大值为;②当时,,∴,∴,∴,解得:,∵点P 在第一象限内,∴∴;CE 24y x =-+()P m n ,21242n m m =-++PM x ⊥CE N PM n =OM m =(),24N m m -+()22112424422PN m m m m m =-++--+=-+PCE PCN PENS S S =- 1122OM PN EM PN =⋅-⋅12OE PN =⋅2112422m m ⎛⎫=⨯⨯-+ ⎪⎝⎭()21482m =--+4m =PCE 8CE PE ⊥90OCE MEP OEC ∠=∠=︒-∠OCE MEP OC OE EM PM=21242422m m m --++=125,2m m ==-5m =352P ⎛⎫ ⎪⎝⎭,【小问3详解】,,,设,当以为对角线时,则与互相平分,∵中点坐标为,中点坐标为,∴,解得,此时,同理,当以为边,与为对角线时,;当以为边,与为对角线时,;综上所述,当以P 、Q 、C 、E 为顶点的四边形为平行四边形时或或.【点睛】此题是二次函数综合题,主要考查了待定系数法,坐标系中三角形面积的求法,直角处理,平行四边形存在性问题,用方程或方程组的思想解决问题是解本题的关键.()04C ,()20E ,21242P m m m ⎛⎫-++ ⎪⎝⎭,()0,Q t CE CE PQ CE ()1,2PQ 21242,22m m t m ⎛⎫-+++ ⎪ ⎪ ⎪⎝⎭212124222m m m t ⎧=⎪⎪⎨-+++⎪=⎪⎩22m t =⎧⎨=-⎩()02Q -,CE PC EQ ()010Q ,CE QC EP ()06Q -,()02Q -,()010,()06-,。
泗洪中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 一个三角形的两边长分别为3和4,第三边的长度可能是?A. 1B. 5C. 7D. 10答案:B3. 以下哪个函数是一次函数?A. y = x^2B. y = 2x + 3C. y = x/2D. y = √x答案:B4. 一个圆的半径为5,那么这个圆的面积是多少?A. 25πC. 75πD. 100π答案:B5. 以下哪个选项是等腰三角形?A. 三边长分别为3, 4, 5B. 三边长分别为2, 2, 3C. 三边长分别为1, 2, 3D. 三边长分别为4, 5, 6答案:B6. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 10答案:A7. 以下哪个选项是不等式?A. 2x + 3 = 7B. 2x + 3 > 7C. 2x + 3 < 7D. 2x + 3 ≤ 7答案:B8. 一个长方体的长、宽、高分别为2, 3, 4,那么这个长方体的体积A. 24B. 12C. 8D. 6答案:B9. 以下哪个选项是锐角三角形?A. 三角形内角分别为30°, 60°, 90°B. 三角形内角分别为45°, 45°, 90°C. 三角形内角分别为20°, 70°, 90°D. 三角形内角分别为30°, 60°, 120°答案:C10. 一个数的平方是36,那么这个数是?A. 6B. -6C. ±6D. 36答案:C二、填空题(每题3分,共15分)11. 一个数的绝对值是5,那么这个数可能是______。
答案:±512. 一个等腰三角形的底角是40°,那么顶角是______。
答案:100°13. 一个矩形的长是宽的两倍,如果宽是4,那么长是______。
中考数学专题复习《数与式》测试卷(附带答案) 学校:___________班级:___________姓名:___________考号:___________一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×10112.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×1083.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×1044.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×1085.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×1066.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×1097.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×10118.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×1099.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×10810.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×10711.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×10312.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×10313.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<115.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥316.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数.(答案不唯一)四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.20.(2024•房山区一模)计算:.21.(2024•石景山区一模)计算:.22.(2024•通州区一模)计算:.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.26.(2024•大兴区一模)计算:.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.28.(2024•东城区一模)计算:.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.30.(2024•顺义区一模)计算:.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.31.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.32.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.33.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.34.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.六.提公因式法与公式法的综合运用(共11小题)36.(2024•平谷区一模)分解因式:ax2+2ax+a=.37.(2024•房山区一模)分解因式:x2y﹣4y=.38.(2024•石景山区一模)分解因式:xy2﹣4x=.39.(2024•北京一模)分解因式:8a2﹣8b2=.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=.41.(2024•朝阳区一模)分解因式:3x2+6xy+3y2=.42.(2024•大兴区一模)分解因式:ax2﹣4a=.43.(2024•海淀区一模)分解因式:a3﹣4a=.44.(2024•东城区一模)因式分解:2xy2﹣18x=.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=.46.(2024•顺义区一模)分解因式:4m2﹣4=.七.分式有意义的条件(共3小题)47.(2024•房山区一模)若代数式有意义,则实数x的取值范围是.48.(2024•丰台区一模)若代数式有意义,则实数x的取值范围是.49.(2024•顺义区一模)代数式有意义,则实数x的取值范围是.八.分式的值(共2小题)50.(2024•海淀区一模)已知b2﹣4a=0,求代数式的值.51.(2024•东城区一模)已知2x﹣y﹣9=0,求代数式的值.九.分式的加减法(共1小题)52.(2024•平谷区一模)化简:的结果为.一十.分式的化简求值(共2小题)52.(2024•石景山区一模)已知x2﹣3x﹣6=0,求代数式的值.53.(2024•丰台区一模)已知x﹣3y﹣2=0,求代数式的值.一十一.二次根式有意义的条件(共6小题)55.(2024•平谷区一模)若代数式有意义,则实数x的取值范围是.56.(2024•石景山区一模)若在实数范围内有意义,则实数x的取值范围是.57.(2024•通州区一模)若在实数范围内有意义,则实数x的取值范围为.58.(2024•朝阳区一模)若式子在实数范围内有意义,则x的取值范围是.59.(2024•海淀区一模)代数式在实数范围内有意义,则x的取值范围是.60.(2024•东城区一模)若二次根式有意义,则实数x的取值范围是.参考答案与试题解析一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:70000000000=7×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:12089000=1.2089×107故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:8500=8.5×103故选:C.【点评】本题考查了科学记数法表示绝对值较大的数的方法,掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数是关键.4.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×108【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:22300000000=2.23×1010故选:B.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.5.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×106【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:921000=9.21×105故选:C.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.6.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:10000000000=1×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:74870000000=7.487×1010故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×109【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:43700000=4.37×107.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×108【分析】根据科学记数法的规则进行作答即可.【解答】解:17500000=1.75×107.故选:C.【点评】本题主要考查科学记数法,解题的关键是熟练掌握科学记数法的规则.10.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:1330000=1.33×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:19000=1.9×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:3998000=3.998×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:210000000=2.1×108故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<1【分析】根据数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1,由此逐一判断各选项即可.【解答】解:由数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1A、∵﹣2<b<﹣1,0<c<1,∴b﹣c<0,故选项A不符合题意;B、∵﹣3<a<﹣2,0<c<1,∴ac<0,故选项B不符合题意;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,故选项C符合题意;D、∵﹣3<a<﹣2<b<﹣1,∴ab>1,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,熟悉数轴上各点的分布特点是解题的关键.15.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥3【分析】由数轴可知,﹣3<a<﹣2,由此逐一判断各选项即可.【解答】解:由数轴可知,﹣3<a<﹣2A、﹣3<a<﹣2,故选项A不符合题意;B、﹣3<a<﹣2,故选项B不符合题意;C、∵﹣3<a<﹣2,∴2<﹣a<3,故选项C符合题意;D、∵﹣3<a<﹣2,∴2<﹣a<3,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,从题目中提取已知条件是解题的关键.16.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵﹣2<a<﹣1,0<b<1∴1<|a|<2,0<|b|<1∴|a|>|b|∴选项A不符合题意;∵﹣2<a<﹣1,0<b<1∴a<b∴a+1<b+1∴选项B符合题意;∵﹣2<a<﹣1,0<b<1∴1<a2<4,0<b2<1∴a2>b2∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴a<﹣b∴选项D不符合题意.故选:B.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵a<﹣1∴选项A不符合题意;∵b<1∴选项B不符合题意;∵﹣2<a<﹣1∴1<﹣a<2∵0<b<1∴﹣a>b∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴﹣b>a∴选项D符合题意.故选:D.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数π.(答案不唯一)【分析】由于开方开不尽的数是无理数,然后确定的所求数的范围即可求解.【解答】解:∵1=,4=∴只要是被开方数大于1而小于16,且不是完全平方数的都可.同时π也符合条件.【点评】此题主要考查了无理数的大小的比较,其中无理数包括开方开不尽的数,和π有关的数,有规律的无限不循环小数.四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.【分析】根据特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简分别计算即可.【解答】解:2cos30°+()﹣1+|﹣1|﹣===1.【点评】本题考查了实数的运算,熟练掌握特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简是解题的关键.20.(2024•房山区一模)计算:.【分析】利用特殊锐角三角函数值,负整数指数幂,绝对值的性质,二次根式的性质计算即可.【解答】解:原式=6×+2+3﹣3=3+2+3﹣3=5.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.21.(2024•石景山区一模)计算:.【分析】利用绝对值的性质,二次根式的性质,特殊锐角三角函数值及负整数指数幂计算即可.【解答】解:原式=2﹣+2﹣2×+5=2﹣+2﹣+5=7.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.22.(2024•通州区一模)计算:.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负整数指数幂的性质分别化简得出答案.【解答】解:原式=4×=2+4+1=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.【分析】sin45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式=4×+2﹣3+2=2﹣3+4=4.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.【分析】利用特殊角的三角函数值及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式===﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.【分析】分别根据绝对值、零指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2=3=2.【点评】本题考查的是实数的运算,熟知绝对值、零指数幂的运算法则,熟记特殊角的三角函数值是解答此题的关键.26.(2024•大兴区一模)计算:.【分析】cos45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式==.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.【分析】根据实数的运算法则、负整数指数幂和特殊角的三角函数值的定义进行计算.【解答】解:原式=2×+1+2﹣2=+1+2﹣2=3﹣.【点评】本题考查了实数的运算法则、负整数指数幂和特殊角的三角函数值,掌握实数的运算法则、负整数指数幂和特殊角的三角函数值的定义是关键.28.(2024•东城区一模)计算:.【分析】利用二次根式的性质,特殊锐角三角函数值,零指数幂,绝对值的性质计算即可.【解答】解:原式=4﹣2×+1﹣2=4﹣+1﹣2=3﹣1.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.【分析】直接利用特殊角的三角函数值、负整数指数幂的性质、二次根式的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=3+2×﹣3﹣2=3+﹣3﹣2=﹣.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2024•顺义区一模)计算:.【分析】利用负整数指数幂,特殊锐角三角函数值,二次根式的性质,零指数幂计算即可.【解答】解:原式=﹣4×+2+1=﹣2+2+1=.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:4x(x﹣1)+(2x+1)(2x﹣1)=4x2﹣4x+4x2﹣1=8x2﹣4x﹣1∵2x2﹣x﹣1=0∴2x2﹣x=1∴当2x2﹣x=1时,原式=4(2x2﹣x)﹣1=4×1﹣1=4﹣1=3.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.32.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:(3x+2)(3x﹣2)﹣3x(x+1)=9x2﹣4﹣3x2﹣3x=6x2﹣3x﹣4∵2x2﹣x﹣1=0∴2x2﹣x=1当2x2﹣x=1时,原式=3(2x2﹣x)﹣4=3×1﹣4=3﹣4=﹣1.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.33.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.【分析】利用完全平方公式,多项式乘多项式的法则进行计算,然后把x2﹣x=4代入化简后的式子进行计算,即可解答.【解答】解:(x﹣2)2+(x﹣1)(x+3)=x2﹣4x+4+x2+3x﹣x﹣3=2x2﹣2x+1∵x2﹣x﹣4=0∴x2﹣x=4∴当x2﹣x=4时,原式=2(x2﹣x)+1=2×4+1=8+1=9.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.34.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.【分析】利用完全平方公式,单项式乘多项式法则进行计算,然后把a2+3a=1代入化简后的式子进行计算即可解答.【解答】解:(a+1)2+a(a+4)﹣2=a2+2a+1+a2+4a﹣2=a2+a2+2a+4a+1﹣2=2a2+6a﹣1∵a2+3a﹣1=0∴a2+3a=1当a2+3a=1时,原式=2(a2+3a)﹣1=2×1﹣1=2﹣1=1.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.35.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.【分析】利用完全平方公式,单项式乘多项式的法则进行计算,然后把x2+2x=1代入化简后的式子进行计算,即可解答.【解答】解:4(x+1)+(x﹣1)2=4x+4+x2﹣2x+1=x2+2x+5当x2+2x=1时,原式=1+5=6.【点评】本题考查了整式的混合运算﹣化简求值,代数式求值,完全平方公式,准确熟练地进行计算是解题的关键.六.提公因式法与公式法的综合运用(共11小题)【分析】先提取公因式,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:ax2+2ax+a=a(x2+2x+1)﹣﹣(提取公因式)=a(x+1)2.﹣﹣(完全平方公式)【点评】本题考查了提公因式法与公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意要分解彻底.37.(2024•房山区一模)分解因式:x2y﹣4y=y(x+2)(x﹣2).【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:x2y﹣4y=y(x2﹣4)=y(x+2)(x﹣2)故答案为:y(x+2)(x﹣2).【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.38.(2024•石景山区一模)分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2)故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.39.(2024•北京一模)分解因式:8a2﹣8b2=8(a+b)(a﹣b).【分析】提公因式后利用平方差公式因式分解即可.【解答】解:原式=8(a2﹣b2)=8(a+b)(a﹣b)故答案为:8(a+b)(a﹣b).【点评】本题考查因式分解,熟练掌握因式分解的方法是解题的关键.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=y(x﹣6)2.【分析】提取公因式后用完全平方公式分解即可.【解答】解:x2y﹣12xy+36y=y(x2﹣12x+36)=y(x﹣6)2故答案为:y(x﹣6)2.【点评】本题考查了因式分解,熟练掌握提取公因式和公式法分解因式是关键.【分析】先利用提取公因式法提取数字3,再利用完全平方公式继续进行分解.【解答】解:3x2+6xy+3y2=3(x2+2xy+y2)=3(x+y)2【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.42.(2024•大兴区一模)分解因式:ax2﹣4a=a(x+2)(x﹣2).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣4a=a(x2﹣4)=a(x+2)(x﹣2).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.43.(2024•海淀区一模)分解因式:a3﹣4a=a(a+2)(a﹣2).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.44.(2024•东城区一模)因式分解:2xy2﹣18x=2x(y+3)(y﹣3).【分析】提取公因式后再用平方差公式分解即可.【解答】解:2xy2﹣18x=2x(y2﹣9)=2x(y+3)(y﹣3).故答案为:2x(y+3)(y﹣3).【点评】本题考查了因式分解,熟练掌握公式法和提取公因式法是关键.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=a(x+2y)(x﹣2y).【分析】观察原式ax2﹣4ay2,找到公因式a,提出公因式后发现x2﹣4y2符合平方差公式,利用平方差公式继续分解可得.【解答】解:ax2﹣4ay2=a(x2﹣4y2)。
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. -1/3D. √92. 已知函数f(x) = 2x - 1,若f(2) = f(a),则a的值为()A. 1B. 2C. 3D. 43. 在等边三角形ABC中,角A的度数是()A. 30°B. 45°C. 60°D. 90°4. 已知一元二次方程x² - 5x + 6 = 0,则它的两个根分别是()A. 2和3B. 3和2C. 2和-3D. -3和25. 下列命题中,正确的是()A. 平行四边形的对角线互相垂直B. 相似三角形的面积比等于相似比C. 所有等腰三角形的底角相等D. 直角三角形的两条直角边长度相等6. 已知等差数列{an}的第一项a1 = 2,公差d = 3,则第10项a10的值为()A. 27B. 30C. 33D. 367. 若a > b > 0,则下列不等式中正确的是()A. a² > b²B. a > bC. a² < b²D. a < b8. 已知点P(-2, 3)关于y轴的对称点为P',则P'的坐标是()A. (2, 3)B. (-2, -3)C. (2, -3)D. (-2, 3)9. 在直角坐标系中,点A(2, 3),点B(-1, 1),则线段AB的中点坐标是()A. (1, 2)B. (1.5, 2)C. (1.5, 2.5)D. (2, 1.5)10. 若sinα = 1/2,且α为锐角,则cosα的值为()A. √3/2B. √2/2C. 1/2D. 3/2二、填空题(每题3分,共30分)11. 若√(a² + b²) = 5,且a - b = 2,则a + b的值为______。
12. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数是______。
数的开方与二次根式一、选择题
1.[[2016·贵港]] 式子
1
x-1
在实数范围内有意义,则x的取值范围是( )
A.x<1 B.x≤1 C.x>1 D.x≥1
2.[2017·泰州]2的算术平方根是( )
A.± 2 B. 2 C.- 2 D.2
3.[2017·聊城]64的立方根是( )
A.4 B.8 C.±4 D.±8
4.[2017·连云]港关于8的叙述正确的是( )
A.在数轴上不存在表示8的点
B.8=2+ 6
C.8=±2 2
D.与8最接近的整数是3
5.[2017·益阳]下列各式化简后的结果为3 2的是( )
A. 6
B.12
C.18
D.36
6.[2017·重庆]A估计10+1的值应在( )
A.3和4之间 B.4和5之间
C.5和6之间 D.6和7之间
7.[[2016·钦州]] 下列运算正确的是( )
A.a+a=2a B.a6÷a3=a2
C.8+2=10 D.(a-b)2=a2-b2
8.[2017·凉山]州有一个数值转换器,原理如图K4-1,当输入的x为64时,输出的y是( )
图K4-1
A.2 2 B.3 2 C.2 3 D.8
二、填空题
9.(1)[2016·宁波]实数-27的立方根是________;
(2)[2015·北海]9的算术平方根是________.
10.[[2016·玉林]] 要使代数式1-2x有意义,则x的最大值是________.
11.[2016·德州]化简3
3
的结果是________.
12.[2017·山西]计算:4 18-9 2=________.三、解答题
13.(1)[2017·南京]改编计算:12+8× 6.
(2)[[2017·贵港]] 先化简,再求值:(
1
a-1
-
1
a+1
)+
4+2a
a2-1
,其中a=-2+ 2.
14.[2017·枣庄]实数a,b在数轴上对应的点的位置如图K4-2所示,化简|a|+(a-b)2的结果是( )
图K4-2
A.-2a+b B.2a-b
C.-b D.b
15.观察分析下列数据:0,-3,6,-3,2 3,-15,3 2,…,根据数据排列的规律得到第16个数据应是________(结果需化简).
16.[2016·黄石]观察下列等式:
第1个等式:a1=1
1+2
=2-1,
第2个等式:a2=
1
2+3
=3-2,
第3个等式:a3=
1
3+2
=2-3,
第4个等式:a4=
1
2+5
=5-2,
按上述规律,回答以下问题:
(1)请写出第n个等式:a n=________;
(2)a1+a2+a3+…+a n=________.。