2020届中考数学(安徽)总复习作业课件:方法技巧训练二:几何中与中点有关的计算或证明(1)
- 格式:pptx
- 大小:1003.89 KB
- 文档页数:13
方法技巧训练(二) 几何中与中点有关的计算与证明方法指导1 有关中点的常见考法 (1)直角三角形斜边上的中线如图,在Rt △ABC 中,点D 是斜边AB 的中点,则BD =12AB,AD =CD =DB.反过来,在△ABC 中,点D 在AB 边上,若AD=BD =CD =12AB,则有∠ACB =90°.解题通法:直角+中点⇒直角三角斜边上的中线.(1)图 (2)图 (3)图(2)等腰三角形“三线合一”如图,在△ABC 中,若AB =AC,通常取底边BC 的中点D,则AD ⊥BC,且AD 平分∠BAC.解题通法:事实上,在△ABC 中:①AB =AC ;②AD 平分∠BAC ;③BD =CD ;④AD ⊥BC.对于以上四条语句,任意选择两个作为条件,就可以推出另两条结论,即“知二得二”.(3)线段垂直平分线如图,直线l 是线段BC 的垂直平分线,则可以在直线l 上任意取一点A,得到AB =AC,即△ABC 是等腰三角形. 解题通法:遇到垂直平分线⇒线段相等⇒等腰三角形. (4)倍长中线在△ABC 中,M 为BC 的中点.①如图1,连接AM 并延长至点E,使得AM =ME,连接CE,则△ABM ≌△ECM.②如图2,点D 在AB 边上,连接DM 并延长至点E,使得ME =DM,连接CE,则△DMB ≌△EMC.解题通法:遇到三角形一边上的中点,常常倍长中线,利用“8”字形全等将题中条件集中,以达到解题的目的.图1 图2(5)构造三角形的中位线在△ABC 中,D 为AB 边的中点.①如图1,取AC 边上的中点E,连接DE,则DE ∥BC,且DE =12BC.②如图2,延长BC 至点F,使得CF =BC,连接CD,AF,则DC ∥AF,且DC =12AF.解题通法:三角形的中位线从位置关系和数量关系两个方面将图形中分散的线段关系集中起来,通常需要再找一个中点来构造中位线,或倍长某段线段构造中位线.拓展:如果已知中点的边不在一个三角形中,则需先添加辅助线构造中点,然后构造三角形的中位线解题.如在四边形ABCD 中,点E,H 分别为AB,CD 边的中点,则先连接AC,然后取AC 边的中点F,连接EF,FH,则EF 为△ABC 的中位线,FH 为△ACD 的中位线.图1 图2(6)中点四边形如图,在四边形ABCD中,点E,F,G,H分别是四边形的边AB,BC,CD,AD的中点.结论:①连接EF,FG,GH,EH,则中点四边形EFGH是平行四边形.②若对角线AC和BD相等,则中点四边形EFGH是菱形.③若对角线AC与BD互相垂直,则中点四边形EFGH是矩形.④若对角线AC与BD互相垂直且相等,则中点四边形EFGH是正方形.方法指导2中考数学中涉及“一半”的相关内容①直角三角形斜边中线等于斜边的一半;②30°角所对的直角边等于斜边的一半;③三角形的中位线平行于第三边,且等于第三边的一半;④圆周角的度数等于它所对弧圆心角度数的一半.题组11.如图,在△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=32,则∠CDE+∠ACD=(C)A.60°B.75°C.90°D.105°2.如图,在△ABC中,D是BC上一点,AB=AD,E,F分别是AC,BD的中点,EF=2,则AC的长是(B) A.3 B.4 C.5 D.63.如图,在四边形ABCD中,∠DAB=90°,∠DCB=90°,E,F分别是BD,AC的中点,AC=6,BD=10,则EF的长为(B) A.3 B.4 C.5 D.74.如图,在钝角△ABC中,已知∠A为钝角,边AB,AC的垂直平分线分别交BC于点D,E.若BD2+CE2=DE2,则∠A的度数为135°.5.(青岛)如图,已知正方形ABCD的边长为5,点E,F分别在AD,DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为342.题组26.如图,在△ABC 中,两条中线BE,CD 相交于点O,则S △DOE ∶S △DCE =(B)A .1∶4B .1∶3C .1∶2D .2∶37.(陕西)如图,在菱形ABCD 中,点E,F,G,H 分别是边AB,BC,CD 和DA 的中点,连接EF,FG,GH 和HE.若EH =2EF,则下列结论正确的是(D)A .AB =2EF B .AB =2EFC .AB =3EFD .AB =5EF8.(苏州)如图,在△ABC 中,延长BC 至D,使得CD =12BC,过AC 中点E 作EF ∥CD(点F 位于点E 右侧),且EF =2CD,连接DF.若AB =8,则DF 的长为(B)A .3B .4C .2 3D .3 29.如图,在△ABC 中,AB =10,AC =6,则BC 边上的中线AD 的取值范围是2<AD <8.10.(武汉)如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是32.11.(1)如图1,在四边形ABCD 中,F,E 分别是BC,AD 的中点,连接FE 并延长,分别与BA,CD 的延长线交于点M,N,已知∠BME =∠CNE,求证:AB =CD ;(提示:取BD 的中点H,连接FH,HE 作辅助线)(2)如图2,在△ABC 中,点O 是BC 边的中点,D 是AC 边上一点,E 是AD 的中点,直线OE 交BA 的延长线于点G.若AB =DC =5,∠OEC =60°,求OE 的长度.图1 图2解:(1)证明:连接BD,取DB 的中点H,连接EH,FH. ∵F,E 分别是BC,AD 的中点, ∴EH ∥AB,EH =12AB,FH ∥CD,FH =12CD.∴∠BME =∠HEF,∠CNF =∠HFE.∵∠BME =∠CNE, ∴∠HEF =∠HFE.∴HE =HF.∴AB =CD.(2)连接BD,取DB 的中点H,连接EH,OH. ∵O,E 分别是BC,AD 的中点,∴EH 平行且等于12AB,OH 平行且等于12CD.∵AB =CD,∴HO =HE.∴∠HEO =∠HOE =∠OEC. ∵∠OEC =60°,∴∠HEO =∠HOE =60°. ∴△OEH 是等边三角形. ∵AB =DC =5,∴OE =52.。
初中几何“中点问题〞解题技巧总结实例
模型一:多其中点出现或平行+中点〔中点在平行线上〕时,常考虑或结构三角形中位线
练一练
答案:
模型二:直角三角形中碰到斜边上的中点,常联想“斜边上的中线等于斜边的一半〞
练一练
答案:
模型三:等腰三角形中碰究竟边上的中点,常联想“三线合一〞的性质
练一练
答案:
模型四:碰到三角形一边垂线过这边中点时,能够考虑用垂直均分线的性质
练一练
答案:
模型五:中线均分三角形面积
练一练
模型六:圆中弦〔或弧〕的中点,考虑垂径定理及圆周角定理
练一练
模型七:碰到三角形一边上的中点〔中线或与中点相关的线段〕,考虑倍长中线法结构全等三角形
练一练
答案:。