最新七年级下册 数学 图形试题
- 格式:doc
- 大小:456.00 KB
- 文档页数:7
初一数学几何图形练习题及答案20题1. 填空题:a. 正方形的对角线长度是________(1词)。
b. 两个互相垂直的角的和为________度(1词)。
2. 判断题(正确为T,错误为F):a. 直角三角形的两个直角边可以相等。
()b. 一个平行四边形的对角线相等。
()c. 所有的矩形都是正方形。
()d. 一个凸四边形的内角和为360度。
()3. 简答题:a. 请解释平行四边形的定义及性质。
(至少2句)b. 解释锐角、钝角和直角分别是什么角度范围。
(至少1句)4. 计算题:在下图中,ΔABC是个等边三角形,边长为4cm。
a. 请计算三角形ABC的周长。
(2词)b. 请计算三角形ABC的面积。
(2词)5. 应用题:桌子的形状为长方形,长为120cm,宽为80cm。
在桌子的边上画出一个同样形状的长方形,使得它的宽比原来的桌子短一半,长比原来的桌子长一半。
请计算这个新长方形的面积。
(2词)答案:1. a. 简答题b. 902. a. Fb. Tc. Fd. T3. a. 平行四边形是一个有四个边的四边形,且相对的两边是平行的。
其性质包括:对角线互相平分;相邻角互补;相对角相等。
b. 锐角是指小于90度的角;钝角是指大于90度小于180度的角;直角是指等于90度的角。
4. a. 12cmb. 4√3 cm²5. 1800 cm²通过以上20道初一数学几何图形练习题及答案的训练,可以帮助学生巩固和加深对于几何图形的理解和应用能力。
请同学们认真学习,并通过解答这些问题来提高自己的数学技能。
期末复习:7章 平面图形的认识(二)2021-2022学年苏科版七年级数学下册一、选择题1、下列各组图形可以通过平移互相得到的是( )A .B .C .D . 2、如图所示,下列结论中正确的是()A .1∠和2∠是同位角B .2∠和3∠是同旁内角C .1∠和4∠是内错角D .3∠和4∠是对顶角3、要求画ABC 的边AB 上的高.下列画法中,正确的是( )A .B .C .D . 4、下面不能组成三角形的三条线段是( )A .a =b =100cm ,c =1cmB .a =b =c =3cmC .a =2cm ,b =3cm ,c =5cmD .a =2cm ,b =4cm ,c =5cm5、已知直线m n ∥,将一块含30°角的直角三角板ABC 按如图方式放置(∠ABC =30°),其中A ,B 两点分别落在直线m ,n 上,若∠1=20°,则∠2的度数为( )A .20°B .30°C .45°D .50°6、如图,在下列条件中,能判断AB ∥CD 的是()A .∠1=∠2B .∠BAD =∠BCDC .∠BAD +∠ADC =180°D .∠3=∠47、如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=60°,则∠2的度数是( ) A .50°B .45°C .35°D .30°8、如图所示,在ABC 中,D 、E 、F 分别为BC 、AD 、CE 的中点,且216cm ABC S =△,则DEF 的面积等于( )A .22cmB .24cmC .26cmD .28cm9、如图,AB ∥CD ,则∠A 、∠C 、∠E 、∠F 满足的数量关系是( )A .∠A =∠C +∠E +∠FB .∠A +∠E ﹣∠C ﹣∠F =180°C .∠A ﹣∠E +∠C +∠F =90°D .∠A +∠E +∠C +∠F =360°10、如图:AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD ,∠ABO =40°,则下列结论:①OF 平分∠BOD ;②∠POE =∠BOF ;③∠BOE =70°;④∠POB =2∠DOF ,其中结论正确的序号是( )A .①②③B .①②④C .①③④D .①②③④二、填空题11、一个多边形的内角和与外角和之和为2520°,则这个多边形的边数为_____.12、如图,将周长为8的△ABC 沿BC 方向平移1个单位得到△DEF ,则四边形ABFD 的周长为()A .6B .8C .10D .1213、如图,若∠1+∠2=180°,∠3=70°,则∠4=_______.14、将一块直角三角板的直角顶点放在长方形直尺的一边上,如143∠=,那么∠2的度数为______ 15、如图,已知AB ∥CD ,如果∠1=100°,∠2=120°,那么∠3=_____度.16、如图,四边形ABCD 中,点M ,N 分别在AB ,BC 上, 将BMN △沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B =___°.17、某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转.某一指令规定:机器人先向前行走1米,然后左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了米. 18、如图,已知AD ∥CE ,∠BCF =∠BCG ,CF 与∠BAH 的平分线交于点F ,若∠AFC 的余角等于2∠ABC 的补角,则∠BAH 的度数是______.三、解答题19、如图所示,直线AB ∥CD ,直线AB 、CD 被直线EF 所截,EG 平分∠BEF ,FG 平分∠DFE ,(1)若∠AEF =50°,求∠EFG 的度数.(2)判断EG 与FG 的位置关系,并说明理由.20、已知:如图EF CD ∥,∠1+∠2=180°.(1)试说明GD CA ∥;(2)若CD 平分∠ACB ,DG 平分∠CDB ,且∠A =40°,求∠ACB 的度数.21、如图,已知180EFC BDC ︒∠+∠=,DEF B ∠=∠.(1)试判断DE 与BC 的位置关系,并说明理由.(2)若DE 平分ADC ∠,3BDC B ∠=∠,求EFC ∠的度数.22、如图,直线AE 、CF 分别被直线EF 、AC 所截,已知∠1=∠2,AB 平分∠EAC ,CD 平分∠ACG ,将下列证明AB //CD 的过程及理由填写完整.证明:因为∠1=∠2,所以//(),所以∠EAC =∠ACG (),因为AB 平分∠EAC ,CD 平分∠ACG ,所以=12EAC ∠,=12ACG ∠, 所以=,所以AB //CD ( ).23、画图并填空:如图,在12×8 的方格纸中,每个小正方形的边长都为1 ,△ABC 的顶点都在方格纸的格点上,将△ABC按照某方向经过一次平移后得到△A ' B 'C ' ,图中标出了点C 的对应点C ' .(1)请画出△A ' B 'C ' ;(2)利用方格纸,在△ABC 中画出AC 边上的中线BD 和BC 边上的高AE ;(3)点F 为方格纸上的格点(异于点B ),若S ∆ACB =S ∆ACF ,则图中格点F 共有个.(请在方格纸中标出点F )24、如图,四边形ABCD 中,∠A =∠C =90°,BE ,DF 分别是∠ABC ,∠ADC 的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.25、已知,直线AB∥CD(1)如图(1),点G为AB、CD间的一点,联结AG、CG.若∠A=140°,∠C=150°,则∠AGC的度数是多少?(2)如图(2),点G为AB、CD间的一点,联结AG、CG.∠A=x°,∠C=y°,则∠AGC的度数是多少?(3)如图(3),写出∠BAE、∠AEF、∠EFG、∠FGC、∠GCD之间有何关系?直接写出结论.26、将纸片△ABC沿DE折叠使点A落在A′处的位置.(1)如果A′落在四边形BCDE的内部(如图1),∠A′与∠1+∠2之间存在怎样的数量关系?并说明理由.(2)如果A′落在四边形BCDE的BE边上,这时图1中的∠1变为0°角,则∠A′与∠2之间的关系是.(3)如果A′落在四边形BCDE的外部(如图2),这时∠A′与∠1、∠2之间又存在怎样的数量关系?并说明理由.27、阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF//AB,则有∠BEF=.∵AB//CD,∴//,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a //b ,点A ,B 在直线a 上,点C ,D 在直线b 上,连接AD ,BC ,BE 平分∠ABC ,DE 平分∠ADC ,且BE ,DE 所在的直线交于点E .①如图1,当点B 在点A 的左侧时,若∠ABC =60°,∠ADC =70°,求∠BED 的度数;②如图2,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,请你求出∠BED 的度数(用含有α,β的式子表示).28、已知,AB ∥CD ,点E 为射线FG 上一点.(1)如图1,若∠EAF =25°,∠EDG =45°,则∠AED =.(2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则∠AE D 、∠EAF 、∠EDG 之间满足怎样的关系,请说明你的结论;(3)如图3,当点E 在FG 延长线上时,DP 平分∠EDC ,且∠EAP :∠BAP =l : 2,∠AED =32°,∠P =30°,求∠EKD 的度数.期末复习:7章 平面图形的认识(二)2021-2022学年苏科版七年级数学下册(答案)一、选择题1、下列各组图形可以通过平移互相得到的是( )A .B .C .D .【答案】C2、如图所示,下列结论中正确的是()A .1∠和2∠是同位角B .2∠和3∠是同旁内角C .1∠和4∠是内错角D .3∠和4∠是对顶角【答案】.B解:A 、∠1和∠2是同旁内角,故本选项错误;B 、∠2和∠3是同旁内角,故本选项正确;C、∠1和∠4是同位角,故本选项错误;D、∠3和∠4是邻补角,故本选项错误;故选:B.3、要求画ABC的边AB上的高.下列画法中,正确的是()A.B.C.D.【答案】C4、下面不能组成三角形的三条线段是()A.a=b=100cm,c=1cmB.a=b=c=3cmC.a=2cm,b=3cm,c=5cmD.a=2cm,b=4cm,c=5cm【答案】C【解析】解:A、因为1+100>100,所以能构成三角形,故A不符合题意;B、因为3+3>3,所以能构成三角形,故B不符合题意;C、因为2+3=5,所以不能构成三角形,故C符合题意;D、因为2+4>5,所以能构成三角形,故D不符合题意.故选:C.∥,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分5、已知直线m n别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【答案】D∥,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故选D.因为m n6、如图,在下列条件中,能判断AB∥CD的是()A.∠1=∠2B.∠BAD=∠BCDC.∠BAD+∠ADC=180°D.∠3=∠4【答案】C解:A .由∠1=∠2可判断AD ∥BC ,不符合题意;B .∠BAD =∠BCD 不能判定图中直线平行,不符合题意;C .由∠BAD +∠ADC =180°可判定AB ∥DC ,符合题意;D .由∠3=∠4可判定AD ∥BC ,不符合题意;故选择:C .7、如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=60°,则∠2的度数是( )A .50°B .45°C .35°D .30°如图,,∵直线a ∥b ,∴∠3=∠1=60°.∵AC ⊥AB ,∴∠3+∠2=90°,∴∠2=90°-∠3=90°-60°=30°,故选D .8、如图所示,在ABC 中,D 、E 、F 分别为BC 、AD 、CE 的中点,且216cm ABC S △,则DEF 的面积等于( )A .22cmB .24cmC .26cmD .28cm【答案】A解:∵S △ABC =16cm 2,D 为BC 中点,∴S △ADB =S △ADC =12S △ABC =8cm 2,∵E 为AD 的中点,∴S △CED =12S △ADC =4cm 2,∵F 为CE 的中点,∴S △DEF =12S △DEC =2cm 2;故选:A .9、如图,AB ∥CD ,则∠A 、∠C 、∠E 、∠F 满足的数量关系是( )A.∠A=∠C+∠E+∠F B.∠A+∠E﹣∠C﹣∠F=180°C.∠A﹣∠E+∠C+∠F=90°D.∠A+∠E+∠C+∠F=360°【答案】B延长AE、FC交于点G,过G作GH//CD,∵AB//CD,GH//CD,∴AB//GH//CD,∴∠A+∠AGH=180°,∠F=∠FCD,∴∠AEF=∠AGH+∠FGH+∠F=180°-∠A+∠FCD+∠F,整理得:∠A+∠AEF-∠FCD-∠F=180°,故选B.10、如图:AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①OF平分∠BOD;②∠POE=∠BOF;③∠BOE=70°;④∠POB=2∠DOF,其中结论正确的序号是()A.①②③B.①②④C.①③④D.①②③④【答案】A①∵OP⊥CD,∴∠POD=90°,又∵AB∥CD,∴∠BPO=90°,又∵∠ABO=40°,∴∠POB=90°-40°=50°,∴∠BOF=∠POF-∠POB=70°-50°=20°,∠FOD=40°-20°=20°,∴OF平分∠BOD,故①正确;②∵∠EOB=70°,∠POB=90°-40°=50°,∴∠POE=70°-50°=20°,又∵∠BOF=∠POF-∠POB=70°-50°=20°,∴∠POE=∠BOF,故②正确;③∵AB∥CD,∴∠BOD=∠ABO=40°,∴∠COB=180°-40°=140°,又∵OE平分∠BOC,∴∠BOE=12∠COB=12×140°=70°,故③正确;④由①可知∠POB=90°-40°=50°,∠FOD=40°-20°=20°,故∠POB≠2∠DOF,故④不正确.故结论正确的是①②③,故选A.二、填空题11、一个多边形的内角和与外角和之和为2520°,则这个多边形的边数为_____.【答案】14解:设这个多边形的边数为n.(n﹣2)×180°+360°=2520°.解得:n=14.故这个多边形的边数为14.故答案为:14.12、如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.6B.8C.10D.12【答案】.C解:根据题意,将周长为8个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选C.13、如图,若∠1+∠2=180°,∠3=70°,则∠4=_______.∴,解:如图,12180∠+∠=︒,a b∴∠=︒-∠=︒,故答案为:110︒.∠=︒,5370370∴∠=∠=︒,4180511014、将一块直角三角板的直角顶点放在长方形直尺的一边上,如143∠=,那么∠2的度数为______ 【答案】.47如图,,∵∠1=43°,∴∠3=∠1=47°,∴∠2=90°-43°=47°.故答案为47°.15、如图,已知AB ∥CD ,如果∠1=100°,∠2=120°,那么∠3=_____度.解:如图:过F 作FG 平行于AB ,//AB CD ,//FG CD ∴,1100EFG ∴∠=∠=︒,2180GFC ∠+∠=︒,即60GFC ∠=︒,31006040EFG GFC ∴∠=∠-∠=︒-︒=︒.故答案为:40.16、如图,四边形ABCD 中,点M ,N 分别在AB ,BC 上, 将BMN △沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B =___°.∵MF //AD ,FN //DC ,∴∠BMF =∠A =100°,∠BNF =∠C =70°.∵△BMN 沿MN 翻折得△FMN ,∴∠BMN =12∠BMF =12×100°=50°,∠BNM =12∠BNF =12×70°=35°.在△BMN 中,∠B =180°-(∠BMN +∠BNM )=180°-(50°+35°)=180°-85°=95°.故答案为:9517、某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转.某一指令规定:机器人先向前行走1米,然后左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了米. 解:机器人转了一周共360度,360°÷45°=8,共走了8次,机器人走了8×1=8米.18、如图,已知AD ∥CE ,∠BCF =∠BCG ,CF 与∠BAH 的平分线交于点F ,若∠AFC 的余角等于2∠ABC 的补角,则∠BAH 的度数是______.解:设∠BAF =x °,∠BCF =y °∵∠BCF =∠BCG ,CF 与∠BAH 的平分线交于点F∴∠HAF =∠BAF =x °,∠BCG =∠BCF =x °,∠BAH =2x °,∠GCF =2y °,如图,过点B 作BM ∥AD ,过点F 作FN ∥AD∵AD∥CE;∴AD∥FN∥BM∥CE∴∠AFN=∠HAF=x°,∠CFN=∠GCF=2y°,∠ABM=∠BAH=2x°,∠CBM=∠GCB=y°∴∠AFC=(x+2y)°,∠ABC=(2x+y)°∵∠AFC的余角等于2∠ABC的补角∴90﹣(x+2y)=180﹣2(2x+y);解得:x=30;∴∠BAH=60°故答案为:60°.三、解答题19、如图所示,直线AB∥CD,直线AB、CD被直线EF所截,EG平分∠BEF,FG平分∠DFE,(1)若∠AEF=50°,求∠EFG的度数.(2)判断EG与FG的位置关系,并说明理由.【答案】(1)25°;(2)EG⊥FG解:(1)∵AB∥CD;∴∠EFD=∠AEF=50°∵FG平分∠DFE;∴∠EFG=12∠DFE=12×50°=25°(2)EG⊥FG理由:∵AB∥CD;∴∠BEF+∠EFD=180°∵EG平分∠BEF,FG平分∠DFE;∴∠GEF=12∠BEF,∠GFE=12∠DFE∴∠GEF+∠GFE=12∠BEF+12∠DFE=12(∠BEF+∠DFE)=12×180°=90°∴∠G=180°-(∠GEF+∠GFE)=90°;∴EG⊥FG20、已知:如图EF CD∥,∠1+∠2=180°.(1)试说明GD CA∥;(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度数.【答案】解:(1)∵EF CD∥;∴∠1+∠ECD=180°又∵∠1+∠2=180°;∴∠2=∠ECD ;∴GD CA ∥;(2)由(1)得:GD CA ∥,∴∠BDG =∠A =40°,∠ACD =∠2,∵DG 平分∠CDB ,∴∠2=∠BDG =40°,∴∠ACD =∠2=40°,∵CD 平分∠ACB ,∴∠ACB =2∠ACD =80°.21、如图,已知180EFC BDC ︒∠+∠=,DEF B ∠=∠.(1)试判断DE 与BC 的位置关系,并说明理由.(2)若DE 平分ADC ∠,3BDC B ∠=∠,求EFC ∠的度数.【答案】(1)DE ∥BC ;(2)72°解:(1)DE ∥BC .理由:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC ,∴AD ∥EF ,∴∠DEF=∠ADE ,又∵∠DEF=∠B ,∴∠B=∠ADE ,∴DE ∥BC .(2)∵DE 平分∠ADC ,∴∠ADE=∠CDE ,又∵DE ∥BC ,∴∠ADE=∠B ,∵∠BDC=3∠B ,∴∠BDC=3∠ADE=3∠CDE ,又∵∠BDC+∠ADC=180°,3∠ADE+2∠ADE=180°,解得∠ADE=36°,∴∠ADF=72°,又∵AD ∥EF ,∴∠EFC=∠ADC=72°.22、如图,直线AE 、CF 分别被直线EF 、AC 所截,已知∠1=∠2,AB 平分∠EAC ,CD 平分∠ACG ,将下列证明AB //CD 的过程及理由填写完整.证明:因为∠1=∠2,所以//(),所以∠EAC =∠ACG (),因为AB 平分∠EAC ,CD 平分∠ACG ,所以=12EAC∠,=12ACG∠,所以=,所以AB//CD().证明:因为∠1=∠2,所以AE∥CF(同位角相等,两直线平行),所以∠EAC=∠ACG(两直线平行,内错角相等),因为AB平分∠EAC,CD平分∠ACG,所以∠3=12∠EAC,∠4=12∠ACG,所以∠3=∠4,所以AB∥CD(内错角相等,两直线平行).故答案为:AE;FG;同位角相等,两直线平行;两直线平行,内错角相等;∠3;∠4;∠3;∠4;内错角相等,两直线平行.23、画图并填空:如图,在12×8 的方格纸中,每个小正方形的边长都为1 ,△ABC 的顶点都在方格纸的格点上,将△ABC 按照某方向经过一次平移后得到△A' B'C ' ,图中标出了点C 的对应点C ' .(1)请画出△A' B'C ' ;(2)利用方格纸,在△ABC 中画出AC 边上的中线BD 和BC 边上的高AE ;(3)点F 为方格纸上的格点(异于点B ),若S ∆ACB =S ∆ACF ,则图中格点F 共有个.(请在方格纸中标出点F )解:(1)如图,△A'B'C'为所作;(2)如图,BD、AE为所作;(3)若S△ACB=S△ACF,则图中格点F共有5个,如图.故答案为5.24、如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.解:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.25、已知,直线AB∥CD(1)如图(1),点G为AB、CD间的一点,联结AG、CG.若∠A=140°,∠C=150°,则∠AGC的度数是多少?(2)如图(2),点G为AB、CD间的一点,联结AG、CG.∠A=x°,∠C=y°,则∠AGC的度数是多少?(3)如图(3),写出∠BAE、∠AEF、∠EFG、∠FGC、∠GCD之间有何关系?直接写出结论.【答案】(1)70°;(2)∠AGC=(x+y)°;(3)∠BAE+∠EFG+∠GCD=∠AEF+∠FGC.解:(1)如图,过点G作GE∥AB,∵AB∥GE,∴∠A+∠AGE=180°(两直线平行,同旁内角互补).∵∠A=140°,∴∠AGE=40°.∵AB∥GE,AB∥CD,∴GE∥CD.∴∠C+∠CGE=180°(两直线平行,同旁内角互补).∵∠C=150°,∴∠CGE=30°.∴∠AGC=∠AGE+∠CGE=40°+30°=70°.(2)如图,过点G作GF∥AB∵AB∥GF,∴∠A=AGF(两直线平行,内错角相等).∵AB∥GF,AB∥CD,∴GF∥CD.∴∠C=∠CGF.∴∠AGC=∠AGF+∠CGF=∠A+∠C.∵∠A=x°,∠C=y°,∴∠AGC=(x+y)°.(3)如图所示,过点E作EM∥AB,过点F作FN∥AB,过点G作GQ∥CD,∵AB∥CD,∴AB∥EM∥FN∥GQ∥CD.∴∠BAE=∠AEM,∠MEF=∠EFN,∠NFG=∠FGQ,∠QGC=∠GCD(两直线平行,内错角相等).∴∠AEF=∠BAE+∠EFN,∠FGC=∠NFG+GCD.∵∠EFN+∠NFG=∠EFG,∴∠BAE+∠EFG+∠GCD=∠AEF+∠FGC.26、将纸片△ABC沿DE折叠使点A落在A′处的位置.(1)如果A′落在四边形BCDE的内部(如图1),∠A′与∠1+∠2之间存在怎样的数量关系?并说明理由.(2)如果A′落在四边形BCDE的BE边上,这时图1中的∠1变为0°角,则∠A′与∠2之间的关系是.(3)如果A′落在四边形BCDE的外部(如图2),这时∠A′与∠1、∠2之间又存在怎样的数量关系?并说明理由.解:(1)图1中,2∠A=∠1+∠2,理由是:∵延DE折叠A和A′重合,∴∠AED=∠A′ED,∠ADE=∠A′DE,∵∠AED+∠ADE=180°﹣∠A,∠1+∠2=180°+180°﹣2(∠AED+∠ADE),∴∠1+∠2=360°﹣2(180°﹣∠A)=2∠A;(2)2∠A=∠2,如图∠2=∠A+∠EA′D=2∠A,故答案为:2∠A=∠2;(3)如图2,2∠A=∠2﹣∠1,理由是:∵延DE折叠A和A′重合,∴∠A=∠A′,∵∠DME=∠A′+∠1,∠2=∠A+∠DME,∴∠2=∠A+∠A′+∠1,即2∠A=∠2﹣∠1.27、阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF//AB,则有∠BEF=.∵AB//CD,∴//,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).【答案】(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣11 22 aβ+解:(1)过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案为:∠B ;EF ;CD ;∠D ;(2)①如图1,过点E 作EF ∥AB ,有∠BEF =∠EBA .∵AB ∥CD ,∴EF ∥CD .∴∠FED =∠EDC .∴∠BEF +∠FED =∠EBA +∠EDC .即∠BED =∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =30°,∠EDC =12∠ADC =35°,∴∠BED =∠EBA +∠EDC =65°.答:∠BED 的度数为65°;②如图2,过点E 作EF ∥AB ,有∠BEF +∠EBA =180°.∴∠BEF =180°﹣∠EBA ,∵AB ∥CD ,∴EF ∥CD .∴∠FED =∠EDC .∴∠BEF +∠FED =180°﹣∠EBA +∠EDC .即∠BED =180°﹣∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣1122a β+. 答:∠BED 的度数为180°﹣1122a β+. 28、已知,AB ∥CD ,点E 为射线FG 上一点.(1)如图1,若∠EAF =25°,∠EDG =45°,则∠AED =.(2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则∠AE D 、∠EAF 、∠EDG 之间满足怎样的关系,请说明你的结论;(3)如图3,当点E 在FG 延长线上时,DP 平分∠EDC ,且∠EAP :∠BAP =l : 2,∠AED =32°,∠P =30°,求∠EKD 的度数.(1)70°;(2)EAF AED EDG ∠=∠+∠,证明见解析;(3)122°解:(1)过E 作//EF AB ,//AB CD ,//EF CD ∴,25EAF AEH ∴∠=∠=︒,45EAG DEH ∠=∠=︒,70AED AEH DEH ∴∠=∠+∠=︒, 故答案为:70︒;(2)EAF AED EDG ∠=∠+∠.理由如下:过E 作//EM AB ,//AB CD ,//EM CD ∴,180EAF MEH ∴∠+∠=︒,180EDG AED MEH ∠+∠+=︒, 180EAF MEH ∴∠=︒-∠,180EDG AED MEH ∠+∠=︒-,EAF AED EDG ∴∠=∠+∠; (3):1:2EAP BAP ∠∠=,设EAP x ∠=,则3BAE x ∠=,32302AED P ∠-∠=︒-︒=︒,DKE AKP ∠=∠, 又180EDK DKE DEK ∠+∠+∠=︒,180KAP KPA AKP ∠+∠+∠=︒, 22EDK EAP x ∴∠=∠-︒=-︒, DP 平分EDC ∠,224CDE EDK x ∴∠=∠=-︒, //AB CD ,EHC EAF AED EDG ∴∠=∠=∠+∠,即33224x x =︒+-︒,解得28x =︒, 28226EDK ∴∠=︒-︒=︒,1802632122EKD ∴∠=︒-︒-︒=︒.。
初一图形测试题及答案一、选择题(每题2分,共20分)1. 下列哪个图形是轴对称图形?A. 圆B. 正方形C. 矩形D. 三角形2. 一个正方形的对角线相等,那么它的边长与对角线的关系是?A. 边长是对角线的一半B. 边长等于对角线C. 边长是对角线的根号2倍D. 边长是对角线的根号3倍3. 在平面直角坐标系中,点(3,-4)关于y轴的对称点坐标是?A. (-3,4)B. (-3,-4)C. (3,4)D. (3,-4)4. 一个等腰三角形的两边长分别为3cm和5cm,那么它的周长可能是?A. 11cmB. 13cmC. 14cmD. 15cm5. 下列哪个图形是中心对称图形?A. 圆B. 正方形C. 矩形D. 正五边形二、填空题(每题3分,共30分)1. 一个长方形的长是10cm,宽是5cm,那么它的面积是_______cm²。
2. 一个圆的半径是7cm,那么它的周长是_______cm。
3. 如果一个三角形的三个内角分别是50°,60°,70°,那么它是一个______三角形。
4. 一个平行四边形的对角线互相垂直,那么它是一个______。
5. 一个等腰梯形的上底是6cm,下底是10cm,高是4cm,那么它的面积是_______cm²。
三、解答题(每题10分,共50分)1. 已知一个等边三角形的边长为8cm,求它的高。
2. 一个圆的直径是14cm,求它的面积。
3. 已知一个直角三角形的两条直角边长分别为3cm和4cm,求斜边的长度。
4. 一个矩形的长是15cm,宽是10cm,求它的对角线长度。
5. 一个等腰梯形的上底是8cm,下底是12cm,高是5cm,求它的面积。
答案:一、选择题1. A2. C3. B4. B5. A二、填空题1. 502. 44π3. 锐角4. 菱形5. 24三、解答题1. 高= √(8² - (8/2)²) = 4√3 cm2. 面积= π * (14/2)² = 49π cm²3. 斜边= √(3² + 4²) = 5 cm4. 对角线= √(15² + 10²) = 5√29 cm5. 面积 = (8 + 12) * 5 / 2 = 50 cm²。
七(下)数学下第11章图形的全等 A卷一.选择题(每题4分,共20分)1.全等图形是指两个图形( )A.大小相同B.形状相同C.能够重合D.相等2.如图,△ABC≌△ECD,∠A=48°,∠D=62°点B.C.D在同一直线上,则图中∠ACE的度数是( )A.38°B.48°C.132°D.62°3.下列各组的条件,能判定△ABC≌△A′B′C′的是( )A.AB=A′B′,AC=A′C′,∠C=∠C′ ;B.AB=A′B′,AC=A′C′,∠B=∠B′C.AB=A′B′,AC=A′C′,∠A=∠A′ ;D.∠A=∠A′,∠B=∠B′,∠C=∠C′4.如图,已知AB=AC,BD⊥AC于点D,CE⊥AB于点E,图中全等三角形的组数是( )A.5B.4C.3D.25.说法错误的是( )A.如果两个三角形中,有一角及这个角的平分线以及这个角所对边上的高对应相等,那么这两个三角形全等B.如果两个三角形中,有两条边和第三边上的高对应相等,那么这两个三角形全等C.如果两个三角形中,有一边及该边上的高和中线对应相等,那么这两个三角形全等D.如果两个三角形中,有两个角和其中一角的平分线对应相等,那么这两个三角形全等二.填空题(第6~10题,每题4分,第11题8分,共28分)6.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有______对全等三角形.7.如图,△ABC≌△ADE,则,AB=_________,∠E=∠________.若∠BAE=120°,∠BAD=40°,则∠BAC=_________°.8.如图,在△ABC中,AD平分∠BAC,D为BC边的中点,DE⊥AB于点E,DF⊥AC于点F,图中有_________对相等的线段,它们是_______________________.9.两根钢条AB′.BA′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5 cm,则槽宽为__________cm.10.如图,在△ABC和△ABD中,∠C=∠D=90,若利用“AAS”证明△ABC≌△ABD,则需要加条件________或________;若利用“HL”证明△ABC≌△ABD,则需要加条件___________或____________.11.如图,已知∠ACB=∠BDA=90°,要使△ABC≌△BAD还需要增加一个什么条件?把增加的条件在横线上,并将相应的根据填在后面的括号内.(1)_______________;(2)_________________;(3)_______________;(4)_________________.三.解答题(第12.13题,每题8分,第14~17题,每题9分,共52分)12.如图,∠A=∠D,∠C=∠F,要使△ABC≌DEF,还要增加什么条件?试说明你的理由.13.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3 cm,求∠DFE的度数和EC的长.14.如图,△ABC中,AB=AC,D是BC的中点,试说明AD⊥BC.15.如图,A.B两点是湖两岸上的两点,为测A.B两点距离,由于不能直接测量,请你设计一种方案,测出A.B两点的距离,并说明你的方案的可行性.(8分)16.已知:如图.AB=CD,AF=CE,BE=DF,试说明∠B=∠C.你认为本题还可以得到哪些结论,尽可能多地写出来.17.将一个正方形分割成4个全等的部分.你有几种分割的方法?在每一种方法中,每一个全等部分是怎样得到另一个全等部分的?请你至少提供三种不同的方案.参考答案—.1.C 2.B 3.C4.B5.B二.6.3 7.AD,∠C,80 8.5,AB=AC.AE=AF.BE=CF.BD=CD.DE=DF9.510.∠CAB=∠DAB,∠ABC=∠ABD.AC=AD,BC=BD11.AC=BD,BC=AD,SAS∠BAC=∠ABD,AC=BD,ASA;∠BAC=∠ABD,BC=AD,AAS;AC=BD,HL三.12.只要增加一对边相等即可,利用“AAS”或“ASA”证明两三角形全等.13.∠DFE=90°,CE=3 cm14.由已知得△ABD≌△ACD,则∠ADB=∠ADC,进而得AD⊥BC15.构造以AB为一边的三角形以及这个三角形的全等三角形,如过A作河岸的平行线AC,过B作AC的垂直线BD.AC.BD交于点O.在OC上取点C使OC=OA.过C作∠ACD=∠BAC.CD交BD于点D.由“ASA”得△OCD≌△OAB,则有AB=CD,只要测量出CD的长,即可. 16.由AF=CE,得AE=CF,则可证△ABE≌△CDF,即∠B=∠C还可以得到∠D=∠B,∠AEB=∠CFD17.分割成如图1.图2或图3均可(答案不唯一).其中图1.图2的全等部分可以看作是平移得到的;图l.图3的全等部分可以看作是旋转得到的.。
七年级数学下册第13章平面图形的认识同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.两直线平行,内错角相等D.三角形具有稳定性2、下列各组线段中,能构成三角形的是()A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、63、数学课上,同学们在作ABC中AC边上的高时,共画出下列四种图形,其中正确的是().A.B.C .D .4、在ABC 中,1AB =,4BC =,则AC 的长可能是( )A .2B .3C .4D .55、衢州钟灵塔的塔基是个正n 边形(n 是正整数).测得塔基所在的正n 边形的一个外角为60°,如图所示,n 的值是( )A .5B .6C .7D .86、已知O 中,最长的弦长为16cm ,则O 的半径是( )A .4cmB .8cmC .16cmD .32cm7、若一个正多边形的每个内角度数都为108°,则这个正多边形的边数是 ( )A .5B .6C .8D .108、若一个三角形的两条边的长为5和7,那么第三边的长可能是( )A .2B .10C .12D .139、以下长度的三条线段,能组成三角形的是( )A .2,3,5B .4,4,8C .3,4.8,7D .3,5,910、如图,AB CD ∥,45A ∠=︒,30C ∠=︒,则E ∠的度数是( )A .10°B .15°C .20°D .25°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一个多边形的内角和为1080,则这个多边形是________边形.2、如图,是编号为1、2、3、4的400m 跑道,每条跑道由两条直的跑道和两端是半圆形的跑道组成,每条跑道宽1m ,内侧的1号跑道长度为400m ,则2号跑道比1号跑道长 _____m ;若在一次200m 比赛中(每个跑道都由一个半圆形跑道和部分直跑道组成),要使得每个运动员到达同一终点线,则4号跑道起跑点比2号跑道起跑点应前移 _____m (π取3.14).3、如图,AE 是△ABC 的中线,BF 是△ABE 的中线,若△ABC 的面积是20cm 2,则S △ABF =_____cm 2.4、一个五边形共有__________条对角线.5、已知a ,b ,c 是ABC 的三边长,满足()2720a b -+-=,c 为奇数,则c =______.三、解答题(5小题,每小题10分,共计50分)1、如图,在同一平面内有四个点A 、B 、C 、D ,请按要求完成下列问题.(注:此题作图不要求写出画法和结论)(1)分别连接AB、AD,作射线AC,作直线BD与射线AC相交于点O;(2)我们容易判断出线段AB+AD与BD的数量关系是,理由是.2、一个多边形,除一个内角外,其余各内角之和等于2012°,求这个内角的度数及多边形的边数.3、如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2520°的新多边形,求原多边形的边数.4、小刚从点A出发,前进10米后向右转60°,再前进10米后又向右转60°,按照这样的方式一直走下去,他能回到A点吗?当他第一次回到A点,他走了多少米?5、【教材重现】如图是数学教材第135页的部分截图.在多边形中,三角形是最基本的图形.如图4.4.5所示,每一个多边形都可以分割成若干个三角形.数一数每个多边形中三角形的个数,你能发现什么规律?在多边形中,连接不相邻的两个顶点,所得到的线段称为多边形的对角线.【问题思考】结合如图思考,从多边形的一个顶点出发,可以得到的对角线的数量,并填写表:【问题探究】n边形有n个顶点,每个顶点分别连接对角线后,每条对角线重复连接了一次,由此可推导出,n边形共有对角线(用含有n的代数式表示).【问题拓展】(1)已知平面上4个点,任意三点不在同一直线上,一共可以连接条线段.(2)已知平面上共有15个点,任意三点不在同一直线上,一共可以连接条线段.(3)已知平面上共有x个点,任意三点不在同一直线上,一共可以连接条线段(用含有x 的代数式表示,不必化简).-参考答案-一、单选题1、D【解析】【分析】根据三角形的稳定性解答即可.【详解】解:人字梯中间一般会设计一“拉杆”,是因为三角形具有稳定性,故选:D.【点睛】本题考查三角形的稳定性,熟知三角形具有稳定性是解答的关键.2、C【解析】【分析】根据三角形的三边关系定理逐项判断即可得.【详解】解:三角形的三边关系定理:任意两边之和大于第三边.+<,不能构成三角形,此项不符题意;A、247+=,不能构成三角形,此项不符题意;B、459+>,能构成三角形,此项符合题意;C、5810+<,不能构成三角形,此项不符题意;D、136故选:C.【点睛】本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.3、A【解析】【分析】满足两个条件:①经过点B;②垂直AC,由此即可判断.【详解】解:根据垂线段的定义可知,A 选项中线段BE ,是点B 作线段AC 所在直线的垂线段,故选:A .【点睛】本题考查作图-复杂作图,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、C【解析】【分析】根据三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边,则第三边的长度应是大于两边的差,而小于两边的和,这样就可求出第三边长的范围.【详解】∵1AB =,4BC =,∴41-<AC <41+,即35AC << .观察选项,只有选项C 符合题意.故选:C .【点睛】本题考查三角形三边关系,能根据三角形的三边关系确定BC 的取值范围是解决此题的关键.5、B【解析】【分析】根据多边形外角和为360°即可得答案.【详解】∵正n边形的一个外角为60°,多边形外角和为360°,∴n=360÷60=6,故选:B.【点睛】本题考查多边形外角和,熟练掌握多边形的外角和为360°是解题关键.6、B【解析】【分析】根据直径是圆中最长的弦即可得到答案.【详解】解:∵O中,最长的弦长为16cm,即直径为16cm,∴O的半径是8cm,故选:B.【点睛】此题考查了圆的弦的定义及理解圆中最长的弦,正确理解直径是圆中最长的弦是解题的关键.7、A【解析】【分析】先求出多边形的每一个外角的度数,再利用多边形的外角和即可求出答案.【详解】解:∵多边形的每一个内角都等于108°,多边形的内角与外角互为邻补角,∴每个外角是:180°−108°=72°,∴多边形中外角的个数是360°÷72°=5,则多边形的边数是5.故选:A.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟练掌握的内容.8、B【解析】【分析】根据在三角形中三边关系可求第三边长的范围,再选出答案.【详解】解:设第三边长为x,则由三角形三边关系定理得7-5<x<7+5,即2<x<12.只有选项B符合题意,故选:B.【点睛】本题考查了三角形三边关系,掌握三角形的三边关系是解题的关键.三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边.9、C【解析】【分析】由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.【详解】解:A、2+3=5,不能组成三角形,不符合题意;B 、4+4=8,不能组成三角形,不符合题意;C 、3+4.8>7,能组成三角形,符合题意;D 、3+5<9,不能组成三角形,不符合题意.故选:C .【点睛】本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.10、B【解析】【分析】根据平行线的性质求出关于∠DOE ,然后根据外角的性质求解.【详解】解:∵AB ∥CD ,∠A =45°,∴∠A =∠DOE =45°,∵∠DOE =∠C +∠E ,又∵30C ∠=︒,∴∠E =∠DOE -∠C =15°.故选:B【点睛】本题比较简单,考查的是平行线的性质及三角形内角与外角的关系.掌握两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和是解题关键.二、填空题1、八##8【解析】【分析】n边形的内角和是(n-2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】解:根据n边形的内角和公式,得(n-2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:八.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.2、 6.28 6.28【解析】【分析】利用各跑道直线跑道相等,每条跑道宽1m,两个半圆相加得一个整圆列出式子对比即可.【详解】解:设直线部分长为l米1号:1222400`2r l m π⨯⨯+=2号:12(1)22(4002)2r l m ππ+⨯⨯+=+3号:12(2)22(4004)2r l m ππ+⨯⨯+=+4号:12(3)22(4006)2r l m ππ+⨯⨯+=+2号比1号长:(4002)4002 6.28m ππ+-==4号起点比2号起点前移:(4006)(4002)2 6.282m πππ+-+== 故答案为:6.28,6.28【点睛】本题考查了列代数式,圆的周长公式,整式的加减等知识点,熟练掌握是解题的关键.3、5【解析】【分析】利用三角形的中线把三角形分成面积相等的两个三角形进行解答.【详解】解:∵AE 是△ABC 的中线,BF 是△ABE 的中线,∴S △ABF =14S △ABC =14×20=5cm 2. 故答案为:5.【点睛】本题考查了三角形的面积,能够利用三角形的中线把三角形分成面积相等的两个三角形的性质求解是解题的关键.4、5【解析】【分析】由n 边形的对角线有:()32n n - 条,再把5n =代入计算即可得.【详解】解:n 边形共有()23n n -条对角线, ∴五边形共有()55352-=条对角线.故答案为:5【点睛】 本题考查的是多边形的对角线的条数,掌握n 边形的对角线的条数是解题的关键.5、7【解析】【分析】绝对值与平方的取值均≥0,可知70a -=,20b -=,可得a 、b 的值,根据三角形三边关系a b c a b c +>⎧⎨-<⎩求出c 的取值范围,进而得到c 的值.【详解】 解:()2720a b -+-= 70a ∴-=,20b -=72a b ∴==,由三角形三边关系a b c a b c +>⎧⎨-<⎩可得95c c >⎧⎨<⎩ 59c ∴<< c 为奇数7c ∴=故答案为:7.【点睛】本题考查了绝对值、平方的非负性,三角形的三边关系等知识点.解题的关键是确定所求边长的取值范围.三、解答题1、(1)见解析;(2)AB+AD>BD,在三角形中,两边之和大于第三边.【解析】【分析】(1)根据直线,射线,线段的作图方法作图即可;(2)根据三角形三边的关系:两边之和大于第三边进行求解即可.【详解】解:(1)如图所示,即为所求;(2)我们容易判断出线段AB+AD与BD的数量关系是:AB+AD>BD,理由是:在三角形中,两边之和大于第三边,故答案为:AB+AD>BD,在三角形中,两边之和大于第三边.【点睛】本题主要考查了三角形三边的关系,作直线,射线和线段,解题的关键在于能够熟练掌握相关知识进行求解.2、这个内角的度数是148°,边数为14【解析】【分析】根据多边形内角和定理:(2)180n -︒(3)n 且n 为整数),可得:多边形的内角和一定是180︒的倍数,而多边形的内角一定大于0︒,并且小于180︒,用2012除以180,根据商和余数的情况,求出这个多边形的边数与2的差是多少,即可求出这个多边形的边数,再用这个多边形的内角和减去2012︒,求出这个内角的度数是多少即可.【详解】解:20121801132÷=⋯,∴这个多边形的边数与2的差是12,∴这个多边形的边数是:12214+=,∴这个内角的度数是:180122012︒⨯-︒21602012=︒-︒148=︒答:这个内角的度数为148︒,多边形的边数为14.【点睛】本题主要考查了多边形的内角和,解题的关键是要明确多边形内角和定理:(2)180n -︒(3)n 且n 为整数).3、15【解析】【分析】根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案.【详解】设新多边形是n 边形,由多边形内角和公式得:180(2)2520n ︒⨯-=︒,解得:16n =,则原多边形的边数是:16115-=.∴原多边形的边数是15.【点睛】本题主要考查了多边形内角与外角,解决本题的关键是要熟练掌握多边形的内角和公式. 4、60米【解析】【分析】先确定小刚所走路径为正多边形,然后再利用外角和定理计算出多边形的边数,进而可得答案.【详解】解:∵前进10米后向右转60°,多边形的边相等,每个内角=180°-60°=120°,每个内角都相等,∴小刚所走路径为正多边形,设这个正多边形的边数为n ,则60n =360,解得n =6,故他第一次回到出发点A 时,共走了:10×6=60(m ).答:他能回到A 点,当他第一次回到A 点,他走了60米.【点睛】本题考查生活的正多边形,掌握正多边形的定义是解题关键.5、规律为:多边形的边数减去2,就是多边形中的三角形的个数; 2条,3条,9条,3n -条;(3)2n n -条;(1)6;(2)105;(3)()12x x - 【解析】【分析】通过观察多边形边数与其分割的三角形个数,即可发现规律利用规律,多边形的边数3-=一个顶点出发的对角线数,直接填写表格即可先求出所有顶点得到的对角线之和,最后除以2即可得到n边形的对角线条数(1)根据题意,四边形一个顶点可以得到一条,四个点共4条,再去除一半,加上四个点单独连接的4条线段,即可得到答案.(2)根据规律可以发现:十五边形的每个点可以得到12条,15点有180条,去掉一半,加上15个点组成的十五边形的的15条边,即可得到答案.(3)通过上述两小题,即可以找到对应的规律,利用规律进行求解即可.【详解】由图可以直接发现:多边形的边数与其分割的三角形个数相差2,故规律为:多边形的边数减去2,就是多边形中的三角形的个数.利用上图规律,便可以知道从五边形的一个顶点出发,得到2条对角线;六边形的一个顶点出发,得到3条对角线;十二边形的一个顶点出发,得到9条对角线;n边形的一个顶点出发,得到3n-条对角线.n边形的一个顶点可以得到3n-条对角线,故n个顶点共有(3)n n-,由于每条对角线重复连接了一次,故n边形共有(3)2n n-条对角线(1)解:有四个点可以组成四边形,每个点可以得到1条对角线,四个点共4条,每条对角线重复连接了一次,∴对角线条数为2,四边形的边数为4,∴一共可以连接2+4=6条线段.(2)解:有15个点可以组成十五边形,每个点可以得到12条对角线,四个点共180条,每条对角线重复连接了一次,∴对角线条数为90,四边形的边数为15,∴一共可以连接90+15=105条线段.(3)解:由前面题的规律可知:有x个点可以组成x边形,每个点可以得到3x-条对角线,四个点共(3)x x-条,每条对角线重复连接了一次,∴对角线条数为(3)2x x-,四边形的边数为x,∴一共可以连接()()3122x x x xx--+=条线段.【点睛】本题主要是考察了图形类的规律问题以及列代数式,根据题意,找到对角线与多边形的边数关系是解决本题的关键,另外,注意本题是问的点与点之间可连接的线段数,不要只算对角线的条数.。
初一下数学几何题10题
以下是10道初一下学期的数学几何题:
已知线段AB上有两点C和D,且AC=CD=DB。
若AB=12CM,求CD的长。
在三角形ABC中,AB=AC,D为BC上一点,且∠BAD=30°。
求证:∠ADC=75°。
已知∠AOB=90°,点C在∠AOB内部,且∠AOC=30°。
若OM平分∠AOC,求∠BOM的度数。
在平行四边形ABCD中,E、F分别为AB、CD上的中点,且EF与AC 相交于点G。
求证:AG=CG。
已知△ABC中,∠C=90°,AC=BC,D为AB上一点,且∠ADC=45°。
求证:AD=CD。
在矩形ABCD中,AB=6CM,BC=8CM。
若E为BC上一点,且AE=AB,求CE的长。
已知△ABC中,∠C=90°,D为AB的中点,DE⊥AB交BC于E。
求证:△BDE是等腰三角形。
在等腰梯形ABCD中,AD∥BC,AC⊥BD,AD=3CM,BC=7CM。
求梯形ABCD的面积。
已知△ABC中,AB=AC,D为BC上一点,且∠BAD=∠CAD。
求证:BD=CD。
已知平行四边形ABCD中,E、F分别为AB、CD上的点,且AE=CF。
求证:四边形AFCE是平行四边形。
这些题目涉及了线段、角度、三角形、平行四边形、等腰梯形等基础知识,旨在检验学生对初一下学期数学几何内容的掌握程度。
七年级数学下册第13章平面图形的认识综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在ABC 中,线段AP ,AQ ,AR 分别是BC 边上的高线,中线和角平分线,则( )A .AP AQ ≤B .AQ AR ≤C .AP AR >D .AP AQ >2、正八边形每个内角度数为( )A .120°B .135°C .150°D .160°3、如图,已知D 、E 分别为△ABC 的边BC 、AC 的中点,连接AD 、DE ,AF 为△ADE 的中线.若四边形ABDF 的面积为10,则△ABC 的面积为( )A .12B .16C .18D .204、如图,点B ,C ,E 在同一直线上,且AC CE =,90B D ∠=∠=︒,AC CD ⊥,下列结论不一定成立的是( )A .2A ∠=∠B .90A E ∠+∠=︒C .BC DE =D .BCD ACE ∠=∠5、如图,在ABC ∆中,若点D 使得BD DC =,则AD 是ABC ∆的( )A .高B .中线C .角平分线D .中垂线6、下列说法不正确的是( )A .多项式32244a b ab b -+的次数是5B .一个角的度数是0.5°,也可以说成是1800''C .过八边形一个顶点的所有对角线,将这个多边形分成5个三角形D .为了反映运城市1月1日~1月10日以来的气温的变化情况,最好选择用折线统计图7、已知三角形的两边长分别为4和9,则下列数据中,能作为第三边长的是()A .2B .3C .4D .98、若n 边形每个内角都为156°,那么n 等于( )A .8B .12C .15D .169、在△ABC 中,作出AC 边上的高,正确的是( )A .B .C .D .10、要使如图的六边形框架形状稳定,至少需要添加对角线的条数是( )A .1B .2C .3D .4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、六边形的外角和是_______.2、一个n 边形从一个顶点出发引出的对角线可将其分割成9个三角形,则n 的值为____________.3、如图,在ABC ∆中,已知点D ,E ,F 分别为BC ,AD ,CE 的中点,且4ABC S ∆=2cm ,则阴影部分的面积BEF S ∆=______.4、若一个九边形8个外角的和为200︒,则它的第9个外角为______度.5、如图,A 、B 、C 均为一个正十边形的顶点,则∠ACB=_____°.三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC 中,AD 是BC 边上的高,CE 平分ACB ∠,若20CAD ∠=︒,50B ∠=︒,求AEC ∠的度数.2、如图,一辆小汽车从P 市出发,先到B 市,再到C 市,再到A 市,最后返回P 市,这辆小汽车共转了多少度角?3、从四边形的一个顶点出发,可以画出几条对角线?从五边形的一个顶点出发,可以画出几条对角线?六边形……n边形呢?和同伴交流你的想法.4、如图所示,⊙O的直径AB和弦CD交于E,已知AE=6cm,EB=2cm,∠CEA=30°,求CD的长.5、如图所示,AB//CD,G为AB上方一点,E、F分别为AB、CD上两点,∠AEG=4∠GEB,∠CFG=2∠GFD,∠GEB和∠GFD的角平分线交于点H,求∠G+∠H的值.-参考答案-一、单选题1、A【解析】【分析】根据垂线段最短解答即可.【详解】解:∵线段AP是BC边上在的高线,∴根据垂线段最短得:PA ≤AQ ,P A ≤AR ,故选:A .【点睛】本题考查三角形的高、中线和角平分线、垂线段最短等知识,熟练掌握垂线段最短是解答的关键.2、B【解析】【分析】根据正多边形的每一个内角相等,则对应的外角也相等,根据多边形的外角和为360°,进而求得一个外角的度数,即可求得正八边形每个内角度数.【详解】解:∵正多边形的每一个内角相等,则对应的外角也相等,一个外角等于:360845÷=︒∴内角为18045135︒-︒=︒故选B【点睛】本题考查了正多边形的内角与外角的关系,利用外角求内角是解题的关键.3、B【解析】【分析】根据三角形的中线平分三角形的面积即可得到结论.【详解】设AEF S x =△,∵AF 为△ADE 的中线.∴,2AEF ADF ADES S x S x === ∵E 分别为△ABC 的边AC 的中点,∴2,4ADE CDE CDAS S x S x === ∵D 分别为△ABC 的边BC 的中点,∴4,8CDA BDA ABCS S x S x === ∴四边形ABDF 的面积=510FDA BDA SS x +== 解得2x =∴816ABCS x == 故选:B【点睛】本题考查了三角形的面积,熟练三角形的中线平分三角形的面积是解题的关键.4、D【解析】【分析】根据直角三角形的性质得出∠A =∠2,∠1=∠E ,根据全等三角形的判定定理推出△ABC ≌△CDE ,再逐个判断即可.【详解】解:∵AC ⊥CD ,∴∠ACD =90°,∵∠B =90°,∴∠1+∠A =90°,∠1+∠2=90°,∴∠A =∠2,同理∠1=∠E ,∵∠D =90°,∴∠E+∠2=∠A+∠E=90°,在△ABC 和△CDE 中,2A B D AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△CDE (AAS ),∴BC DE =,∴选项A 、选项B ,选项C 都正确;根据已知条件推出∠A =∠2,∠E =∠1,但是∠1=∠2不能推出,而∠BCD =90°+∠1,∠ACE =90°+∠2,所以BCD ACE ∠=∠不一定成立故选项D 错误;故选:D .【点睛】本题考查了全等三角形的判定定理和直角三角形的性质,能灵活运用知识点进行推理是解此题的关键,注意:全等三角形的判定定理有:ASA ,SAS ,AAS ,SSS ,两直角三角形全等,还有HL .5、B【解析】【分析】根据三角形的中线定义即可作答.【详解】解:∵BD =DC ,∴AD 是△ABC 的中线,故选:B .【点睛】本题考查了三角形的中线概念,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.6、C【解析】【分析】根据多项式的次数,角的单位换算,多边形的性质,折线统计图的特征,逐项判断即可求解.【详解】解:A 、多项式32244a b ab b -+的次数是5,故本选项正确,不符合题意;B 、0.5301800'''︒==,故本选项正确,不符合题意;C 、过八边形一个顶点的所有对角线,将这个多边形分成8-2=6个三角形,故本选项错误,符合题意;D 、为了反映运城市1月1日~1月10日以来的气温的变化情况,最好选择用折线统计图,故本选项正确,不符合题意;故选:C【点睛】本题主要考查了多项式的次数,角的单位换算,多边形的性质,折线统计图的特征,熟练掌握相关知识点是解题的关键.7、D【解析】【分析】首先根据三角形的三边关系定理,求得第三边的取值范围,再进一步找到符合条件的数值.【详解】解:设这个三角形的第三边为x.根据三角形的三边关系定理,得:9-4<x<9+4,解得5<x<13.故选:D.【点睛】本题考查了三角形的三边关系定理.掌握构成三角形的条件:两边之和>第三边,两边之差<第三边是解决问题的关键.8、C【解析】【分析】首先求得外角的度数,然后利用多边形的外角和是360度,列式计算即可求解.【详解】解:由题意可知:n边形每个外角的度数是:180°-156°=24°,则n=360°÷24°=15.故选:C.【点睛】本题考查了多边形的外角与内角,熟记多边形的外角和定理是关键.9、D【解析】【分析】根据三角形的高的定义对各个图形观察后解答即可.【详解】解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为D,纵观各图形,选项A,B,C都不符合高线的定义,D符合高线的定义.故选:D.【点睛】本题主要考查了三角形的高线的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高.熟练掌握概念是解题的关键.10、C【解析】【分析】根据三角形具有稳定性,从一个顶点三条对角线可把六边形分成4个三角形即可.【详解】解:∵三角形具有稳定性,∴从一个顶点三条对角线可把六边形分成4个三角形.故选C.【点睛】本题考查三角形具有稳定性,多边形的对角线将多边形分成三角形,掌握三角形具有稳定性,多边形的对角线将多边形分成三角形是解题关键.二、填空题1、360°【解析】【分析】根据任何多边形的外角和是360度即可求出答案.【详解】解:六边形的外角和是360°,故答案为:360°【点睛】本题考查多边形的外角和,属于基础题,只需记住任何多边形的外角和是360度即可.2、11【解析】【分析】一个n边形,把一个顶点与其它各顶点连接起来,形成的三角形个数为n-2,从而可得出答案.【详解】解:依题意有n-2=9,解得n=11.故答案为:11.【点睛】本题主要考查多边形的对角线分成的三角形个数问题,正确得出规律是解答本题的关键.3、21cm【解析】【分析】根据三角形中线性质,平分三角形面积,先利用AD为△ABC中线可得S△ABD=S△ACD,根据E为AD中点,12BEC ABCS S∆∆=,根据BF为△BEC中线,1124BEF BEF ABCS S S∆∆∆==即可.【详解】解:∵AD为△ABC中线∴S △ABD =S △ACD ,又∵E 为AD 中点, 故1122ABE DBE ABD ACE DCE ACD S S S S S S ∆∆∆∆∆∆====,, ∴111222BEC BDE DCE ABD ACD ABC S S S S S S ∆∆∆∆∆∆=+=+=,∵BF 为△BEC 中线, ∴ΔΔΔ11141244BEF BEC ABC S S S ===⨯=cm 2.故答案为:1cm 2.【点拨】本题考查了三角形中线的性质,牢固掌握并会运用是解题关键.4、160【解析】【分析】根据多边形的外角和等于360︒,即可求得.【详解】解:360200160︒-︒=︒.故它的第9个外角为160度.故答案为:160.【点睛】本题考查了多边形的外角和定理,多边形的外角和与边数无关,任意多边形的外角和都是360︒. 5、18【解析】【分析】根据正多边形外角和和内角和的性质,得DAE ∠、144BAE E F ∠=∠=∠=︒;根据四边形内角和的性质,计算得EAC ∠;根据五边形内角和的性质,计算得ABC ∠,再根据三角形外角的性质计算,即可得到答案.【详解】如图,延长BA∵正十边形 ∴3603610DAE ︒∠==︒,正十边形内角()102180=14410-⨯︒=︒,即144BAE E F ∠=∠=∠=︒ 根据题意,得四边形ACFE 内角和为:360︒,且EAC FCA ∠=∠ ∴360362E F EAC FCA ︒-∠-∠∠=∠==︒ ∴72DAC DAE EAC ∠=∠+∠=︒根据题意,得五边形ABCFE 内角和为:()52180540=-⨯︒=︒,且ABC FCB ∠=∠ ∴540542BAE E F ABC FCB ︒-∠-∠-∠∠=∠==︒ ∴725418ACB DAC ABC ∠=∠-∠=︒-︒=︒故答案为:18.【点睛】 本题考查了正多边形、三角形外角的知识;解题的关键是熟练掌握正多边形外角和、正多边形内角和的性质,从而完成求解.三、解答题1、85°【解析】【分析】由高的定义可得出∠ADB =∠ADC =90,在△ACD 中利用三角形内角和定理可求出∠ACB 的度数,结合CE 平分∠ACB 可求出∠ECB 的度数.由三角形外角的性质可求出∠AEC 的度数,【详解】解:∵AD 是BC 边上的高,∴∠ADB =∠ADC =90.在△ACD 中,∠ACB =180°﹣∠ADC ﹣∠CAD =180°﹣90°﹣20°=70°.∵CE 平分∠ACB ,∴∠ECB =12∠ACB =35°.∵∠AEC 是△BEC 的外角,50B ∠=︒,∴∠AEC =∠B +∠ECB =50°+35°=85°.答:∠AEC 的度数是85°.【点睛】本题考查了三角形内角和定理、角平分线的定义以及三角形外角的性质,利用三角形内角和定理及角平分线的性质,求出∠ECB 的度数是解题的关键.2、360°【解析】【分析】分别记,,B C A ∠∠∠的外角为,,αβγ,用αβγ++即可得出答案.【详解】如图,当小汽车从P 出发行驶到B 市,由B 市向C 市行驶时转的角是α,由C 市向A 市行驶时转的角是β,由A 市向P 市行驶时转的角是γ.∴小汽车从P 市出发,经B 市、C 市、A 市,又回到P 市,共转360αβγ++=︒.【点睛】本题考查外角和定理的应用,掌握多边形的外角和为360︒是解题的关键.3、见解析【解析】【分析】根据图形,得出从多边形一个顶点可以画出多少条对角线即可.【详解】解:由图形可知,从四边形的一个顶点出发,可以画出1条对角线;从五边形的一个顶点出发,可以画出2条对角线;从六边形的一个顶点出发,可以画出3条对角线;从七边形的一个顶点出发,可以画出4条对角线;可以发现,从多边形的一个顶点出发,可以画出的对角线条数比边数少3;从n 边形的一个顶点出发,可以画出(n-3)条对角线; 因为从一个顶点出发,有它本身这个顶点和左右相邻的各一个顶点不能连出对角线,故从多边形的一个顶点出发,可以画出的对角线条数比边数少3;【点睛】本题考查了多边形对角线的条数问题,解题关键是准确识图,通过计算发现规律.4、【解析】【分析】作OF⊥CD于F,连结OC、OD,根据题意,得AB,根据圆的对称性,得OE=2cm,12CF DF CD==;再根据含30角直角三角形的性质,得OF,通过勾股定理计算得CF,即可得到答案【详解】作OF⊥CD于F,连结OC、OD,如图,∵AE=6cm,EB=2cm,∴AB=8cm,∴OC=OB=OD=4cm,∴OE=2cm,12 CF DF CD ==又∵∠CEA=30°∴OF=12OE=1cm,在Rt△COF中,CF∴CD =.【点睛】本题考查了圆、等腰三角形、直角三角形的知识;解题的关键是熟练掌握圆的对称性、含30角直角三角形、等腰三角形三线合一的性质,从而完成求解.5、∠G +∠H =36°.【解析】【分析】先设2GEB x ∠=,2GFD y ∠=,由题意可得8AEG x ∠=,4CFG y ∠=,由28180x x +=︒,24180y y +=︒,从而求出x y ,;根据题意得AEG G CFG ∠=∠+∠, AEH H CFH ∠=∠+∠, 从而得到G H ∠+∠的值.【详解】解:设2GEB x ∠=,2GFD y ∠=,由题意可得,8AEG x ∠=,4CFG y ∠=,由28180x x +=︒,24180y y +=︒,解得18x =︒,30y =︒;由靴子图AEGFC 知,AEG G CFG ∠=∠+∠,即84x G y =∠+由靴子图AEHFC 知,AEH H CFH ∠=∠+∠,即即84x G y =∠+,95x H y =∠+,179171893036G H x y ∠+∠=-=⨯︒-⨯︒=︒【点睛】本题考查平行线的性质,解题的关键是设2GEB x ∠=,2GFD y ∠=,由题意得到x y ,的关系式,正确将G H ∠+∠表示成x y ,的形式.。
七年级数学几何图形练习题及答案[答案表]以下是七年级数学几何图形练习题的答案。
1. 判断下列说法是否正确,并用对或错来回答:a) 正方形有四个直角。
答案:对。
b) 所有矩形都是正方形。
答案:错。
c) 所有正方形都是矩形。
答案:对。
d) 所有正方形都是长方形。
答案:对。
2. 根据图形的描述,选择正确的图形并填写在括号内:a) 一个有两条等长直角边的三角形是( )。
①直角三角形②等腰三角形③锐角三角形④钝角三角形答案:②等腰三角形b) 一条边为直径的圆叫作( )。
①半圆②椭圆③圆锥④圆答案:④圆c) 具有四条边且都相等的四边形是( )。
①正方形②长方形③梯形④平行四边形答案:①正方形3. 请计算下列图形的周长:a) 边长为4 cm的正方形的周长是多少?答案:正方形的四边相等,所以周长=4cm+4cm+4cm+4cm=16cm。
b) 边长分别为5 cm和8 cm的长方形的周长是多少?答案:长方形的周长=5cm+8cm+5cm+8cm=26cm。
c) 一张和纸短边长7 cm,长边长10 cm的长方形纸片,它的周长是多少?答案:周长=7cm+10cm+7cm+10cm=34cm。
4. 请计算下列图形的面积:a) 边长为6 cm的正方形的面积是多少?答案:正方形的面积=边长 ×边长 = 6cm × 6cm = 36cm²。
b) 边长分别为3 cm和7 cm的长方形的面积是多少?答案:长方形的面积=长 ×宽 = 3cm × 7cm = 21cm²。
c) 一张长边长为12 cm,短边长为5 cm的长方形纸片,它的面积是多少?答案:面积=长 ×宽 = 12cm × 5cm = 60cm²。
5. 请判断图形是否相似,并用是或否来回答:a) 下图中的两个三角形是否相似?答案:是。
(图形描述省略)b) 下图中的两个四边形是否相似?答案:否。
七下数学期末专题训练(二)画图题1、如图,在正方形网格中,点A 、B 、C 、M 、N 都在格点上都在格点上. . (1)作△)作△ABC ABC 关于直线MN 对称的图形;对称的图形;(2)若网格中最小正方形的边长为1,求△,求△ABC ABC 的面积的面积. .2、如图,在正方形网格中,点A 、B 、C 、O 都在格点上,直线l 过点C 、O 两点.两点.(1)作ABC D 关于直线l 成轴对称的111A B C D ; (2)作ABC D 关于点O 中心对称的222A B C D .3、如图,在方格纸中每个小正方形的边长均为1个单位, △ABC 的三个顶点都在小方格的顶点上.(1)在图中作出将△在图中作出将△ABC ABC 向右平移5个单位后的图形△个单位后的图形△A A 1B 1C 1; (2)在图中作出△)在图中作出△ABC ABC 以C 为旋转中心,沿顺时针方向旋转9090°后的图形△°后的图形△°后的图形△A A 2B 2C .4、如图方格图的小方格都是边长为1的正方形,的正方形,△ABC 的顶点和O 点都是格点.点都是格点.(1)以点O 为对称中心,在方格图中作出△ABC 的中心对称图形△A′B′C′;(2)将△A′B′C′绕点B′顺时针旋转90°,在方格图,在方格图 中画出旋转后得到的△A″B′C″.5、如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 的三个顶点都在格点上,请按要求完成下列各题. (1)画出△ABC 向左平移6个单位长度得到的图形△A 1B 1C 1;(2)将△ABC 绕点O 按逆时针方向旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.6、如图,在正方形网格中,ABC D 的三个顶点都在格点上,点O 也在格点上也在格点上. .⑴画C B A ¢¢¢D ,使C B A ¢¢¢D 与ABC D 关于关于 直线OP 成轴对称,点A 的对应点是A ¢; ⑵画C B A ¢¢¢¢¢¢D ,使C B A ¢¢¢¢¢¢D 与C B A ¢¢¢D 关于关于 点O 成中心对称,点A ¢的对应点是A ¢¢. 7、如图,△、如图,△ABC ABC 的三个顶点和点O 都在正方形网格的格点上,每个小正方形的边长都为1. (1)将△)将△ABC ABC 先向右平移4个单位,再向上平移2个单位得到△个单位得到△A A 1B 1C 1,请画出△,请画出△A A 1B 1C 1; (2)请画出△)请画出△A A 2B 2C 2,使△,使△A A 2B 2C 2和△和△ABC ABC 关于点O 成中心对称;成中心对称;(3)在)在(1)(1)(1)、、(2)(2)中所得到的△中所得到的△中所得到的△A A 1B 1C 1与△与△A A 2B 2C 2成轴对称吗?若成轴对称,请画出对称轴;若不成轴对称,请说明理由若不成轴对称,请说明理由. .·ACBOACB PO; 10、如图,在所给网格图(每小格均为边长是、如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(顶点均在格点上)关于直线DE 对称的1B A D ,使PCPB +1最小;最小;,使QC QA +最小.最小. AB CDEFO现已有两种不同的分法:⑴分别作两条对角线(如图中的图⑴)14、某居民小区要在一块长方形的空地上建花坛,现征集设计方案.要求设计的图案由圆和AB C A B C A B C A B C A B C。
三墩中学七年级数学下册 第二章?图形和变换?测试题五 浙教版本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
[自我测试]根底验收题一、选择题〔此题一共8小题,每一小题只有一个选项符合题意〕 1.如图A B C '''∆由ABC ∆平移得到的,以下说法错误的〔 〕 〔A 〕将ABC ∆先向右平移9个单位,再向上平移4个单 位就得到A B C '''∆〔B 〕将ABC ∆先向上平移4个单位,再向右平移9个单 位就得到A B C '''∆〔C 〕将ABC ∆沿CC '方向,平移得间隔 等于线段CC '的 长就得到A B C '''∆〔D 〕将ABC ∆沿C C '方向,平移得间隔 等于线段C C '的长就得到A B C '''∆2.如下图,将ABC '∆沿着XY 方向平移一定的间隔 成为△MNL ,就得到MNL ∆,那么以下结论中正确的选项是〔 〕①AM ∥BN ;②AM=BN ;③BC=ML ;④∠ACB=∠MNL 〔A 〕1个 〔B 〕2个 〔C 〕3个 〔D 〕4个3.如图,在这四个图案中都是某种衣物的洗涤说明,请指出不是 利用图形的平移、旋转和反射〔轴对称〕设计的是〔 〕一、1题图一、2题图 (A)(B)(C)(D)一、8题图4.假如,在正六边形硬纸板上剪下一个正三角形〔如图〔1〕中的阴影局部〕那么将这个正三角形分别通过一次〔 〕便可依次得到图〔2〕、〔2〕、〔4〕〔A 〕平移、对称、旋转 〔B 〕旋转、平移、平移 〔C 〕对称、旋转、平移 〔D 〕平移、平移、平移5.以下美丽图案,既是轴对称又是中心对称图形的个数是〔 〕〔A 〕1个 〔B 〕2个 〔C 〕3个 〔D 〕4个6.如图,一块等边三角形木板ABC 的边长为1,现将木板沿程度线翻转〔绕一个点旋转〕,那么A点从开场到完毕所走的途径长度为〔 〕〔A 〕4 〔B 〕2π 〔C 〕23π 〔D 〕43π7.如图,O 是边长为a 的正方形ABCD 的中心,将一块半径足够长,圆心为直角的扇形纸板的圆心放在O 点处,并将纸板的圆心绕O 旋转,求正方形ABCD 的边被纸板覆盖局部的面积为〔 〕〔A 〕213a 〔B 〕214a 〔C 〕212a 〔D 〕14a 8.P 是等边ABC ∆内部一点,APB ∠、BPC ∠、CPA ∠的大小之比是5:6:7,所以PA 、PB 、PC 的长为边的三角形的三个角的大小之比是〔 〕〔A 〕2:3:4 〔B 〕3:4:5 〔C 〕4:5:6 〔D 〕不能确定二、填空题〔此题一共8小题,把答案填写上在题中横线上〕一、5题图一、6题图一、7题图D C BAO1.一个数字在镜子里看是“1208”,且这个数字图像垂直对着镜子,那么实际上这个数字是 .2.如图,点P 关于OA 、OB 对称点分别是P 1、P 2, P 1P 2分别交OA 、OB 于点C 、D ,P 1P 2=6cm ,那么△PCD 的周长为 .3.用黑白两种颜色的正六边形地面砖按如下图的规律,拼成假设干图案,请 推算〔1〕第4个图案中有白色地面砖 块;〔2〕第n 个图案中白 色的地面砖 块.4.如图,在Rt △ABC 中,∠C=90°,∠A=60°,AC=3cm , 将△ABC 绕点B 旋转至△A B C '''的位置,且使点A 、B 、C 三点在一条直线上,那么点A 经过的最短道路的长度是 .5.矩形ABCD 的一边AB=2 cm ,另一边 AD=4cm ,那么以直线AD 为轴旋转一周所得到的图形 是 ,其侧面积是 cm 2.6.如图,P 是正方形ABCD 内一点,将△PCD 绕点C 逆时针方向旋转后与△P CB '重合,假设PC=1, 那么PP '= .7.如图,直线AE ∥BD ,点C 在BD 上,假设AE=5,BD=8,△ABD 的面积为16,那么 △ACE 的面积为 .二、2题二、4题图二、6题图 二、7题图二、3题图第1个 第2个第3个三、1题图8.将一个图形向左平移4个单位,那么图形上所有点的横坐标 ,纵坐标 .假设图形向上平移了3个单位,且同时向右平移2个单位,那么图形上所有关的横坐标 ,纵坐标 .三、解答题:〔此题一共7小题,解答要写出文字说明或者演算步骤〕1.如图,P 为△BOA 内任一点,在OB 上找一点M ,在OA 上找一点N ,使得△PMN 的周长最短.2.如图,一圆的直径为等腰三角形△ABC 的一直 角边的长,假设将圆平移到直角三角形中使BC 成为圆的 直径,BC=2,求圆与三角形重叠局部的面积.3.如图,请你用三种方法把左边的 小正方形分别平移到右边三个图形中,使 它成为轴对称图形.方法1方法2方法3三、3题图三、6题图4.如图是某设计师设计的方桌布图案的一部 分,请你运用旋转变换的方法,在坐标纸上将该图 形绕原点顺时针依次旋转90°、180°、270°并 画出它在各象限内的图形,你会得到一个美丽的“ 立体图形〞,你来试一试吧!但是涂阴影...时要注意 利用旋转变换的特点,不要涂错了位置,否那么不会出现理想的效果,你来试一试吧!5.如图在正方形网络上有一个△ABC〔1〕作出△ABC 过于直线MN 的对称图形A B C '''∆; 〔2〕作出△ABC 关于O 点对称图形A B C ''''''∆;〔3〕假设网格上的最小正方形边长为1,求△ABC 的面积; 〔4〕A B C ''''''∆能否由A B C '''∆平移得到,能否由A B C '''∆ 旋转得到.这两个三角形〔指A B C '''∆与A B C ''''''∆〕存在什 么样的图形变换关系.6.现有如下图的6种瓷砖,请用其中的4块瓷砖〔允许有一样的〕设计出美丽的图案.7.如图,将图中的ABC作以下运动,画出相应图形,指出三个顶点坐标发生的变化:〔1〕沿x轴向右平移1个单位;〔2〕关于y轴对称;〔3〕以C点为位似中心,放大5倍.三、7题图一、2题图综合才能测试一、选择题(此题一共8小题,每一小题只有一个选项符合题意)1.从图形的几何性质考虑,以下图形中有一个与其他三个不同,它是( ).2.小明从镜子里看到对面电子钟示数的影像如图,这时的时刻应是( ). (A)21:10 (B)10:21 (C)10:51 (D)12:013.如图,把一个正方形纸片三次对折后沿虚线剪下,然后展开,那么所得图形是( ).4.以下图形中,是中心对称图形的是( ).5.同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的. 右图是看到的万花筒的一个图案,图中所有小三角形均是全等 的等边三角形,其中菱形ABFG 可以看成是把菱形ABCD 以点 A 为中心( ). (A)顺时针旋转60°得到 (B)顺时针旋转120°得到 (C)逆时针旋转60°得到 (D)逆时针旋转120°得到一、6题图一、7题图一、8题图二、4题图6.如图是经过改造的台球桌面示意图,图中四个角上的阴影 局部分别表示四个入球孔.假如一个球按图中所示的方向 被击出(球可以经过屡次被反射),那么该球最后将落入的入 球孔是( ).(A)l 号孔 (B)2号孔 (C)3号孔 (D)4号孔7.如图,在菱形ABCD 中,∠DAE=80°,AB 的垂直平分线交 对角线AC 于点F ,E 为垂足,连结DF .那么∠CDF 等于( ). (A)80° (B)70° (C)65° (D)60°8.如图,△ABC 为等腰直角三角形,∠A=90°,AB=AC=2, ⊙O 与BC 相切于D ,那么图中阴影局部的面积为( ). (A)12π-(B) 13π- (C) 14π- (D) 15π- 二、填空题(此题一共8小题,把答案填在题中横线上)1.在剪纸中,假如所用的纸张对折了n 次(n ≥1且n 为整数),那么剪出来的图案至少有 条对称轴.2.在线段、角、等腰三角形、平行四边形和圆中,一定是轴对称图形,也是中心对称图形的是 .3.甲、乙两名运发动照镜子时,小明看到他们胸前的号码在镜子中的像分别是和,那么甲胸前的号码是 ,乙胸前的号码是 .4.如图, △ABC 中,AB=AC ,D 、E 分别在AC 、AB 上,DE 垂直平分AB ,AB+BC=10cm ,那么△DBC 的周长为 cm .二、6题图二、7题图二、8题图三、1题图5.国旗上的五角星图案绕它的中心至少旋转 度能与自身重合.6.如图,Rt △ABC 中,∠C=90°,点D 、E 、F 分别在AB 、AC 、BC 上,四边形CFDE 是正方形.假如AD=3,BD=4,那么图中阴影 局部的面积是 .7.如图,把边长为1的正方形ABCD 的对角线AC 分成n 段,以每 一段为对角线作正方形,所有小正方形的周长之和为 .8.如图,矩形ABCD 中,AB=4cm ,BC=2cm ,E 是以A 为圆心、 AD 为半径所作圆周与BA 延长线的交点,那么图中阴影局部的 面积是 cm 2.三、解答题(此题一共8小题,解容许写出文字说明或者演算步骤)1.如图,由小正方形组成的L 形图中,请你用三种方法分别在图中添画一个小正方形, 使它成为轴对称图形.2.(1)如图,首先画出其中阴影所组成的图形绕点O 按顺时针方向旋转90°后的图形;然后把所画的图形向右平移一格,再向上平移一格. (2)设每个小正方形的面积为1,写出(1)中至最后所展现出的图三、2题图三、3题图〔b 〕三、4题图三、5题图形内所有阴影局部的面积和.3.如图,在一块长为a ,宽为b 的长方形草地上,有一条弯曲的柏油小路(图中的阴影 局部表示小路,小路任何地方的程度宽度都是1个长度单位),请你猜测空白局部表 示的草地面积是多少?并说明你的猜测是正确的.4.(1)如图(a ),它是一个多么漂亮的图案啊!请你在这个图案中确定一个根本图形,然后说出这个根本图形经过怎样的变换便可得到图(b );(2)如图(b ),将它分成,△OAB 、△OBC 、△OCD 等三个等边三角形(包含三角形内 部所有图形).①探究:△OAB 怎样变换可以得到△OBC?△OBC 怎样变换可以得到△OCD? △OAB 怎样变换可以得到△OCD? ②考虑:对称与旋转有何关系?5.如图,矩形纸片ABCD ,折叠它的一边BC ,使C 点落在 AB 边上的C '处,折痕为BG ;然后把△ADG 沿着AG 翻折, 使点D 落在矩形内部的D '处.假如再沿着AD '翻折△AD C ', 那么点G 恰好落在AB 边上的点G '处.(1)试探究,△AGG ',的形状并说明原因. (2)当BC=3时,求矩形纸片ABCD 的面积.6.如图,P是正方形ABCD内的一点,AP=1,PB=2,∠APB=135°.求PC的长三、7题图7.如图,20×20的网络中每个小正方形的边长均为1个单位长度,等腰直角三角 形ABC 的腰长为4个单位长度,△ABC 从点A 与点M 重合的位置开场,以每秒1 个单位长度的速度先向下平移,当BC 边与网络的底部重合时,继续以同样的速度向 右平移,当点C 与点P 重合时,△ABC 停顿运动.设运动时间是为x 秒,△QAC 的面 积为y .问:当x 为何值时,y 获得最大值和最小值?最大值和最小值各是多少?8.如图,直线l ⊥OB ,P 点在l 上,以P 为圆心,OP 长为半径作⊙P 交y 轴的正 方向于B 点,交l 于A 点. 的度数是120°,且3,连接AB 、AO , 再将△OAB 折叠,使点A 落在边OB 上,记为A ′,折痕为EF .(1)求证,△AOB 是等边三角形,并求出圆心P 的坐标,(2)当A'E ∥x 轴时,求点A '和E 坐标;(3)当A'E ∥x 轴,且抛物线216y x bx c =-++经过点A '和E 时,求抛物线与x 轴的交 点的坐标;(4)当点A '在OB 上运动但不与点O 、B 重合时,能否使△A'EF 成为直角三角形?假设能,恳求出此时点A '的坐标;假设不能,请你说明理由.OB本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。
A 平行线与相交线
一、选择题:
1.如果一个角的补角是150°,那么这个角的余角的度数是( )
A.30°
B.60°
C.90°
D.120°
2.下列语句中,是对顶角的语句为( )
A.有公共顶点并且相等的角
B.两条直线相交,有公共顶点的角
C.顶点相对的角
D.两条直线相交,有公共顶点没有公共边的两个角 3.如图1,下列说法错误的是( )
A.∠1和∠3是同位角;
B.∠1和∠5是同位角
C.∠1和∠2是同旁内角;
D.∠5和∠6是内错角
5
64
321
G
F
E D
C
B
A
D
C
B
O
A
(1) (2) (3)
4.如图2,已知AB ∥CD ∥EF ,BC ∥AD ,AC 平分∠BAD ,那么图中与∠AGE 相等的角有( )
A.5个
B.4个
C.3个
D.2个
5.如图3,OB ⊥OD ,OC ⊥OA ,∠BOC=32°,那么∠AOD 等于( )
A.148°
B.132°
C.128°
D.90°
二、填空题:
1.∠1与∠2互余,∠2与∠3互补,∠1=63°,∠3= .
2.∠α和∠β互为补角,又是对顶角,则它们的两边所在的直线 .
3.如图,已知直线EF 与AB 、CD 都相交,且AB ∥CD ,说明∠1=∠2的理由.
理由:∵EF 与AB 相交(已知) ∴∠1=∠3( ) ∵AB ∥CD(已知)
∴∠2=∠3( )
3
2
1
F
E
D
C
B A
1
A ∴∠1=∠2( ) 4.已知,如图,AD ∥BC ,∠BAD=∠BCD ,请说明A
B ∥CD 的理由.
理由:∵AD ∥BC(已知)
∴∠1=( )( ) 又∵∠BAD=∠BCD(已知)
∴∠BAD -∠1=∠BCD -∠2( ) 即:∠3=∠4
∴AB ∥CD( ) 三、解答题:
1.如图,直线a 、b 被直线c 所截,且a ∥b,若∠1=118°,则∠2为多少度?
3c
b
a 2
1
2.已知一个角的余角的补角比这个角的补角的一半大90°,则这个角的度数等于多少度?
B 三角形
一、细心选一选:(每题3分,共24分) 1、下列各组长度的线段为边,能构成三角形的是( )
A 、7cm 、5cm 、12cm
B 、6cm 、8 cm 、15cm
C 、8cm 、4 cm 、3cm
D 、4cm 、6 cm 、5cm
2、如图1,⊿AOB ≌⊿COD ,A 和C ,B 和D 是对应顶点,若BO=8,AO=10,AB=5,则CD 的长为( ) A 、10 B 、8 C 、5 D 、不能确定
3、生活中,我们经常会看到如图2所示的情况,在电线杆上拉两条钢筋,来加固电线杆,这是利用了三角形的( )
A 、稳定性
B 、全等性
C 、灵活性
D 、对称性
4
3
2
1
D
C
B
A
A D
C
B
O
B
C
A
A
B
C
D
E
图4
4、如图3所示,已知AB ∥CD ,AD ∥BC ,那么图中共有全等三角形( )
A 、8对
B 、4对
C 、2对
D 、1对
5、下列语句:①面积相等的两个三角形全等; ②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同; ④边数相同的图形一定能互相重合。
其中错误的说法有( )A 、4个 B 、3个 C 、2个 D 、1个
6、如果一个三角形三边上的高的交点在三角形的外部,那么这个三角形是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、任意三角形
7、如图4,⊿ABC 中,∠ACB=900
,把⊿ABC 沿AC 翻折180°,使点B 落在B ’的位置,则关于线段AC 的性质中,准确的说法是( )
A 、是边B
B ’上的中线 B 、是边BB ’上的高
C 、是∠BAB ’的角平分线
D 、以上三种性质都有
8、如图5,某同学把一块三角形的玻璃打碎成了三块,现在要到 玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )
A 、带①去
B 、带②去
C 、带③去
D 、带①和②去
二、仔细补一补:(每题3分共30分)
9、在△ABC 中,若∠A :∠B :∠C=1:3:5,这个三角形为 三角形。
(按角的分类) 10、一木工师傅有两根长分别为5cm 、8cm 的木条,他要找第三根木条,将它们钉成一个三角形框架,现有3cm 、10cm 、20cm 四根木条,他可以选择长为 cm 的木条。
11、如图6,在△ABC 中, BAC 是钝角,完成下列画图,并用适当的符号在图中表示; (1)AC 边上的高;(2) BC 边上的高.(在上图中直接画)
12、如图7,△ABC ≌△AED ,∠C=400
,∠EAC=300
,∠B=300
,则∠D= ,∠EAD= ; 13、如图8,已知∠1=∠2,请你添加一个条件使△ABC ≌△BAD ,
你的添加条件是是 (填一个即可)。
14、若一个等腰三角形的两边长分别是3 cm 和5 cm ,则它的周长是 ____ _ cm 。
15、图9所示的图案是由全等的图形拼成的,其中AD=0.5cm ,BC=1cm ,则AF= 。
16、在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是 。
17、如图10,AD 是△ABC 的中线,△ABC 的面积为100cm 2 ,则△ABD 的面积是 cm 2 。
18、如图11,在△ABC 中,两条角平分线BD 和CE 相交于点O ,
图9
C
B A
E
A D O A
B
A
B
C
D
若∠BOC=116°,那么∠A 的度数是 。
三、解答题:
18、如图,在△ABC 中,∠B=440,∠C=720
,AD 是△ABC 的角平分线,(1)求∠BAC 的度数;(2)
求∠ADC 的度数;
19、已知:如图,AE =CF ,AD ∥BC ,AD =CB 。
问:△ADF 与△CBE 全等吗?请说明理由。
A D
20、已知:如图,21∠=∠,43∠=∠。
求证:AD AC =。
21、如图,已知∠1=∠2,AC=AD, ∠C=∠D,求证:ΔABC ≌ΔAED
2
1
E
D
C B
A
22、已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .
C 轴对称
一、填空题:
1.△ABC 中,AD ⊥BC 于D ,且BD=CD ,若AB=3,则AC=_____.
2.等腰三角形的一个角为100°,则它的两底角为_____.
3.△ABC 中,∠A=40°,∠B=70°,则△ABC 为_____三角形.因为 .
4.底角等于顶角一半的等腰三角形是_____三角形,画出此三角形斜边上的高,这时图中有_____个等腰三角形.
5.等边三角形有_____条对称轴.
6.等腰三角形的周长为22 cm,其中一边的长是8 cm,则其余两边长分别为_____. 9.图2中三角形1与_____成轴对称图形,整个图形中共有_____条对称轴.
F
E
B C
图2
图3
10.等腰三角形的周长是25 cm,一腰上的中线将周长分为3∶2两部分,则此三角形的底边长为_____.
11.如图3,OC 平分∠AOB ,D 为OC 上任一点,DE ⊥OB 于E ,若DE=4 cm ,则D 到OA 的距离为_____. 二、选择题:
13.如图所示,下列图案是我国几家银行的标志,其中不是轴对称图形的有( )
14.线段AB 和CD 互相垂直平分于O 点,且OC=2
1
AB ,顺次连结A 、D 、B 、C ,那么图中的等腰直角三角形共有( ) A.4个
B.6个
C.8个
D.10个
15. 图4中,不一定是轴对称图形的是( )
图4 三、解答题:
19.如图,已知:△ABC 中,BC <AC ,AB 边上的垂直平分线DE 交AB 于D ,交AC 于E ,AC=9 cm,△BCE 的周长为15 cm,求BC 的长.
数学小报
采购中的学问
我家一天用2个垃圾袋。
我想
算一算这包垃圾袋够用几个星
期?大约几个月?
我先算一个星期用几个?列式2×7=14
(个)。
再算可以用多少个星期?500÷14=?这
可把我难住了,怎么办?这时我想到请计算器来
搭配衣服
这是我衣柜中的衣服。
我想算一算自己能有
多少种搭配衣服的方法?可以用连线的方法,还
500个
数一数,算一算
今天爸爸给我默写生字,一行6
个格,共9行。
我写了两张纸,一共
写了几个字?
<1>一张纸多少个字? 6×
9=54(个)
<2>2张纸多少个字? 54+54=108
(个)
答:一共写了108个字。