芜湖市顶峰美术学校2019学年高一数学上学期第一次月考试题
- 格式:doc
- 大小:376.00 KB
- 文档页数:7
【最新整理,下载后即可编辑】高一(上)第一次月考数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={A∈A|A>−1},则()A.A∉AB.√2∉AC.√2∈AD.{√2}⊆A2.已知集合A到A的映射A:A→A=2A+1,那么集合A中元素2在A中对应的元素是()A.2B.5C.6D.83.设集合A={A|1<A<2},A={A|A<A},若A⊆A,则A的范围是()A.A≥2B.A≥1C.A≤1D.A≤24.函数A=√2A−1的定义域是()A.(12, +∞) B.[12, +∞) C.(−∞, 12) D.(−∞, 12]5.全集A={0, 1, 3, 5, 6, 8},集合A={1, 5, 8 },A={2},则集合(∁A A)∪A=()A. {0, 2, 3, 6}B.{0, 3, 6}C.{2, 1, 5, 8}D.A6.已知集合A={A|−1≤A<3},A={A|2<A≤5},则A∪A=()A.(2, 3)B.[−1, 5]C.(−1, 5)D.(−1, 5]7.下列函数是奇函数的是( ) A.A =A B.A =2A 2−3C.A =√AD.A =A 2,A ∈[0, 1]8.化简:√(A −4)2+A =( ) A.4 B.2A −4 C.2A −4或4 D.4−2A9.集合A ={A |−2≤A ≤2},A ={A |0≤A ≤2},给出下列四个图形,其中能表示以A 为定义域,A 为值域的函数关系的是( ) A.B.C.D.10.已知A (A )=A (A )+2,且A (A )为奇函数,若A (2)=3,则A (−2)=( ) A.0 B.−3 C.1 D.311.A (A )={A 2,A >0A 0,A <0,A =0,则A {A [A (−3)]}等于( )A.0B.AC.A 2D.912.已知函数A (A )是 A 上的增函数,A (0, −1),A (3, 1)是其图象上的两点,那么|A (A )|<1的解集是( ) A.(−3, 0) B.(0, 3) C.(−∞, −1]∪[3, +∞) D.(−∞, 0]∪[1, +∞)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知A (A )={A +5(A >1)2A 2+1(A ≤1),则A [A (1)]=________.14.已知A (A −1)=A 2,则A (A )=________.15.定义在A 上的奇函数A (A ),当A >0时,A (A )=2;则奇函数A (A )的值域是________.16.关于下列命题:①若函数A =2A +1的定义域是{A |A ≤0},则它的值域是{A |A ≤1};②若函数A =1A的定义域是{A |A >2},则它的值域是{A |A ≤12}; ③若函数A =A 2的值域是{A |0≤A ≤4},则它的定义域一定是{A |−2≤A ≤2};④若函数A =A +1A的定义域是{A |A <0},则它的值域是{A |A ≤−2}.其中不正确的命题的序号是________.(注:把你认为不正确的命题的序号都填上)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知集合A ={1, 2, 3, 4, 5, 6, 7, 8},A ={A |A 2−3A +2=0},A ={A |1≤A ≤5, A ∈A },A ={A |2<A <9, A ∈A }(1)求A∪(A∩A);(2)求(∁A A)∪(∁A A)18.设A={A|A2−AA+A2−19=0},A={A|A2−5A+ 6=0},A={A|A2+2A−8=0}.(1)若A=A,求实数A的值;(2)若A⊊A∩A,A∩A=A,求实数A的值.19.已知函数A(A)=A+1A(1)判断函数的奇偶性,并加以证明;(2)用定义证明A(A)在(0, 1)上是减函数;(3)函数A(A)在(−1, 0)上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).20.已知函数A(A)是定义在A上的偶函数,且当A≤0时,A(A)=A2+2A.(1)现已画出函数A(A)在A轴左侧的图象,如图所示,请补出完整函数A(A)的图象,并根据图象写出函数A(A)的增区间;(2)写出函数A(A)的解析式和值域.21.设函数A(A)=AA2+AA+1(A≠0, A∈A),若A(−1)=0,且对任意实数A(A∈A)不等式A(A)≥0恒成立.(1)求实数A、A的值;(2)当A∈[−2, 2]时,A(A)=A(A)−AA是增函数,求实数A的取值范围.22.已知A(A)是定义在A上的函数,若对于任意的A,A∈A,都有A(A+A)=A(A)+A(A),且A>0,有A(A)>0.(1)求证:A(0)=0;(2)判断函数的奇偶性;(3)判断函数A(A)在A上的单调性,并证明你的结论.答案1. 【答案】B【解析】根据题意,易得集合A的元素为全体大于−1的有理数,据此分析选项,综合可得答案.【解答】解:∵集合A={A∈A|A>−1},∴集合A中的元素是大于−1的有理数,对于A,“∈”只用于元素与集合间的关系,故A错;对于A,√2不是有理数,故A正确,A错,A错;故选:A.2. 【答案】B【解析】由已知集合A到A的映射A:A→A=2A+1中的A与2A+1的对应关系,可得到答案.【解答】解:∵集合A到A的映射A:A→A=2A+1,∴2→A=2×2+1=5.∴集合A中元素2在A中对应的元素是5.故选:A.3. 【答案】A【解析】根据两个集合间的包含关系,考查端点值的大小可得2≤A.【解答】解:∵集合A={A|1<A<2},A={A|A<A},A⊆A,∴2≤A,故选:A.4. 【答案】B【解析】原函数只含一个根式,只需根式内部的代数式大于等于0即可.【解答】解:要使函数有意义,则需2A−1≥0,即A≥12,所以原函数的定义域为[12, +∞).故选:A.5. 【答案】A【解析】利用补集的定义求出(A A A),再利用并集的定义求出(A A A)∪A.【解答】解:∵A={0, 1, 3, 5, 6, 8},A={ 1, 5, 8 },∴(A A A)={0, 3, 6}∵A={2},∴(A A A)∪A={0, 2, 3, 6}故选:A6. 【答案】B【解析】分别把两集合的解集表示在数轴上,根据数轴求出两集合的并集即可.【解答】解:把集合A={A|−1≤A<3},A={A|2<A≤5},表示在数轴上:则A∪A=[−1, 5].故选A7. 【答案】A【解析】由条件利用函数的奇偶性的定义,得出结论.【解答】解:∵函数A=A(A)=A的定义域为A,且满足A(−A)=−A=−A(A),故函数A(A)是奇函数;∵函数A=A(A)=2A2−3的定义域为A,且满足A(−A)= 2(−A)2−3=2A2−3=A(A),故函数A(A)是偶函数;∵函数A=√A的定义域为[0, +∞),不关于原点对称,故函数为非奇非偶函数;∵函数A=A2,A∈[0, 1]的定义域不关于原点对称,故函数为非奇非偶函数,故选:A.8. 【答案】A【解析】由A<4,得√(A−4)2=4−A,由此能求出原式的值.【解答】解:√(A−4)2+A=4−A+A=4.故选:A.9. 【答案】B【解析】本题考查的是函数的概念和图象问题.在解答时首先要对函数的概念从两个方面进行理解:一是对于定义域内的任意一个自变量在值域当中都有唯一确定的元素与之对应,二是满足一对一、多对一的标准,绝不能出现一对多的现象.【解答】解:由题意可知:A={A|−2≤A≤2},A={A|0≤A≤2},对在集合A中(0, 2]内的元素没有像,所以不对;对不符合一对一或多对一的原则,故不对;对在值域当中有的元素没有原像,所以不对;而符合函数的定义.故选:A.10. 【答案】C【解析】由已知可知A(2)=A(2)+2=3,可求A(2),然后把A=−2代入A(−2)=A(−2)+2=−A(2)+2可求【解答】解:∵A(A)=A(A)+2,A(2)=3,∴A(2)=A(2)+2=3∴A(2)=1∵A(A)为奇函数则A(−2)=A(−2)+2=−A(2)+2=1故选:A11. 【答案】C【解析】应从内到外逐层求解,计算时要充分考虑自变量的范围.根据不同的范围代不同的解析式.【解答】解:由题可知:∵−3<0,∴A(−3)=0,∴A[A(−3)]=A(0)=A>0,∴A{A[A(−3)]}=A(A)=A2故选A12. 【答案】B【解析】|A(A)|<1等价于−1<A(A)<1,根据A(0, −1),A(3, 1)是其图象上的两点,可得A(0)<A(A)<A(3),利用函数A(A)是A上的增函数,可得结论.【解答】解:|A(A)|<1等价于−1<A(A)<1,∵A(0, −1),A(3, 1)是其图象上的两点,∴A (0)<A (A )<A (3)∵函数A (A )是A 上的增函数, ∴0<A <3∴|A (A )|<1的解集是(0, 3) 故选:A . 13. 【答案】8【解析】先求A (1)的值,判断出将1代入解析式2A 2+1;再求A (3),判断出将3代入解析式A +5即可. 【解答】解:∵A (1)=2+1=3 ∴A [A (1)]=A (3)=3+5=8 故答案为:814. 【答案】(A +1)2【解析】可用换元法求解该类函数的解析式,令A −1=A ,则A =A +1代入A (A −1)=A 2可得到A (A )=(A +1)2即A (A )=(A +1)2【解答】解:由A (A −1)=A 2,令A −1=A ,则A =A +1代入A (A −1)=A 2可得到A (A )=(A +1)2 ∴A (A )=(A +1)2 故答案为:(A +1)2. 15. 【答案】{−2, 0, 2}【解析】根据函数是在A 上的奇函数A (A ),求出A (0);再根据A >0时的解析式,求出A <0的解析式,从而求出函数在A 上的解析式,即可求出奇函数A (A )的值域. 【解答】解:∵定义在A 上的奇函数A (A ), ∴A (−A )=−A (A ),A (0)=0设A <0,则−A >0时,A (−A )=−A (A )=−2∴A (A )={2A >00A =0−2A <0∴奇函数A (A )的值域是:{−2, 0, 2} 故答案为:{−2, 0, 2} 16. 【答案】②③【解析】逐项分析.①根据一次函数的单调性易得;②根据反比例函数的图象和性质易知其值域应为(0, 12);③可举反例说明;④利用均值不等式可得.【解答】解:①当A ≤0时,2A +1≤1,故①正确; ②由反比例函数的图象和性质知,当A >2时,0<1A<12,故②错误;③当函数定义域为[0, 2]时,函数值域也为[0, 4],故③错误; ④当A <0时,A =A +1A=−[(−A )+1−A].因为(−A )+1−A≥2√(−A )⋅1−A=2,所以A ≤−2,故④正确.综上可知:②③错误. 故答案为:②③.17. 【答案】解:(1)依题意有:A ={1, 2},A ={1, 2, 3, 4, 5},A ={3, 4, 5, 6, 7, 8},∴A ∩A ={3, 4, 5},故有A ∪(A ∩A )={1, 2}∪{3, 4, 5}={1, 2, 3, 4, 5}.; (2)由∁A A ={6, 7, 8},∁A A ={1, 2}; 故有(∁A A )∪(∁A A )={6, 7, 8}∪{1, 2}={1, 2, 6, 7, 8}.【解析】(1)先用列举法表示A 、A 、A 三个集合,利用交集和并集的定义求出A ∩A ,进而求出A ∪(A ∩A ).; (2)先利用补集的定义求出(∁A A )和(∁A A ),再利用并集的定义求出(∁A A )∪(∁A A ).【解答】解:(1)依题意有:A ={1, 2},A ={1, 2, 3, 4, 5},A ={3, 4, 5, 6, 7, 8},∴A ∩A ={3, 4, 5},故有A ∪(A ∩A )={1, 2}∪{3, 4, 5}={1, 2, 3, 4, 5}.; (2)由∁A A ={6, 7, 8},∁A A ={1, 2}; 故有(∁A A )∪(∁A A )={6, 7, 8}∪{1, 2}={1, 2, 6, 7, 8}.18. 【答案】解:(1)由题意知:A ={2, 3}∵A =A ∴2和3是方程A 2−AA +A 2−19=0的两根.由{4−2A +A 2−19=09−3A +A 2−19=0得A =5.; (2)由题意知:A ={−4, 2}∵A ⊂A ∩A ,A ∩A =A ∴3∈A ∴3是方程A 2−AA +A 2−19=0的根.∴9−3A +A 2−19=0∴A =−2或5当A =5时,A =A ={2, 3},A ∩A ≠A ;当A =−2时,符合题意故A =−2.【解析】(1)先根据A =A ,化简集合A ,根据集合相等的定义,结合二次方程根的定义建立等量关系,解之即可;; (2)先求出集合A 和集合A ,然后根据A ∩A ≠A ,A ∩A =A ,则只有3∈A ,代入方程A 2−AA +A 2−19=0求出A 的值,最后分别验证A 的值是否符合题意,从而求出A 的值.【解答】解:(1)由题意知:A ={2, 3}∵A =A ∴2和3是方程A 2−AA +A 2−19=0的两根.由{4−2A +A 2−19=09−3A +A 2−19=0 得A =5.; (2)由题意知:A ={−4, 2}∵A ⊂A ∩A ,A ∩A =A ∴3∈A ∴3是方程A 2−AA +A 2−19=0的根.∴9−3A +A 2−19=0∴A =−2或5当A =5时,A =A ={2, 3},A ∩A ≠A ;当A =−2时,符合题意故A =−2.19. 【答案】证明:(1)函数为奇函数A (−A )=−A −1A =−(A +1A )=−A (A ); (2)设A 1,A 2∈(0, 1)且A 1<A 2A (A 2)−A (A 1)=A 2+1A 2−A 1−1A 1=(A 2−A 1)(1−1A 1A 2) =(A 2−A 1)(A 1A 2−1)A 1A 2 ∵0<A 1<A 2<1,∴A 1A 2<1,A 1A 2−1<0, ∵A 2>A 1∴A 2−A 1>0.∴A (A 2)−A (A 1)<0,A (A 2)<A (A 1)因此函数A (A )在(0, 1)上是减函数; (3)A (A )在(−1, 0)上是减函数.【解析】(1)用函数奇偶性定义证明,要注意定义域.; (2)先任取两个变量,且界定大小,再作差变形看符号,; (3)由函数图象判断即可.【解答】证明:(1)函数为奇函数A (−A )=−A −1A =−(A +1A )=−A (A ); (2)设A 1,A 2∈(0, 1)且A 1<A 2A (A 2)−A (A 1)=A 2+1A 2−A 1−1A 1=(A 2−A 1)(1−1A 1A 2) =(A 2−A 1)(A 1A 2−1)A 1A 2 ∵0<A 1<A 2<1,∴A 1A 2<1,A 1A 2−1<0,∵A 2>A 1∴A 2−A 1>0.∴A (A 2)−A (A 1)<0,A (A 2)<A (A 1)因此函数A (A )在(0, 1)上是减函数; (3)A (A )在(−1, 0)上是减函数.20. 【答案】解:(1)因为函数为偶函数,故图象关于A 轴对称,补出完整函数图象如有图:所以A (A )的递增区间是(−1, 0),(1, +∞).; (2)设A >0,则−A <0,所以A (−A )=A 2−2A ,因为A (A )是定义在A 上的偶函数,所以A (−A )=A (A ),所以A >0时,A (A )=A 2−2A ,故A (A )的解析式为A (A )={A 2+2A ,A ≤0A 2−2A ,A >0 值域为{A |A ≥−1}【解析】(1)因为函数为偶函数,故图象关于A 轴对称,由此补出完整函数A (A )的图象即可,再由图象直接可写出A (A )的增区间.; (2)可由图象利用待定系数法求出A >0时的解析式,也可利用偶函数求解析式,值域可从图形直接观察得到.【解答】解:(1)因为函数为偶函数,故图象关于A 轴对称,补出完整函数图象如有图:所以A (A )的递增区间是(−1, 0),(1, +∞).; (2)设A >0,则−A <0,所以A (−A )=A 2−2A ,因为A (A )是定义在A 上的偶函数,所以A (−A )=A (A ),所以A >0时,A (A )=A 2−2A ,故A (A )的解析式为A (A )={A 2+2A ,A ≤0A 2−2A ,A >0 值域为{A |A ≥−1}21. 【答案】解:(1)∵A (−1)=0,∴A −A +1=0.… ∵任意实数A 均有A (A )≥0成立,∴{A >0△=A 2−4A ≤0. 解得A =1,A =2.…; (2)由(1)知A (A )=A 2+2A +1, ∴A (A )=A (A )−AA =A 2+(2−A )A +1的对称轴为A =A −22.… ∵当A ∈[−2, 2]时,A (A )是增函数,∴A −22≤−2,…∴实数A 的取值范围是(−∞, −2].…【解析】(1)利用A (−1)=0,且对任意实数A (A ∈A )不等式A (A )≥0恒成立,列出方程组,求解即可.; (2)求出函数的对称轴,利用函数的单调性列出不等式,求解即可.【解答】解:(1)∵A (−1)=0,∴A −A +1=0.… ∵任意实数A 均有A (A )≥0成立,∴{A >0△=A 2−4A ≤0. 解得A =1,A =2.…; (2)由(1)知A (A )=A 2+2A +1,∴A (A )=A (A )−AA =A 2+(2−A )A +1的对称轴为A =A −22.… ∵当A ∈[−2, 2]时,A (A )是增函数,∴A −22≤−2,…∴实数A 的取值范围是(−∞, −2].…22. 【答案】解:(1)由A (A +A )=A (A )+A (A ),令A =A =0,∴A (0)=2A (0),∴A (0)=0.; (2)由A (A +A )=A (A )+A (A ),令A =−A ,∴A (0)=A (A )+A (−A ),即A (−A )=−A (A ),且A (0)=0,∴A (A )是奇函数.; (3)A (A )在A 上是增函数.证明:在A 上任取A 1,A 2,并且A 1>A 2,∴A (A 1−A 2)=A (A 1)−A (A 2).∵A 1>A 2,即A 1−A 2>0,∴A (A 1−A 2)=A (A 1)−A (A 2)>0,∴A (A )在A 上是增函数.【解析】(1)直接令A =A =0,代入A (A +A )=A (A )+A (A )即可;; (2)令A =−A ,所以有A (0)=A (A )+A (−A ),即证明为奇函数;; (3)直接利用函数的单调性定义证明即可;【解答】解:(1)由A (A +A )=A (A )+A (A ),令A =A =0,∴A (0)=2A (0),∴A (0)=0.; (2)由A (A +A )=A (A )+A (A ),令A =−A ,∴A (0)=A (A )+A (−A ),即A (−A )=−A (A ),且A (0)=0,∴A (A )是奇函数.; (3)A (A )在A 上是增函数.证明:在A 上任取A 1,A 2,并且A 1>A 2,∴A (A 1−A 2)=A (A 1)−A (A 2).∵A 1>A 2,即A 1−A 2>0,∴A(A1−A2)=A(A1)−A(A2)>0,∴A(A)在A上是增函数.。
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……2019学年度第一学期第一次阶段测试高一数学试题一、填空题:(本大题共14小题,每小题5分,共70分,请把答案填写在答题纸相应位置上)1. 若,,则____________.2. 函数y 的定义域为 .3.若集合{1A =-, 1, 3},则集合A 的子集有 个.4. 若函数是偶函数,则 .5.已知f (x )=g (x )+2,且g (x )为奇函数,若f (2)=3,则f (﹣2)= .6.若集合A ={1,3,x},B ={x 2,1},且B ⊆A ,则满足条件的实数x 的个数为 个.7、已知集合A=[1,3),B=(-),若A ∩B=A ,则实数a 的取值范围是 .8 .定义在R 上的偶函数f (x )在(0,+∞)上是增函数,则f (﹣π),f (3),f (﹣4)由小到大的顺序是 .9.已知集合{}12>-≤=x x x A 或,()1,32+-=a a B ,若R B A =⋃,则a 的范围是 . 10.若集合{}042=++=kx x x A 中只有一个元素,则实数k 的值为 .11.设函数f (x )=则f[f (﹣1)]的值为 .12.已知32)121(+=-x x f ,且6)(=m f ,则m 等于_____________.13. 设奇函数f(x)是定义在R 上的减函数, 且f(m -1)+f(2m -1)>0 ,则实数m 的取值范围是 .14. 若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上为减函数,且0)2(=f ,则使得x ∙0)(<x f 的x 的取值范围____ .二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤).15. (本题14分)已知()31f x x =-.(1)求(1)f ;(2)求(1)f x +;(3)求(())f f x .16.(本题满分14分)设全集为错误!未找到引用源。
(新课标)2018-2019学年度苏教版高中数学必修一高一(上)9月月考数学试卷一、填空题:(本大题共14个小题,每小题5分,共70分,把答案填写在题中横线上)1.下列所给关系正确的个数是.①π∈R;②∉Q;③0∈N*;④|﹣4|∉N*.2.设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M= .3.设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B= .4.已知f(x)=,则f[f(0)]= .5.函数f(x)=+的定义域为.6.函数,使函数值为5的x的值是.7.设A={(x,y)|y=﹣4x+6},B={(x,y)|y=5x﹣3},则A∩B= .8.若函数f(x)在实数集R上是增函数,且f(x)>f(1﹣x),则x的取值范围是.9.满足条件{1,2}⊆M⊆{1,2,3,4,5}的集合M的个数是.10.已知一个函数的解析式为y=x2,它的值域为{1,4},这样的函数有个.11.已知集合A={x|1≤x<5},C={x|﹣a<x≤a+3}.若C∩A=C,则a的取值范围是.12.已知全集U=R,函数y=+的定义域为集合A,函数y=的定义域为集合B.则集合(∁U A)∩(∁U B)= .13.已知函数f(x),g(x)分别由下表给出:则满足f(g(x))=g(f(x))的x值为.x 1 2 3 4f(x) 1 3 1 3x 1 2 3 4g(x) 3 2 3 214.函数f(x)=2x2﹣mx+3,当x∈[2,+∞)时是增函数,当x∈(﹣∞,2]时是减函数,则f(1)= .二、解答题:(本大题共6小题,共90分,解答应写出必要的文字说明、证明过程或演算步骤)15.集合A={﹣2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.16.求下列函数的值域(1)y=﹣,x∈[﹣3,0)∪(0,1];(2)y=x2+4x+1,x∈[﹣3,0].17.已知集合M是由三个元素﹣2,3x2+3x﹣4,x2+x﹣4组成,若2∈M,求x.18.已知f(x)是一次函数,且f[f(x)]=4x﹣1,求f(x)及f(2).19.求证:函数f(x)=﹣﹣1在区间(0,+∞)上是单调增函数.20.函数f(x)是定义在(0,+∞)上的增函数,对任意的x,y∈(0,+∞),都有f(x+y)=f(x)+f(y)﹣1,且f(4)=5.(1)求f(2)的值;(2)解不等式f(m﹣2)≤3.参考答案与试题解析一、填空题:(本大题共14个小题,每小题5分,共70分,把答案填写在题中横线上)1.下列所给关系正确的个数是 2 .①π∈R;②∉Q;③0∈N*;④|﹣4|∉N*.【考点】元素与集合关系的判断.【分析】根据元素与集合的关系进行判断.【解答】解:对于①π∈R:R是一切实数集,π是一个元素,所以π∈R是正确的,故A对.②∉Q:无理数,Q是有理数集,所以∉Q是正确的,故B对.③0∈N*:N*是大于0的正整数集,所以0∉N*,故C不对.④|﹣4|∉N*:N*是大于0的正整数集,|﹣4|=4∈N*,故D不对.综上所述:①②正确.故答案为:2.2.设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M= {3,5,6} .【考点】补集及其运算.【分析】题目是用列举法给出了两个数集,直接利用补集运算进行求解.【解答】解:因为集合U={1,2,3,4,5,6},M={1,2,4},则∁U M={3,5,6}.故答案为:{3,5,6}.3.设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B= {x|﹣1<x<3} .【考点】并集及其运算.【分析】利用交集性质直接求解.【解答】解:∵集合A={x|﹣1<x<2},集合B={x|1<x<3},∴A∪B={x|﹣1<x<3}.故答案为:{x|﹣1<x<3}.4.已知f(x)=,则f[f(0)]= ﹣5 .【考点】函数的值.【分析】根据定义域的范围代值计算即可.【解答】解:由题意,f(x)=,当x=0时,则f(0)=﹣1,那么f[f(0)]=f(﹣1),当x=﹣1时,f(﹣1)=﹣5.即f[f(0)]=f(﹣1)=﹣5故答案为﹣55.函数f(x)=+的定义域为[﹣1,2)U(2,+∞).【考点】函数的定义域及其求法.【分析】根据负数不能开偶次方根和分母不能为零来求解,两者求解的结果取交集.【解答】解:根据题意:解得:x≥﹣1且x≠2∴定义域是:[﹣1,2)∪(2,+∞)故答案为:[﹣1,2)∪(2,+∞)6.函数,使函数值为5的x的值是﹣2 .【考点】分段函数的解析式求法及其图象的作法;函数的值.【分析】根据分段函数的分段标准进行分类讨论,分别建立方程,求出满足条件的x即可.【解答】解:①当x≤0时,x2+1=5解得x=﹣2②当x>0时,﹣2x=5解得x=﹣(舍去)综上所述,x=﹣2,故答案为﹣27.设A={(x,y)|y=﹣4x+6},B={(x,y)|y=5x﹣3},则A∩B= {(1,2)} .【考点】交集及其运算.【分析】直接联立方程组,求出方程组是解,就是A与B的交集.【解答】解:由题意可知A={(x,y)|y=﹣4x+6},B={(x,y)|y=5x﹣3},所以解得,所以A∩B={(1,2)}.故答案为:{(1,2)}.8.若函数f(x)在实数集R上是增函数,且f(x)>f(1﹣x),则x的取值范围是(,+∞).【考点】函数单调性的性质.【分析】直接利用函数在R上是增函数,f(x)>f(1﹣x)转化为x>1﹣x求解即可.【解答】解:由题意:函数f(x)在实数集R上是增函数,由f(x)>f(1﹣x),可得:x>1﹣x,解得:x故答案为(,+∞).9.满足条件{1,2}⊆M⊆{1,2,3,4,5}的集合M的个数是8 .【考点】集合的包含关系判断及应用.【分析】根据已知中M满足条件{1,2}⊆M⊆{1,2,3,4,5},列举出所有满足条件的集合M,可得答案.【解答】解:若M满足条件{1,2}⊆M⊆{1,2,3,4,5},则M可能为:{1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}共8个,故答案为:810.已知一个函数的解析式为y=x2,它的值域为{1,4},这样的函数有9 个.【考点】函数的概念及其构成要素.【分析】由题意知,函数的定义域中,1和﹣1至少有一个,2和﹣2中至少有一个.【解答】解:∵一个函数的解析式为y=x2,它的值域为{1,4},∴函数的定义域可以为{1,2},{﹣1,2},{1,﹣2},{﹣1,﹣2},{1,﹣1,2},{﹣1,1,﹣2},{1,2,﹣2},{﹣1,2,﹣2},{1,﹣1,﹣2,2},共9种可能,故这样的函数共9个,故答案为9.11.已知集合A={x|1≤x<5},C={x|﹣a<x≤a+3}.若C∩A=C,则a的取值范围是a≤﹣1 .【考点】交集及其运算.【分析】由C∩A=C,得C⊆A,然后分C是空集和不是空集分类求解实数a的取值范围.【解答】解:由C∩A=C,得C⊆A,∵A={x|1≤x<5},C={x|﹣a<x≤a+3}.当﹣a≥a+3,即a时,C=∅,满足C⊆A;当C≠∅时,有,解得:﹣<a≤﹣1.综上,a的取值范围是a≤﹣1.故答案为:a≤﹣1.12.已知全集U=R,函数y=+的定义域为集合A,函数y=的定义域为集合B.则集合(∁U A)∩(∁U B)= {x|x<﹣2} .【考点】函数的定义域及其求法.【分析】分别求出集合A,B,再求补集,即可得到交集.【解答】解:A={x|}={x|x≥2},U A={x|x<2}.B={x|}={x|x≥﹣2且x≠3},U B={x|x<﹣2或x=3},则(∁U A)∩(∁U B)={x|x<﹣2}.故答案为:{x|x<﹣2}.13.已知函数f(x),g(x)分别由下表给出:则满足f(g(x))=g(f(x))的x值为2,4 .x 1 2 3 4f(x) 1 3 1 3x 1 2 3 4g(x) 3 2 3 2【考点】函数的值.【分析】结合表格,先求出内涵式的函数值,再求出外函数的函数值;分别将x=1,2,3,4代入f[g(x)],g[f(x)],判断出满足f[g(x)]=g[f(x)]的x.【解答】解:x=1时,f(g(1))=f(3)=1;g(f(1))=g(1)=3,不满足f(g(x))=g(f(x));x=2时,f(g(2))=f(2)=3;g(f(2))=g(3)=3,满足f(g(x))=g(f(x));x=3时,f(g(3))=f(1)=1;g(f(3))=g(1)=3,不满足f(g(x))=g(f(x));x=4时,f(g(4))=f(2)=3;g(f(4))=g(3)=3,满足f(g(x))=g(f(x));故答案为:2,414.函数f(x)=2x2﹣mx+3,当x∈[2,+∞)时是增函数,当x∈(﹣∞,2]时是减函数,则f(1)= ﹣3 .【考点】二次函数的性质.【分析】利用当x∈[2,+∞)时是增函数,当x∈(﹣∞,2]时是减函数,得到2是函数的对称轴,然后求出m,直接代入求f(1)即可.【解答】解:函数f(x)=2x2﹣mx+3的对称轴为.∵当x∈[2,+∞)时是增函数,当x∈(﹣∞,2]时是减函数,∴x=2是函数f(x)=2x2﹣mx+3的对称轴,即,解得m=8.∴f(x)=2x2﹣8x+3,即f(1)=2﹣8+3=﹣3.故答案为:﹣3.二、解答题:(本大题共6小题,共90分,解答应写出必要的文字说明、证明过程或演算步骤)15.集合A={﹣2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.【考点】子集与交集、并集运算的转换.【分析】由A∩B=B即得,B⊆A,所以B的可能情况为:B=∅,或B={﹣2},所以得到a=0,或.【解答】解:∵A∩B=B;∴B⊆A;∴B=Ø或B={﹣2};当B=Ø时,方程ax+1=0无解,此时a=0;当B={﹣2}时,﹣2a+1=0,∴;∴a=0,或.16.求下列函数的值域(1)y=﹣,x∈[﹣3,0)∪(0,1];(2)y=x2+4x+1,x∈[﹣3,0].【考点】函数的值域.【分析】(1)可看出函数在[﹣3,0),(0,1]上都是增函数,从而根据单调性求出该函数的值域;(2)只需配方便可求出该函数的最大、最小值,从而得出该函数的值域.【解答】解:(1)在[﹣3,0),(0,1]上都是增函数;∴﹣3≤x<0时,,0<x≤1时,y≤﹣4;∴该函数值域为;(2)y=x2+4x+1=(x+2)2﹣3;∴x=0时,y取最大值1,x=﹣2时,y取最小值﹣3;∴该函数的值域为[﹣3,1].17.已知集合M是由三个元素﹣2,3x2+3x﹣4,x2+x﹣4组成,若2∈M,求x.【考点】元素与集合关系的判断.【分析】集合M由3个元素组成,﹣2是其中一个,若2也是M中元素,需讨论3x2+3x﹣4=2和x2+x﹣4=2两种情况,根据集合的互异性,正确选取合适的答案即可.【解答】解:∵2∈M,当3x2+3x﹣4=2时,即x2+x﹣2=0,则x=﹣2或x=1.经检验,x=﹣2,x=1均不合题意,违反了集合的互异性.当x2+x﹣4=2时,即x2+x﹣6=0,则x=﹣3或2.经检验,x=﹣3或x=2均合题意.故答案为:x=﹣3或x=2.18.已知f(x)是一次函数,且f[f(x)]=4x﹣1,求f(x)及f(2).【考点】函数解析式的求解及常用方法.【分析】设f(x)=ax+b,a≠0,代入已知式子,比较系数可得a、b的方程组,解之可得解析式及f(2).【解答】解:由题意设f(x)=ax+b,a≠0∵f[f(x)]=f(ax+b)=a(ax+b)+b=a2x+ab+b又f[f(x)]=4x﹣1,∴a2x+ab+b=4x﹣1比较系数可得解得或.∴f (x )=2x ﹣,或f (x )=﹣2x+1,f (2)=4﹣=,或f (2)=﹣4+1=﹣3.19.求证:函数f (x )=﹣﹣1在区间(0,+∞)上是单调增函数.【考点】函数单调性的判断与证明.【分析】首先,设两个自变量,然后,比较它们函数值的大小,最后,得到结论.【解答】解:任设x 1,x 2∈(0,+∞),x 1<x 2,∴f (x 1)﹣f (x 2)==,∵x 1<x 2,∴x 1﹣x 2<0,∴f (x 1)﹣f (x 2)<0,∴在区间(0,+∞)上是单调增函数.20.函数f (x )是定义在(0,+∞)上的增函数,对任意的x ,y ∈(0,+∞),都有f (x+y )=f (x )+f (y )﹣1,且f (4)=5.(1)求f (2)的值;(2)解不等式f (m ﹣2)≤3.【考点】抽象函数及其应用;函数单调性的性质.【分析】(1)令x=y=2,通过f(4)=5以及f(x+y)=f(x)+f(y)﹣1即可求f(2)的值;(2)利用(1)的结果,通过函数的单调性的性质,直接求解不等式f(m﹣2)≤3.【解答】解:(1)对任意的x,y∈(0,+∞),都有f(x+y)=f(x)+f(y)﹣1,且f(4)=5,令x=y=2,则f(4)=f(2+2)=2f(2)﹣1=5,解得f(2)=3.(2)由f(m﹣2)≤3,f(2)=3,得f(m﹣2)≤f(2).∵f(x)是(0,+∞)上的增函数,m﹣2≤2且m﹣2>0;⇒m≤4且m>2∴2<m≤4.不等式的解集为:{m|2<m≤4}.2017年1月10日。
高一数学第一次月考试题第Ⅰ卷(选择题 共60分)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{(,)|2},{(,)|4}M x y x y n x y x y =+==-=,那么集合M N ⋂为(A) x = 3,y = –1 (B) {3,–1} (C) (3,–1) (D) {(3,–1)} (2)不等式23440x x -<-≤的解集为(A)13{|}22x x x ≤-≥或 (B)13{|}22x x -<< (C){|01}x x x ≤≥或 (D)1301}22{|x x x <≤≤<-或 (3)若p 、q 是两个简单命题,且“p 或q ”的否定是真命题,则必有(A) p 真q 真 (B) p 假q 假 (C) p 真q 假 (D) p 假q 真 (4)“1a =”是“函数22cos sin y ax ax =-的最小正周期为π”的(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既非充分又非必要条件 (5)下列各项中能表示同一函数的是(A)211x y x -=-与1y x =+ (B)lg y x =与21lg 2y x =(C)1y =与1y x =- (D)y x =与log (01)x y a a a a =>≠且(6)已知62()log f x x =,则(8)f =(A)43(B)8 (C)18 (D)12(7)若|1|12()x f x +⎛⎫⎪⎝⎭=区间(,2)-∞上(A)单调递增 (B)单调递减 (C)先增后减 (D)先减后增 (8)设()f x 是(,)-∞+∞上的奇函数,(2)()f x f x +=-,当01x ≤≤时()f x x =,则(7.5)f 等于 (A)0.5 (B)-0.5 (C)1.5 (D)-1.5 (9)已知二次函数()y f x =满足(3)(3)f x f x +=-,且有两个实根1x ,2x ,则12x x +=(A)0 (B)3 (C)6 (D)不确定 (10)函数0.5()log (1)(3)f x x x =+-的增区间是(A)(1,3)- (B)[)1,3 (C)(,1)-∞ (D)(1,)+∞ (11)若函数22log (2)y x ax a =-+的值域是R ,则实数a 的取值范围是(A)01a << (B)01x ≤≤ (C)0a <或1a > (D)0a ≤或1a ≥(12)已知函数1()3x f x -=,则它的反函数1()f x -的图象是012y x12y x12y x12y x(A) (B) (C) (D)第Ⅱ卷(非选择题 共90分)二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. (13)函数2()1(0)f x x x =+≤的反函数为 .(14)函数f (x) 对任何x ∈R + 恒有f (x 1·x 2) = f (x 1) + f (x 2),已知f (8) = 3,则f (2) =_____.(15)已知函数2()65f x x mx =-+在区间[)2,-+∞上是增函数,则m 的取值范围是 . (16)如果函数22log (2)y x ax a =+++的定义域为R ,则实数a 的范围是 . 三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)求不等式25||60x x -+>。
高一上册数学第一次月考试卷及答案高一上册数学第一次月考试卷及答案一、选择题(每小题5分,共60分)1.在① ≠ ② ≠ ③ ≠ ④四个关系中,错误的个数是()A。
1个B。
2个C。
3个D。
4个2.已知全集 U,集合 A,B,C,那么集合A∩B∩C 的补集是()A.U-B-CB.A∪B∪CC.U-A∪B∪CD.A∩B∩C3.已知集合 A={x|x2},则A∩B 的元素个数是()A.0B.1C.∞D.不确定4.函数 f(x)在 R 上为减函数,则实数的取值范围是()A.(-∞,a]B.(-∞,a)C.[a,∞)D.(a,∞)5.集合 A、B 各有两个元素,A∩B 有一个元素 x,若集合A、B 同时满足:(1)x>0,(2)A∪B 的元素和小于 5,则满足条件的 A、B 的组数为()A。
0B。
1C。
2D。
36.函数 f(x)=x^2-4x+3 的递减区间是()A。
(-∞,1]B。
[1,2]C。
[2,+∞)D。
[1,+∞)7.设 A、B 是两个非空集合,定义 A 与 B 的差集为 A-B={x|x∈A且x∉B},则 A-(B-A) 等于()A。
A∩BB。
A∪BC。
A-BD。
B-A8.若函数f(x)=√(x-1) 的定义域是[1,∞),则函数 g(x)=f(3-x) 的定义域是()A.(-∞,2]B.(-∞,3)C.[0,∞)D.[1,∞)9.不等式 x^2-2x+1<0 的解集是空集,则实数 x 的范围为()A.x∈RB.x∈(0,1)C.x∈(1,2)D.x∈(2,3)10.若函数 f(x)在 [a,b] 上为增函数,则实数的取值范围为()A.[f(a),f(b)]B.(f(a),f(b))C.[f(b),f(a)]D.(f(b),f(a))11.设集合 A={1,2,3},B={4,5},且 A、B 都是集合C={1,2,3,4,5} 的子集合,如果把 A、B 叫做集合的“长度”,那么集合的“长度”的最小值是()A。
2019学年度第一学期高一第一次大考数 学 试 卷第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求的 )1.把集合{}2450x x x --=用列举法...表示为( ) A .{1x =-,5x =} B .{x |1x =-或5x =} C .{2450x x --=}D .{1,5-}2.下列对应关系:①{1,4,9}A =,{3,2,1,1,2,3}B =---,:f x x →的平方根; ②,A R B R ==,:f x x →的倒数; ③,A R B R ==,2:2f x x →-;④{1,0,1}A =-,{1,0,1}B =-,2:f x x →. 其中f 是A 到B 的映射的是( ) A. ①③ B.②④C. ②③D. ③④3.已知5,(6)()(2),(6)x x f x f x x -≥⎧=⎨+<⎩,则(3)f =( )A .2B .3 C.4D .54. 已知集合{|3,}nS x x n N *==∈,集合{|3,}T x x n n N *==∈,则S 与T 的关系是( )A. S T =∅IB. T S ⊆C. S T ⊆D. S ⊆T 且T ⊆S5.已知集合{}{}13, 2 2,P x x Q x x x =∈≤≤=∈≥≤-R R 或 则()P Q =R U ð( )A .[2,3]B .(2,3]-C .[1,2)D .(,2][1,)-∞-+∞U6.下列函数中,在[)1,+∞上为增函数的是( ) A.()22y x =- B.1y x =- C.11y x =+ D.()21y x =-+ 7.如图的曲线是幂函数n y x =在第一象限内的图象,已知n 分别取112±,,2四个值,相应曲线1C 、2C 、3C 、4C 的n 依次为( )A .11122-,,,B .12112-,,, C .111222-,,, D .112122-,,,8.已知(31)4,(1)(),(1)a x a x f x ax x -+<⎧=⎨-≥⎩是定义在(,)-∞+∞上是减函数,则a 的取值范围是( )A .11[,)83B .1[0,]3C. 1(0,)3D .1(,]3-∞9.已知函数c bx x y ++=2,且)()1(x f x f -=+,则下列不等式中成立的是( )A .)2()0()2(f f f <<-B .)2()2()0(f f f <-<C .)2()2()0(-<<f f fD .)2()0()2(-<<f f f10.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是( ) A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]11.若α、β是关于x 的方程()053222=+++--k k x k x (R k ∈)的两个实根,则22βα+ 的最大值等于( )A .6B .950C .18D .19 12.若函数()()()222f x x x xax b =+-++是偶函数,则()f x 的最小值为( )A.94 B.114 C.94- D.114- 第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分。
安徽省芜湖市高一上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)已知全集U=R,N={x|﹣3<x<0},M={x|x<﹣1},则图中阴影部分表示的集合是()A . {x|﹣3<x<﹣1}B . {x|﹣3<x<0}C . {x|﹣1≤x<0}D . {x<﹣3}2. (2分) (2019高一上·四川期中) 已知满足,且,则()A . 6B . 7C . 0D . 123. (2分) (2019高一上·阜新月考) ()A .B .C .D .4. (2分) (2017高一上·定州期末) 计算: =()A . ﹣3B .C . 3D .5. (2分) (2018高一上·荆州月考) 设集合,则集合的真子集个数为()A . 8B . 7C . 4D . 36. (2分) (2017高一上·新丰月考) 下列六个关系式:① ;② ;③ ;④ ;⑤ ;⑥ ,其中正确的个数为()A . 个B . 个C . 个D . 少于个7. (2分)命题:“若,则都等于0”的否命题是()A . 若,则都等于0B . 若,则都不等于0C . 若,则都不等于0D . 若,则不都等于08. (2分) (2018高三上·赣州期中) 命题“ ”的否定是()A .B .C .D .9. (2分) (2018高一下·重庆期末) 已知实数满足且,下列选项中不一定成立的是()A .B .C .D .10. (2分)设全集U是实数集R,,,则图中阴影部分所表示的集合是()A .B .C .D .11. (2分)下列命题中,真命题是()A . ∃x0∈R,B . ∀x∈R,C . “a>1,b>1”是“ab>1”的充要条件D . 设,为向量,则“|•|=||||”是“∥”的充要条件12. (2分) (2018高二下·邯郸期末) 命题“ 且的否定形式是()A . 且B . 或C . 且D . 或二、填空题 (共4题;共4分)13. (1分)(2019·金山模拟) 不等式的解集为________14. (1分)(2019·奉贤模拟) 已知,,则 ________15. (1分) (2020高一上·林芝期末) 已知点,点,则 ________.16. (1分)对于给定的非空数集,其最大元素最小元素的和称为该集合的“特征值”,A1 , A2 , A3 , A4 ,A5都含有20个元素,且A1∪A2∪A3∪A4∪A5={x∈N*|x≤100},则这A1 , A2 , A3 , A4 , A5的“特征值”之和的最小值为________.三、解答题 (共5题;共55分)17. (10分) (2019高一上·新丰期中) 已知集合,,求:(1);(2) .18. (10分) (2019高一上·拉萨期中) 已知集合 .(1)若,求实数的值;(2)若集合,且,求 .19. (10分) (2018高一上·黄陵期末) 已知x∈R,集合A中含有三个元素3,x,x2-2x.(1)求元素x满足的条件;(2)若-2∈A,求实数x.20. (10分) (2017高一下·河北期末) 设函数f(x)=|2x﹣2|+|x+3|.(1)解不等式f(x)>6;(2)若关于x的不等式f(x)≤|2a﹣1|的解集不是空集,试求a的取值范围.21. (15分) (2019高二上·集宁期中) 在中,是方程的两个根,且 .求的长.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共5题;共55分)17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、。
安徽省芜湖市高一上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)已知全集,集合,集合,则集合A .B .C .D .2. (2分)对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是()A . {x|x是小于18的正奇数}B . {x|x=4k+1,k∈Z,且k<5}C . {x|x=4t﹣3,t∈N,且t≤5}D . {x|x=4s﹣3,s∈N* ,且s≤5}3. (2分) (2018高一上·张掖期末) 函数的定义域为()A .B .C .D .4. (2分)设集合A={x|x2﹣2x﹣8<0},,则图中阴影部分表示的集合为()A . {x|﹣4<x<﹣1}B . {x|﹣1≤x<2}C . {x|﹣4<x≤﹣1}D . {x|﹣1≤x<4}5. (2分)已知偶函数f(x)的定义域为R,且f(1+x)=f(1﹣x),又当x∈[0,1]时,f(x)=x,函数g (x)= ,则函数h(x)=f(x)﹣g(x)在区间[﹣4,4]上的零点个数为()A . 8B . 6C . 9D . 76. (2分) (2019高一上·临河月考) 下列选项中可以组成集合的是()A . 接近0的数B . 很高的山C . 著名的主持人D . 大于0且小于10的整数7. (2分)已知函数满足,则的最小值为()A .B . 2C .D .8. (2分)集合{2013,3,24,9}的非空真子集有().A . 13个B . 14个C . 15个D . 16个9. (2分) (2018高二下·定远期末) 函数f(x)=ex-3x-1(e为自然对数的底数)的图象大致是()A .B .C .D .10. (2分)已知集合S={1,2},集合T={x|(x-1)(x-3)=0},那么S∪T=()A .B . {1}C . {1,2}D . {1,2,3}二、填空题 (共7题;共7分)11. (1分) (2016高一上·浦东期中) 集合A={x|x2﹣3x﹣4<0,x∈Z}用列举法表示为________12. (1分) (2017高一上·大庆月考) 已知集合A到集合B的映射,在映射下对应集合A中元素的B中元素为________13. (1分) (2019高一上·揭阳月考) 已知集合 ,那么集合________.14. (1分)(2017·福建模拟) 已知f(2x)=x+3,若f(a)=5,则a=________.15. (1分) (2019高一上·包头月考) 函数的单调递增区间为________.16. (1分)(2018·江苏) 函数的定义域为________.17. (1分) (2016高一上·宝安期中) 集合M={a|0<2a﹣1≤5,a∈Z}用列举法表示为________.三、解答题 (共5题;共30分)18. (10分) (2017高一上·辛集期末) 设函数f(x)=ln(2x﹣m)的定义域为集合A,函数g(x)=﹣的定义域为集合B.(Ⅰ)若B⊆A,求实数m的取值范围;(Ⅱ)若A∩B=∅,求实数m的取值范围.19. (5分) (2017高一上·沙坪坝期中) 已知一次函数f(x)在R上单调递增,当x∈[0,3]时,值域为[1,4].(1)求函数f(x)的解析式;(2)当x∈[﹣1,8]时,求函数的值域.20. (5分) (2019高一上·东莞月考) 设集合或,.(1)求;(2)求.21. (5分)已知函数f(x)=x2﹣2|x|.(1)判断并证明函数的奇偶性;(2)画出函数图象;(3)求函数f(x)的值域和单调区间.22. (5分) (2019高一上·成都期中) 设全集,, . (1)当时,求 .(2)若,求实数的取值范围.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共5题;共30分) 18-1、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、。
芜湖市顶峰美术学校2018~2019学年高一上学期第一次月考数 学(考试时间:120分钟 试卷满分:150分)注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3. 考试结束后,将本试卷和答题卡一并交回.一、选择题(共10小题,每小题5分,共50分)1.集合{}12x x ∈-≤N 的另一种表示是 ( )A .{1,2,3}B .{0,1,2,3}C .{0,1,2,3, 4}D .{1,2,3,4}2.已知集合{}20,,33A m m m =-+且1A ∈,则实数m 的值为 ( )A .2B .1C .1或2D .0,1,2均可3.已知集合A ={x |x 2-3x +2=0,x ∈R},B ={x |0<x <5,x ∈N},则满足条件A ⊆C ⊆B 的集合C 的个数为 ( )A .1B .2C .3D .4 4.若{1,2,3}≠⊂A ⊆{0,1,2,3,7},则集合A 的个数为 ( ) A .2 B .3 C .4 D .55.若A ={0,2,4,6},B ={0,3,6,9},则A ∩B =( )A .{0}B .{6}C .{0,6}D .{0,3,6}6.已知集合P ={1,3},则满足P ∪Q ={0,1,3,5}的集合Q 的个数是( )A .1B .2C .3D .47.设集合U ={1,2,3,4,5,6,7},M ={1,2,4,7},则 U M ð=( )A .UB .{1,3,5}C .{3,5,6}D .{2,4,6}8.已知N 为自然数集,集合P ={1,4,7,10,13},Q ={2,4,6,8,10},则P ∩Q N ð等于( )A .{1,7,13}B .{4,10}C .{1,7}D .{0,1,3}9.函数01x y -=的定义域是( )A .(0,+∞)B .(-∞,0)C .(0,1)∪(1,+∞)D .(-∞,-1)∪(-1,0)∪(0,+∞)10.函数()222f x x =+()x R ∈的值域是( )A .(0,1)B .(0,1]C .[0,1)D .[0,1]11.设集合A ={}08x x ≤≤,B ={}02y y ≤≤,从A 到B 的对应关系f 不是映射的是( ) A .:f x y →=13x B .:f x y →=14x C .:f x y →=15x D .:f x y →=16x 12.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为223y x =-,值域为{}1,5-的“孪生函数”共有( ) A .10个 B .9个 C .8个 D .4个二、填空题(共4小题,每小题5分,共20分)13.含有三个实数的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭,又可表示成{}2,,0a a b +,则2017201a b += .14.集合M ={1,3,a },N ={2,a 2}.若M ∪N ={1,2,3,4,16},则a 的值为_______.15.设函数()41f x x =+,若()2f m =,则实数m =_______. 16.已知函数()y f x =满足1()2()3f x f x x =+,则()f x 的解析式为____________.三、解答题(共6小题,17题10分,18—22题每小题12分,共70分)17.集合{}22|190A x x ax a =-+-=,{}2|560B x x x =-+=,{}2|280C x x x =+-=,满足A B ≠∅,,A C =∅求实数a 的值.18.已知集合A ={x |ax 2-3x -4=0,x ∈R },(1)若A 中有两个元素,求实数a 的取值范围;(2)若A 中至多有一个元素,求实数a 的取值范围.19.已知集合M ={x |x <2且x ∈N },N ={x |-2<x <2且x ∈Z }.(1)写出集合M 的子集、真子集;(2)求集合N 的子集数、非空真子集数.20.求函数()f x =12x -的定义域. 21.已知函数f (x )(x ∈R )是偶函数,且当x ≥0时,f (x )=3x -2,求函数f (x )的解析式.22.已知1()(2)2f x x x =≠-+ ,2()1h x x =+. (1)求(2)f ,(1)h 的值;(2)求[](2)f h 的值;(3)求()f x ,()h x 的值域.2018-2019学年高一第一次月考(数学)参考答案及解析1.【答案】B【解析】∵12,3,x x -≤∴≤又∵x ∈N ,∴x =0,1,2,3,故选B .2.【答案】A【解析】由1A ∈可得1m =或2331m m -+=,∴1m =,2,当1m =时,集合{}0,1,1A =,不满足集合中元素的互异性;当2m =时,集合{}0,1,2A =,满足元素互异性,所以2m =,故选A .3.【答案】D【解析】由题意知:A ={1,2},B ={1,2,3,4}.又因A ⊆C ⊆B ,则集合C 可能为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.4.【答案】B【解析】集合{1,2,3}是集合A 的真子集,同时集合A 又是集合{0,1,2,3,7}的子集,所以集合A 只能取集合{1,2,3,0},{1,2,3,7}和{0,1,2,3,7}.5.【答案】C【解析】观察两集合元素可知,公共元素是0,6,从而A ∩B ={0,6}.6.【答案】D【解析】 ∵P ={1, 3},P ∪Q ={0,1,3,5},∴Q ={0,5}或{0,1,5}或{0,3,5}或{0,1,3,5},即集合Q 有4个.7.【答案】C【解析】 因为U ={1,2,3,4,5,6,7},M ={1,2,4,7},所以U M ð={3,5,6},所以选C .8.【答案】A【解析】∵P ={1,4,7,10,13},Q ={2,4,6,8,10},∴Q N ð={0,1,3,5,7,9,11,12,13,…}.∴P ∩Q N ð={1,7,13}.9.【答案】C 【解析】由10,0x x x -≠⎧⎨+>⎩得0x >且1x ≠.10.【答案】B【解析】由于x R ∈,所以x 2+2≥2,0<212x +≤12,则22012x <≤+,即0<()f x ≤1.11.【答案】A【解析】:f x y →=13x ,集合A 中的元素8对应83∉{}02y y ≤≤,故选项A 不是映射,通过检验知B ,C ,D 都属于映射.12.【答案】B【解析】由2231x -=-,2235x -=得x 的值为1,−1,2,−2,定义域为2个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个,因此共有9个“孪生函数”.13.【答案】−1 【解析】由题意得,{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,∴0b a =且01a a ≠≠,,即0b =. 则有{}{}2010a a a =,,,,,所以21a =,解得1a =-,∴201720181a b +=-. 14.【答案】4【解析】∵M ={1,3,a },N ={2,a 2},M ∪N ={1,2,3,4,16},∴a =4,a 2=16或a =16,a 2=4(舍),解得a =4.15.【答案】1 【解析】由题意知421m =+,解得1m =.16.【答案】()()20f x x x x=--≠ 【解析】∵1()2()3f x f x x =+,①∴将x 换成1x ,得()132f f x x x ⎛⎫=+ ⎪⎝⎭.② 由①②消去1f x ⎛⎫ ⎪⎝⎭,得()f x =2x x --,即()()20f x x x x =--≠. 17.【解析】{}2,3B =,{}4,2C =-,而AB ≠∅,则2,3至少有一个元素在A 中. 又AC =∅,∴2A ∉,3A ∈,即293190a a -+-=,得52a a ==-或,而5a A B ==时,,与AC =∅矛盾, ∴2a =-.18.【解析】 (1)∵A 中有两个元素,∴关于x 的方程ax 2-3x -4=0有两个不等的实数根, ∴9160a =+>且0a ≠,即916a >-且0a ≠. (2)当0a =时,A ={-43};当0a ≠时,关于x 的方程2340ax x --=应有两个相等的实数根或无实数根,∴9160a =+≤,即916a ≤-.故所求的a 的取值范围是916a ≤-或0a =.19.【解析】(1)∵M ={x |x <2且x ∈N }={0,1}∴M 的子集为∅,{0},{1},{0,1};其中真子集为:∅,{0},{1}.(2)∵N ={x |-2<x <2且x ∈Z }.∴N 的子集为∅,{-1},{0},{1},{-1,0},{-1,1},{0,1},{-1,0,1}. ∴N 的子集数为8个;非空真子集数为8-2=6个.20.【解析】要使函数有意义,则430,20,x x +≥⎧⎨-≠⎩即3,24x x ≥-≠且. 所以函数的定义域为3|,24x x x ⎧⎫≥-≠⎨⎬⎩⎭且. 21.【解析】当x <0时,-x >0,∴f (-x )=3(-x )-2=-3x -2.又∵f (x )是偶函数,∴f (-x )=f (x ),∴f (x )=-3x -2.∴所求函数的解析式为f (x )=32,0,32,0.x x x x -≥⎧⎨--<⎩22.【解析】(1)∵1()(2)2f x x x =≠-+,∴11(2)224f ==+.∵2()1h x x =+,∴2(1)112h =+=.(2)[]2(2)(21)(5)f h f f =+==11527=+.(3)∵1()2f x x =+的定义域为{}2x x ≠-|,∴0y ≠,∴函数()f x 的值域为(-∞,0)∪(0,+∞). ∵2()1h x x =+的定义域是R ,由二次函数图象知最小值为1,∴函数()h x 值域为[1,+∞).。