2017-2018学年东营市广饶县八年级下期中数学试卷(含答案解析)
- 格式:doc
- 大小:348.00 KB
- 文档页数:20
2017-2018学年度第二学期期中考试初二年级数学班级姓名学号考生须知1.本试卷共八页,共三道大题,25道小题。
满分100分。
考试时间120分钟。
2.在试卷和答题纸上准确填写班级、姓名和学号。
3.试卷答案一律书写在答题纸上,在试卷上作答无效。
4.答题纸上用黑色字迹签字笔作答,作图题请用铅笔。
一.选择题(请将唯一正确答案填入后面的括号中,每题2分,共20分)1.一元二次方程的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.无法确定2.如果方程的两个实数根分别为,那么的值是()A.3B.C.D.3.11名同学参加数学竞赛初赛,他们的得分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数B.中位数C.众数D.方差4.三角形的两边长分别为3和6,第三边的长是方程的一个根,则此三角形的周长为()A.10B.11C.13D.11或135.如图,□ABCD中,对角线AC、BD交于点O,点E 是BC 的中点.若OE =3cm ,则AB 的长为()A .12cmB .9cmC .6cmD .3cm6.如图,菱形花坛ABCD 的面积为12平方米,其中沿对角线AC 修建的小路长为4米,则沿对角线BD 修建的小路长为()A .3米B .6米C .8米D .10米7.将抛物线平移,得到抛物线,下列平移方式中,正确的是()A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位8.已知二次函数的图象上有点A,B,C,则y 1、y 2、y 3的大小关系为()A .y 3>y 2>y 1B .y 3>y 1>y 2C .y 2>y 3>y 1D .y 1>y 2>y 39.在学完二次函数的图象及其性质后,老师让学生们说出的图象的一些性质,小亮说:“此函数图象开口向上,且对称轴是”;小丽说:“此函数图象肯定与x 轴有两个交点”;小红说:“此函数与y 轴的交点坐标为(0,-3)”;小强说:“此函数有最小值,”……请问这四位同学谁说的结论是错误的()A .小亮B .小丽C .小红D .小强10.如图,正方形ABCD 中,AB =8cm ,对角线AC ,BD 相交于点O ,点E ,F 分别从B ,C 两点同时出发,以1cm /s 的速度沿BC ,CD 运动,到点C ,D时停止ADOF运动.设运动时间为t(s),△OEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为()A B C D二.填空题(每空2分,共24分)11.方程的一个根是2,那么另一根是,=_______.12.若关于x的方程有两个相等实根,则代数式的值为.13.关于x的方程有两个实数根,则实数m的取值范围是__________________.14.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:选手甲乙平均数(环)9.59.5方差0.0350.015请你根据上表中的数据选一人参加比赛,最适合的人选是____,理由是_________________________________________.15.请写出一个开口向下,且经过(0,3)的抛物线的解析式______________________________.16.二次函数的图象与x轴只有一个公共点,则m的值为.17.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是_____________;(选填矩形、菱形、正方形、无法确定)(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为________,∠ABC=________.18.小明和小亮组成团队参加某科学比赛.该比赛的规则是:每轮比赛一名选手参加,若第一轮比赛得分满60则另一名选手晋级第二轮,第二轮比赛得分最高的选手所在团队取得胜利.为了在比赛中取得更好的成绩,两人在赛前分别作了九次测试,下图为二人测试成绩折线统计图,下列说法合理的是_____________.①小亮测试成绩的平均数比小明的高②小亮测试成绩比小明的稳定③小亮测试成绩的中位数比小明的高④小亮参加第一轮比赛,小明参加第二轮比赛,比较合理三.解答题(19题每小题4分,20、21、22、24题每题6分,23、25题每题8分,共56分)19.解方程:(1)(2)(3)(4)(用配方法)20.(列方程解决问题)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.求该企业从2015年到2017年利润的年平均增长率.21.关于的一元二次方程有两个不相等的实数根.(1)求实数的取值范围;(2)若,求的值.22.中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对初二年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:(1)统计表中的a=,b=,c=;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校初二年级共有600名学生,请你估计该校初二年级学生课外阅读7本及以上的人数.23.二次函数图象上部分点的横坐标,纵坐标的对应值如下表:x……y……(1)表格中的=,=;(2)求这个二次函数的表达式;(3)在右图中画出此二次函数的图象;(4)此抛物线在第一象限内的部分记为图象G,如果过抛物线顶点的直线y=mx+n(m≠0)与图象G有唯一公共点,请结合图象,写出m的取值范围_________________________________.24.在学习了正方形后,数学小组的同学对正方形进行了探究,发现:(1)如图1,在正方形ABCD中,点E为BC边上任意一点(点E不与B、C重合),点F在线段AE上,过点F的直线MN⊥AE,分别交AB、CD于点M、N.求证:AE=MN;同学们发现,过点D作DP∥MN,交AB于P,构造□DNMP,经过推理能够使问题得到解决(如图2).请你完成证明过程.xy11O(2)如图3,当点F 为AE 中点时,其他条件不变,连接正方形的对角线BD ,MN 与BD 交于点G ,连接BF ,求证:BF=FG .25.在平面直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y ′),给出如下定义:如果,那么称点Q 为点P 的“关联点”.例如:点(5,6)的“关联点”为点(5,6),点(-5,6)的“关联点”为点(-5,-6).(1)点(2,1)的“关联点”为;(2)如果点(m +1,2)是一次函数y =x +3图象上点N 的“关联点”,求点N 的坐标.(3)如果点P 在函数的图象上,其“关联点”Q 的纵坐标y ′的取值范围是-4<y ′≤4,则a 的取值范围是_________________.图1图2图3参考答案:1.C2.D3.B4.C5.C6.B7.D8.A9.D10.B11.3,612.113.m≥0且m≠114.乙,方差较小,成绩相对稳定.15.如y=-x2+3等16.m=117.菱形,18.②④19.(1)5,-1(2),(3)(4)20.20%21.(1)(2)22.(1)10,0.28,50;(2)略;(3)6.4;(4)26423.(1)-5,0(2)(3)略(3)m≥1或m≤-224.略25.(1)(2,1)(2)N(-5,-2)(3)2≤a<。
2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分30分,每小题3分)1.下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个2.若二次根式有意义,则x的取值范围是()A.x>B.x≥C.x≤D.x≤5 3.下列方程是一元二次方程的是()A.x2﹣y=1B.x2+2x﹣3=0C.x2+=3D.x﹣5y=6 4.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=25.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=16.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>57.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角α=30°,若AC=8,BD=6,则平行四边形ABCD的面积是()A.6B.8C.10D.128.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是( ) A .5,5B .5,6C .6,6D .6,59.不解方程,判别方程2x 2﹣3x =3的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .有一个实数根D .无实数根10.在平行四边形ABCD 中,AC 与BD 相交于0,AE ⊥BD 于E ,CF ⊥BD 于F ,则图中的全等三角形共( )A .5对B .6对C .7对D .8对二.填空题(共6小题,满分24分,每小题4分)11.当x =﹣2时,二次根式的值是 .12.一个多边形的每一个外角为30°,那么这个多边形的边数为 .13.化简:= .14.小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为S 甲2=7.5,S乙2=1.5,S丙2=3.1,那么该月份白菜价格最稳定的是 市场.15.已知关于x 的二次方程a (x +h )2+k =0的解为,则方程的解为 .16.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 cm 2.三.解答题(共7小题,满分66分)17.在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第步开始出错的;(2)请你给出正确的解题过程.18.解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)(4)2(x﹣3)2=x2﹣9.19.王老师为了从平时在班级里数学比较优秀的甲、乙两位同学中选拔一人参加“全国初中数学希望杯竞赛”,对两位同学进行了辅导,并在辅导期间进行了5次测验,两位同学测验成绩得分情况如图所示:利用表中提供的数据,解答下列问题:(1)根据右图分别写出甲、乙五次的成绩:甲:;乙:.(2)填写完成下表:(3)请你根据上面的信息,运用所学的统计知识,帮助王老师做出选择,并简要说明理由.20.某商场销售某种商品,进价为每千克40元,按每千克60元出售,平均每天可售出100千克.后来经过市场调查,单价每降低2元,则平均每天的销售量可增加20千克.若该商场销售这种商品平均每天获利2240元,并且为尽可能让利于顾客,赢得市场,那么这种商品每千克应降价多少元?21.如图所示,在▱ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD于F.(1)求证:CE=CF;(2)延长AD、EF交于点H,延长BA到G,使AG=CF,若AD=7,DF=3,EH=2AE,求GF的长.22.已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.(1)求证:此方程总有两个实数根;(2)求此方程的两个根(若所求方程的根不是常数,就用含k的式子表示);(3)如果此方程的根刚好是某个等边三角形的边长,求k的值.23.如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.(1)请在图2中,计算裁剪的角度∠BAD;(2)计算按图3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形,既是中心对称图形,又是轴对称图形,故错误;第二个图形,是轴对称图形,不是中心对称图形,故错误;第三个图形,是轴对称图形,不是中心对称图形,故错误;第四、五个是中心对称图形而不是轴对称图形,故正确.故选:B.【点评】掌握好中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180度后与原图重合.2.若二次根式有意义,则x的取值范围是()A.x>B.x≥C.x≤D.x≤5【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,5x﹣1≥0,解得,x≥,故选:B.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.3.下列方程是一元二次方程的是()A.x2﹣y=1B.x2+2x﹣3=0C.x2+=3D.x﹣5y=6【分析】利用一元二次方程的定义判断即可.【解答】解:A、x2﹣y=1是二元二次方程,不合题意;B、x2+2x﹣3=0是一元二次方程,符合题意;C、x2+=3不是整式方程,不合题意;D、x﹣5y=6是二元一次方程,不合题意,故选:B.【点评】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.4.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=2【分析】利用二次根式的加减法对A、B进行判断;利用二次根式的除法法则对C进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、原式=,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=1【分析】移项后配方,再根据完全平方公式求出即可.【解答】解:x2+4x﹣5=0,x2+4x=5,x2+4x+22=5+22,(x+2)2=9,故选:A.【点评】本题考查了解一元二次方程的应用,关键是能正确配方.6.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>5【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法:=a(a≥0),=﹣a(a≤0).7.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角α=30°,若AC=8,BD=6,则平行四边形ABCD的面积是()A.6B.8C.10D.12【分析】先过点D作DE⊥AC于点E,由在▱ABCD中,AC=8,BD=6,可求得OD的长,又由对角线AC、BD相交成的锐角α为30°,求得DE的长,△ACD的面积,则可求得答案.【解答】解:过点D作DE⊥AC于点E,∵在▱ABCD中,AC=8,BD=6,∴OD=BD=3,∵∠α=30°,∴DE=OD•sin∠α=3×=1.5,∴S=AC•DE=×8×1.5=6,△ACD=12.∴S▱ABCD=2S△ACD故选:D.【点评】此题考查了平行四边形的性质以及三角函数的知识.注意准确作出辅助线是解此题的关键.8.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是( ) A .5,5B .5,6C .6,6D.6,5【分析】根据众数、中位数的定义分别进行解答即可. 【解答】解:由表知数据5出现次数最多,所以众数为5; 因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B .【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 9.不解方程,判别方程2x 2﹣3x =3的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .有一个实数根D .无实数根【分析】先把方程化为一般式得到2x 2﹣3x ﹣3=0,再计算△=(﹣3)2﹣4×2×(﹣3)=18+24>0,然后根据△的意义判断方程根的情况. 【解答】解:方程整理得2x 2﹣3x ﹣3=0,∵△=(﹣3)2﹣4×2×(﹣3)=18+24>0,∴方程有两个不相等的实数根.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.在平行四边形ABCD中,AC与BD相交于0,AE⊥BD于E,CF⊥BD于F,则图中的全等三角形共()A.5对B.6对C.7对D.8对【分析】由四边形ABCD是平行四边形,可得OA=OC,OB=OD,AB=CD,AD=BC,即可证得△ABD≌△CDB(SSS),△ABC≌△CDA,△AOD≌△COB(SAS),△AOB≌△COD,又由AC⊥BD,AE⊥BD,可得△AOE≌△COF,△ABE≌△CDF(AAS),△ADE≌△CBF.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AB=CD,AD=BC,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),同理:△ABC≌△CDA;在△AOD和△COB中,,∴△AOD≌△COB(SAS),同理:△AOB≌△COD,∴∠ABO=∠CDO,∵AC⊥BD,AE⊥BD,∴∠AEO=∠CFO=90°,∠AEB=∠CFD=90°,在△AOE和△COF中,,∴△AOE ≌△COF (AAS ), 在△ABE 和△CDF 中,,∴△ABE ≌△CDF (AAS ). 同理:△ADE ≌△CBF . 故选:C .【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.二.填空题(共6小题,满分24分,每小题4分)11.当x =﹣2时,二次根式的值是 4 .【分析】把x =﹣2代入已知二次根式,通过开平方求得答案.【解答】解:把x =﹣2代入得,==4,故答案为:4.【点评】本题考查了二次根式的定义及性质,注意二次根式的结果是非负数是解答此题的关键. 12.一个多边形的每一个外角为30°,那么这个多边形的边数为 12 .【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:多边形的边数:360°÷30°=12, 则这个多边形的边数为12. 故答案为:12.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.13.化简:=.【分析】根据二次根式的性质计算即可.【解答】解:原式==,故答案为:.【点评】本题考查的是二次根式的化简求值,掌握二次根式的性质是解题的关键.14.小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为S 甲2=7.5,S乙2=1.5,S丙2=3.1,那么该月份白菜价格最稳定的是 乙 市场.【分析】根据方差的定义,方差越小数据越稳定,即可得出答案. 【解答】解:∵S 甲2=7.5,S 乙2=1.5,S 丙2=3.1, ∴S 甲2>S 丙2>S 乙2,∴该月份白菜价格最稳定的是乙市场; 故答案为:乙.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.已知关于x 的二次方程a (x +h )2+k =0的解为,则方程的解为 x 1=﹣,x 2=0 .【分析】由于方程的解比二次方程a (x +h )2+k =0的解要大,则方程的解为x 1=﹣3+=﹣,x 2=﹣+=0.【解答】解:∵关于x 的二次方程a (x +h )2+k =0的解为,∴方程的解为x 1=﹣3+=﹣,x 2=﹣+=0.故答案为x 1=﹣,x 2=0.【点评】本题考查了一元二次方程的解:满足一元二次方程的未知数的值叫一元二次方程的解. 16.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 41 cm 2.【分析】连接E 、F 两点,由三角形的面积公式我们可以推出S △EFC =S △BCQ ,S △EFD =S △ADF ,所以S △EFG =S △BCQ ,S △EFP =S △ADP ,因此可以推出阴影部分的面积就是S △APD +S △BQC . 【解答】解:连接E 、F 两点, ∵四边形ABCD 是平行四边形, ∴AB ∥CD ,∴△EFC 的FC 边上的高与△BCF 的FC 边上的高相等, ∴S △EFC =S △BCF , ∴S △EFQ =S △BCQ , 同理:S △EFD =S △ADF , ∴S △EFP =S △ADP ,∵S △APD =16cm 2,S △BQC =25cm 2, ∴S 四边形EPFQ =41cm 2, 故答案为:41.【点评】本题主要考查了平行四边形的性质,题目综合性较强,主要考查了平行四边形的性质,解答此题关键是作出辅助线,找出同底等高的三角形. 三.解答题(共7小题,满分66分)17.在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第 ③ 步开始出错的; (2)请你给出正确的解题过程.【分析】根据二次根式的运算法则即可求出答案. 【解答】解:(1)③(2)原式=2﹣=6﹣2=4【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.18.解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)(4)2(x﹣3)2=x2﹣9.【分析】(1)利用配方法得到(x﹣7)2=57,然后利用直接开平方法解方程;(2)先计算判别式的值,然后利用求根公式解方程;(3)先移项得到(2x+3)2﹣4(2x+3)=0,然后利用因式分解法解方程;(4)先变形得到2(x﹣3)2﹣(x+3)(x﹣3)=0,然后利用因式分解法解方程.【解答】解:(1)x2﹣14x+49=57,(x﹣7)2=57,x﹣7=±,所以x1=7+,x2=7﹣;(2)△=(﹣7)2﹣4×1×(﹣18)=121,x=,所以x1=9,x2=﹣2;(3)(2x+3)2﹣4(2x+3)=0,(2x+3)(2x+3﹣4)=0,2x+3=0或2x+3﹣4=0,所以x1=﹣,x2=;(4)2(x﹣3)2﹣(x+3)(x﹣3)=0,(x﹣3)(2x﹣6﹣x﹣3)=0,x﹣3=0或2x﹣6﹣x﹣3=0,所以x1=3,x2=9.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法解一元二次方程.19.王老师为了从平时在班级里数学比较优秀的甲、乙两位同学中选拔一人参加“全国初中数学希望杯竞赛”,对两位同学进行了辅导,并在辅导期间进行了5次测验,两位同学测验成绩得分情况如图所示:利用表中提供的数据,解答下列问题:(1)根据右图分别写出甲、乙五次的成绩:甲:10,13,12,14,16;乙:13,14,12,12,14.(2)填写完成下表:(3)请你根据上面的信息,运用所学的统计知识,帮助王老师做出选择,并简要说明理由.【分析】根据图表就可以得到甲,乙的成绩,注意观察次数所对应的点的纵坐标,就是成绩;根据这两组数就可以求出每组的平均数,中位数、众数、方差;根据平均数的大小确定成绩的好坏,根据方差确定成绩哪个稳定.【解答】解:(1)甲:10,13,12,14,16;乙:13,14,12,12,14;(2)(3)选择乙去竞赛.因为甲乙的平均分相同,乙的成绩较稳定所以选乙去.【点评】本题主要考查了平均数、中位数、众数的概念,方差是描述一组数据波动大小的量.20.某商场销售某种商品,进价为每千克40元,按每千克60元出售,平均每天可售出100千克.后来经过市场调查,单价每降低2元,则平均每天的销售量可增加20千克.若该商场销售这种商品平均每天获利2240元,并且为尽可能让利于顾客,赢得市场,那么这种商品每千克应降价多少元?【分析】设这种商品每千克应降价x元,利用销售量×每千克利润=2240元列出方程求解即可.【解答】解:设这种商品每千克应降价x元,根据题意得(60﹣x﹣40)(100+×20)=2240整理得x2﹣10x+24=0解得:x1=4(不合题意,舍去),x2=6.答:这种商品每千克应降价6元.【点评】本题考查了一元二次方程的应用,解题的关键是掌握销售问题中的基本数量关系.21.如图所示,在▱ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD于F.(1)求证:CE=CF;(2)延长AD、EF交于点H,延长BA到G,使AG=CF,若AD=7,DF=3,EH=2AE,求GF的长.【分析】(1)由题意可得:∠DAE=∠BAE=∠AEB=∠BAD=∠C,则∠C+∠FEC=90°,根据三角形内角和可得∠C+∠EFC=90°,则∠CEF=∠CFE,即可得结论;(2)连接AC,作AP⊥BC于P,由题意可求AB=BE=CD=5,CE=CF=2,即可求DH=3,根据勾股定理可求AE的长,根据勾股定理可列出方程,可求出BP,AP,PE,PC的长度,再根据勾股定理可求AC的长,由题意可证AC=GF,即可得GF的长.【解答】证明:(1)∵四边形ABCD是平行四边形∴∠BAD=∠C,AD∥BC∴∠DAE=∠AEB∵AE平分∠DAB∴∠BAE=∠DAE=∠BAD∴∠BAE=∠AEB=∠BAD∴AB=BE∵AE⊥EF∴∠AEF=90°∴∠AEB+∠FEC=90°,即∠BAD+∠FEC=90°∴∠C+∠FEC=90°∵∠C+∠FEC+∠EFC=180°∴∠C+∠EFC=90°∴∠EFC=∠FEC∴CE=CF(2)如图连接AC,作AP⊥BC于P∵四边形ABCD是平行四边形∴AB=CD,AD=BC=7,AB∥CD∵CE=CF∴BC﹣BE=CD﹣DF,且AB=BE=CD∴7﹣AB=AB﹣3∴AB=5=BE=CD∴CE=CF=2∵AD∥BC∴∠H=∠FEC,且∠FEC=∠EFC,∠DFH=∠EFC ∴∠H=∠DFH∴DH=DF=3∴AH=10在Rt△AEH中,AH2=AE2+EH2,且EH=2AE∴5AE2=100∴AE=2在Rt△ABP和Rt△APE中AP2=AB2﹣BP2,AP2=AE2﹣PE2.∴AB2﹣BP2=AE2﹣PE2.∴25﹣BP2=20﹣(5﹣BP)2.∴BP=3∴AP=4,PE=2,PC=4在Rt△APC中,AC==4∵AB∥CD,AG=CF∴四边形AGFC是平行四边形∴GF=AC=4【点评】本题考查了平行四边形的性质,全等三角形的性质和判定,勾股定理,添加恰当的辅助线构造直角三角形是本题的关键.22.已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.(1)求证:此方程总有两个实数根;(2)求此方程的两个根(若所求方程的根不是常数,就用含k的式子表示);(3)如果此方程的根刚好是某个等边三角形的边长,求k的值.【分析】(1)由△=[﹣(k+1)]2﹣4×1×(2k﹣2)=(k﹣3)2≥0可得答案;(2)利用因式分解法可得(x﹣2)[x﹣(k﹣1)]=0,再进一步求解可得;(3)根据等边三角形的三边相等得出关于k的方程,解之可得.【解答】解:(1)依题意,得△=[﹣(k+1)]2﹣4×1×(2k﹣2)=k2+2k+1﹣8k+8=k2﹣6k+9=(k﹣3)2≥0,∴此方程总有两个实数根.(2)将方程左边因式分解得(x﹣2)[x﹣(k﹣1)]=0,则x﹣2=0或x﹣(k﹣1)=0,解得x1=2,x2=k﹣1;(3)∵此方程的根刚好是某个等边三角形的边长,∴k﹣1=2.∴k=3.【点评】此题考查了配方法解一元二次方程与一元二次方程判别式的知识.解题的关键是熟练掌握一元二次方程的根的个数与判别式的关系及因式分解法解一元二次方程及等边三角形的性质.23.如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.(1)请在图2中,计算裁剪的角度∠BAD;(2)计算按图3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.【分析】(1)根据题意先求得AB=30cm,由纸带的宽为15cm,根据三角函数求得∠BAD=30°;(2)由三棱柱的侧面展开图求出BC和MB的长,即是所需的矩形纸带的长度.【解答】解:(1)由图2的包贴方法知:∵AB的长等于三棱柱的底边周长,∴AB=30cm,∵纸带的宽为15cm,∴sin∠BAD=sin∠ABM===,∴∠BAD=30°;(2)在图3中将三棱柱沿过点A的侧棱剪开,得知如图甲的侧面展开图.将图甲的△ABF向左平移30cm,△CDE向右平移30cm,拼成如图乙中的平行四边形AMCN,此平行四边形即为图2中的平行四边形ABCD.由题意得:图2中的BC=图乙中的AM=2AE=2AB÷cos∠EAB=60÷cos30°=40(cm),故所需的矩形纸带的长度为MB+BC=30×cos30°+40=55cm.【点评】本题是一道立体图形的侧面展开,结合三角函数进行计算是一道综合题,难度较大.。
2017-2018学年八年级(下)期中数学试卷一、选择题(本大题共10小题,共40.0分)1.如图,平行四边形ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则AB长的取值范围是()A. B. C.D.2.如图,△ABC中,AB=AC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则DE的长为()A. 10B. 6C. 8D. 53.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3cm,则点D到AB的距离DE是()A. 5cmB. 4cmC. 3cmD. 2cm4.如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为()A.B. 4cmC.D.5.顺次连接菱形的各边中点所得到的四边形是()A. 平行四边形B. 菱形C. 矩形D. 正方形6.如图,矩形ABCD中,AB=12cm,BC=24cm,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积()cm2.A. 72B. 90C. 108D. 1447.下列说法中正确的是()A. 四边相等的四边形是菱形B. 一组对边相等,另一组对边平行的四边形是菱形C. 对角线互相垂直的四边形是菱形D. 对角线互相平分的四边形是菱形8.已知菱形的两条对角线长分别是6cm和8cm,则菱形的边长是()A. 12cmB. 10cmC. 7cmD. 5cm9.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是()A. B. C. D.10.如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A. 6cmB. 4cmC. 10cmD. 以上都不对二、填空题(本大题共8小题,共32.0分)11.Rt△ABC中,∠ABC=90°,D为AC的中点,AC=10,则BD=______.12.已知三点A、B、O.如果点A′与点A关于点O对称,点B′与点B关于点O对称,那么线段AB与A′B′的关系是______.13.在矩形纸片ABCD中,AB=16,AD=12,点P在边AB上,若将△DAP沿DP折叠,使点A恰好落在矩形对角线上的点A′处,则AP的长为______.14.如图,某公园有一块菱形草地ABCD,它的边及对角线AC是小路,若AC的长为16m,边AB的长为10m,妈妈站在AC的中点O处,亮亮沿着小路C→D→A→B→C跑步,在跑步过程中,亮亮与妈妈之间的最短距离为______m.15.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD=________.16.17.如图,在四边形ABCD中,E,F分别是AB,AD的中点,若EF=2,BC=5,CD=3,则点D到直线BC的距离为______.18.如图,▱ABCD中,∠C=110°,BE平分∠ABC,则∠AEB的度数等于______.19.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件______.三、解答题(本大题共8小题,共78.0分)20.如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.21.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.22.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,求EF的长度.23.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3.(1)求DE的长;(2)若AC=6,BC=8,求△ADB的面积.24.已知:如图,在正方形ABCD中,E是CD边上的一点,F为BC延长线上一点,且CE=CF.(1)求证:△BEC≌△DFC;(2)如果BC+DF=9,CF=3,求正方形ABCD的面积.25.如图,菱形ABCD中,对角线AC、BD交于点O,AC=24,BD=10,DE⊥AB于E.(1)求菱形ABCD的周长;(2)求菱形ABCD的面积;(3)求DE的长.26.如图,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形,请你只用无刻度的直尺在图中画出∠AOB的平分线.(保留作图痕迹,不要求写作法)并请说明画出的线为什么平分∠AOB?27.把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.(1)求证:△BHE≌△DGF;(2)若AB=6cm,BC=8cm,求线段FG的长.答案和解析1.【答案】A【解析】解:∵四边形ABCD是平行四边形,∴AO=AC,BO=BD,∵AC=8,BD=6,∴AO=4,BO=3,∴4-3<AB<4+3,解得:1<AB<7,故选:A.根据平行四边形对角线互相平分可得AO=4,BO=3,再根据三角形的三边关系可得4-3<AB<4+3,再解即可.此题主要考查了三角形的三边关系以及平行四边形的性质,关键是掌握平行四边形的对角线互相平分.2.【答案】D【解析】解:∵AB=AC=10,AD平分∠BAC,∴BD⊥DC,∵E为AC的中点,∴DE=AC=×10=5,故选:D.由等腰三角形的性质证得BD=DC,根据直角三角形斜边上的中线的性质即可求得结论.本题主要考查了等腰三角形的性质,三角形的中位线,熟练掌握三角形的中位线是解决问题的关键.3.【答案】C【解析】解:过D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,DE⊥AB,∴DE=CD,∵CD=3cm,∴DE=3cm.故选:C.过D作DE⊥AB于E,由已知条件,根据角平分线上的点到角的两边的距离相等解答.本题主要考查角平分线的性质;作出辅助线是正确解答本题的关键.4.【答案】D【解析】解:∵点D、E分别是边AB、AC的中点,∴DE=BC,∵DE=2cm,∴BC=4cm,∵AB=AC,四边形DEFG是正方形.∴△BDG≌△CEF,∴BG=CF=1,∴EC=,∴AC=2cm.故选:D.根据三角形的中位线定理可得出BC=4,由AB=AC,可证明BG=CF=1,由勾股定理求出CE,即可得出AC的长.本题考查了全等三角形的判定、勾股定理、等腰三角形的性质以及正方形的性质,是基础题,比较简单.5.【答案】C【解析】解:如图,连接AC、BD,相交于点O,∵四边形ABCD为菱形,E、F、H、G为菱形边上的中点,∴EH∥FG,EF∥HD,∴四边形EHGF为平行四边形.根据菱形的性质可得菱形的对角线互相垂直,故∠EFG=∠AOD=90°所以四边形EHGF为矩形.故选:C.本题画出辅助线,连接AC、BD,证明连接菱形的各边中点所得到的是平行四边形,再证平行四边形的一个角为直角即可.本题考查的是矩形的判定定理以及菱形的判定.考生应熟记书本上的内容,难度一般.6.【答案】B【解析】解:由折叠得到△BCD≌△BC′D,由矩形ABCD得到△ABD≌△CDB,∴△ABD≌△C′DB,∴∠C′BD=∠ADB,∴EB=DE,在△ABE和△C′DE中,,∴△ABE≌△C′DE(AAS),∴AE=C′E,设AE=C′E=xcm,则有ED=AD-AE=(24-x)cm,在Rt△ABE中,根据勾股定理得:AB2+AE2=BE2,即122+x2=(24-x)2,解得:x=9,∴AE=9cm,ED=15cm,则S△BED=ED•AB=×15×12=90(cm2).故选:B.由折叠得到△BCD≌△BC′D,由矩形ABCD得到△ABD≌△CDB,可得出△ABD≌△C′DB,利用全等三角形的对应角相等得到∠C′BD=∠ADB,利用等角对等边得到EB=ED,再由一对直角相等,一对对顶角相等,利用AAS得到△ABE≌△C′DE,利用全等三角形的对应边相等得到AE=C′E,设AE=C′E=xcm,则有ED=AD-AE=(24-x)cm,在直角三角形ABE中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出ED的长,三角形BED的面积以ED为底,AB为高,求出即可.此题考查了翻折变换(折叠问题),涉及的知识有:全等三角形的判定与性质,勾股定理,利用了方程的思想,熟练掌握翻折的性质是解本题的关键.7.【答案】A【解析】解:A、四边相等的四边形是菱形,说法正确;B、一组对边相等,另一组对边平行的四边形是菱形,说法错误;C、对角线互相垂直的四边形是菱形,说法错误;D、对角线互相平分的四边形是菱形,说法错误;故选:A.根据菱形的判定:一组邻边相等的平行四边形是菱形;四条边都相等的四边形是菱形.对角线互相垂直的平行四边形是菱形分别进行分析即可.此题主要考查了菱形的判定,关键是掌握菱形的判定定理.8.【答案】D【解析】解:如图:∵菱形ABCD中BD=8cm,AC=6cm,∴OD=BD=4cm,OA=AC=3cm,在直角三角形AOD中AD===5cm.故选:D.根据菱形的性质求得OD,OA的长,再根据勾股定理求得边长AD的长.此题主要考查学生对菱形的性质及勾股定理的理解及运用.9.【答案】C【解析】解:如图,连接AC、BD,AC与BD的交点即为旋转中心O.根据旋转的性质知,点C与点D对应,则∠DOC就是旋转角.∵四边形ABCD是正方形.∴∠DOC=90°.故选:C.首先作出旋转中心,根据多边形的性质即可求解.本题主要考查了旋转的性质,以及正多边形的性质,正确理解正多边形的性质以及旋转角(对应点与旋转中心所连线段的夹角等于旋转角)是解题的关键.10.【答案】A【解析】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选:A.由∠C=90°,根据垂直定义得到DC与AC垂直,又AD平分∠CAB交BC于D,DE⊥AB,利用角平分线定理得到DC=DE,再利用HL证明三角形ACD与三角形AED全等,根据全等三角形的对应边相等可得AC=AE,又AC=BC,可得BC=AE,然后由三角形BED的三边之和表示出三角形的周长,将其中的DE换为DC,由CD+DB=BC进行变形,再将BC换为AE,由AE+EB=AB,可得出三角形BDE的周长等于AB的长,由AB的长可得出周长.此题考查了角平分线定理,垂直的定义,直角三角形证明全等的方法-HL,利用了转化及等量代换的思想,熟练掌握角平分线定理是解本题的关键.11.【答案】5【解析】解:∵在Rt△ABC中,∠ABC=90°,点D为AC的中点,连接BD,∴线段BD是斜边AC上的中线,∴AC=2BD,又∵AC=10,∴BD=AC=5.故答案为:5.由已知条件推知BD是直角三角形Rt△ABC斜边AC上的中线,所以根据直角三角形斜边上的中线与斜边的数量关系填空即可.此题主要考查了直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.12.【答案】关于点O对称【解析】解:∵点A′与点A关于点O对称,点B′与点B关于点O对称,∴线段AB与A′B′关于点O对称.故答案为:关于点O对称.根据中心对称的概念可知线段AB、A′B′上的对应点都关于点O对称进行解答.本题考查了中心对称,是基础题,熟记概念是解题的关键.13.【答案】6或9【解析】解:①点A落在矩形对角线BD上,如图1所示.∵AB=16,AD=12,∴BD=20,根据折叠的性质,AD=A′D=12,AP=A′P,∠A=∠PA′D=90°,∴BA′=8,设AP=x,则BP=16-x,∵BP2=BA′2+PA′2,∴(16-x)2=x2+82,解得:x=6,∴AP=6;②点A落在矩形对角线AC上,如图2所示:由折叠的性质可知PD垂直平分AA′,∴∠BAC+∠A′AD=∠PDA+∠A′AD=90°.∴∠BAC=∠PDA.∴tan∠BAC=tan∠PDA.∴即=.∴AP=9.综上所述AP的长为6或9.故答案为:6或9.分两种情况探讨:点A落在矩形对角线BD上,点A落在矩形对角线AC上,在直角三角形中利用勾股定理列出方程,通过解方程可得答案.本题考查了折叠问题、勾股定理,矩形的性质以及三角形相似的判定与性质;依据翻折的性质找准相等的量是解题的关键.14.【答案】4.8【解析】解:如图,连接BD,∵在菱形ABCD中,AC=16cm,∴OC=AC=×16=8cm,且AC⊥BD,∴OB===6cm,设点O到AB边的距离为h,则S△AOB=×6×8=×10h,解得h=4.8,所以,亮亮与妈妈之间的最短距离为4.8m.故答案为:4.8.连接BD,根据菱形的对角线互相垂直平分求出OA,然后根据勾股定理列式求出OB,再根据三角形的面积求出点O到AB边距离,即可得解.本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,三角形的面积,熟记性质是解题的关键.15.【答案】2【解析】解:∵∠C=90°,∠B=30°,∴∠CAB=60°,AD平分∠CAB,∴∠BAD=30°,∴BD=AD=2CD=2,故答案为2.根据角平分线性质求出∠BAD的度数,根据含30度角的直角三角形性质求出AD即可得BD.本题考查了对含30度角的直角三角形的性质和角平分线性质的应用,求出AD的长是解此题的关键.16.【答案】【解析】解:连接BD,∵AB,AD的中点,EF=2,∴BD=2EF=4,∵BC=5,CD=3,∴DB2+CD2=BC2,∴∠BDC=90°,设点D到BC的距离为h,∴S△BDC=,∴4×3=5h,∴h=,故答案为:.根据三角形的中位线性质求出BD,根据勾股定理的逆定理求出△BDC是直角三角形,根据面积公式求出即可.本题考查了三角形的中位线性质,勾股定理的逆定理,三角形的面积的应用,能求出△BDC是直角三角形是解此题的关键.17.【答案】35°【解析】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠ABC+∠C=180°,∠AEB=∠CBE,∵∠C=110°,∴∠ABC=180°-∠C=70°,∵BE平分∠ABC,∴∠CBE=∠ABC=35°,∴∠AEB=∠CBE=35°.故答案为:35°.由平行四边形ABCD中,∠C=110°,可求得∠ABC的度数,又由BE平分∠ABC,即可求得∠CBE的度数,然后由平行线的性质,求得答案.此题考查了平行四边形的性质,属于基础题,解答本题的关键是掌握平行四边形邻角互补的性质,难度一般.18.【答案】AB=AC【解析】解:还需添加条件AB=AC,∵AD⊥BC于D,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),故答案为:AB=AC.根据斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)可得需要添加条件AB=AC.此题主要考查了直角三角形全等的判定,关键是正确理解:斜边和一条直角边对应相等的两个直角三角形全等.19.【答案】证明:因为四边形ABCD是平行四边形,所以AB=CD,AB∥CD,∠ABC=∠ADC,所以∠BAC=∠DCF,又因为BE、DF分别是∠ABC、∠ADC的平分线,所以∠ABE=∠ABC,∠CDF=∠ADC,所以∠ABE=∠CDF,所以△ABE≌△CDF(ASA),所以AE=CF.【解析】根据平行四边形的性质得出AB=CD,AB∥CD,∠ABC=∠ADC,根据平行线的性质得出∠BAC=∠DCF,根据角平分线定义得出∠ABE=∠CDF,那么利用AAS证明△ABE≌△CDF,推出AE=CF.本题考查了平行四边形的性质,全等三角形的判定和性质,解答本题的关键寻找两条线段所在的三角形,然后证明两三角形全等.20.【答案】证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴OC=OD,∴四边形OCED是菱形.【解析】首先根据两对边互相平行的四边形是平行四边形证明四边形OCED是平行四边形,再根据矩形的性质可得OC=OD,即可利用一组邻边相等的平行四边形是菱形判定出结论.此题主要考查了菱形的判定,矩形的性质,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.21.【答案】解:作EG⊥OA于G,如图所示:∵EF∥OB,∠AOE=∠BOE=15°∴∠OEF=∠COE=15°,EG=CE=2,∵∠AOE=15°,∴∠EFG=15°+15°=30°,∴EF=2EG=4.【解析】作EG⊥OA于F,根据角平分线的性质得到EG的长度,再根据平行线的性质得到∠OEF=∠COE=15°,然后利用三角形的外角和内角的关系求出∠EFG=30°,利用30°角所对的直角边是斜边的一半解题.本题考查了角平分线的性质、平行线的性质、含30°角的直角三角形的性质;熟练掌握角平分线的性质,证出∠EFG=30°是解决问题的关键.22.【答案】解:(1)∵Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3,∴DE=CD=3;(2)∵Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB==10.∵由(1)知,DE=3,∴S△ABD===15【解析】本题考查了角平分线的性质和勾股定理,熟练掌握这些性质是解决问题的关键.(1)直接根据角平分线的性质可得出结论;(2)先根据勾股定理求出AB的长,再由三角形的面积公式求解即可.23.【答案】证明:(1)∵四边形ABCD是正方形∴BC=CD,∠BCD=∠DCF=90°且CE=CF∴△BCE≌△DCF(2)∵BC+DF=9∴CD+DF=9在Rt△DCF中,DF2=DC2+CF2∴(9-CD)2=CD2+CF2∴CD=4∴S正方形ABCD=16【解析】(1)由题意可得BC=CD,∠BCD=∠DCF,且CE=CF可证结论(2)由BC+DF=9可得CD=9-DF,在Rt△DCF中,DF2=DC2+CF2,可得CD=4,即可求正方形ABCD的面积.本题考查了正方形的性质,全等三角形的判定,勾股定理,关键是通过勾股定理列出方程.24.【答案】解:(1)解:∵菱形ABCD中,BD=10,AC=24,∴OB=5,OA=12,在Rt△ABO中,AB==13,∴菱形ABCD的周长=4AB=52.(2)S菱形ABCD=•AC•BD=×24×10=120.(3)∵S菱形ABCD=•AC•BD=AB•DE,∴DE=.【解析】(1)由勾股定理即可求得AB的长,继而求得菱形ABCD的周长;(2)根据菱形的面积等于对角线乘积的一半,计算即可;=•AC•BD=AB•DE,计算即可;(3)根据S菱形ABCD本题考查菱形的性质、勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.【答案】解:(1)如图所示:(2)∵四边形AEBF是平行四边形,∴AH=BH,∵OA=OB,AH=BH,∴OH平分∠AOB.【解析】此题主要考查了平行四边形的性质以及等腰三角形的性质,关键是掌握平行四边形的对角线互相平分.(1)连接AB和EF,两对角线相交于点H,再作射线OH即可;(2)首先根据平行四边形的性质可得AH=BH,再根据等腰三角形的性质可得OH平分∠AOB.26.【答案】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠C=90°,∠ABD=∠BDC,∵△BEH是△BAH翻折而成,∴∠ABH=∠EBH,∠A=∠HEB=90°,AB=BE,∵△DGF是△DGC翻折而成,∴∠FDG=∠CDG,∠C=∠DFG=90°,CD=DF,∴∠DBH=∠ABD,∠BDG=∠BDC,∴∠DBH=∠BDG,∴△BEH与△DFG中,∠HEB=∠DFG,BE=DF,∠DBH=∠BDG,∴△BEH≌△DFG,(2)解:∵四边形ABCD是矩形,AB=6cm,BC=8cm,∴AB=CD=6cm,AD=BC=8cm,∴BD===10,∵由(1)知,FD=CD,CG=FG,∴BF=10-6=4cm,设FG=x,则BG=8-x,在Rt△BGF中,BG2=BF2+FG2,即(8-x)2=42+x2,解得x=3,即FG=3cm.【解析】(1)先根据矩形的性质得出∠ABD=∠BDC,再由图形折叠的性质得出∠ABH=∠EBH,∠FDG=∠CDG,∠A=∠HEB=90°,∠C=∠DFG=90°,进而可得出△BEH≌△DFG;(2)先根据勾股定理得出BD的长,进而得出BF的长,由图形翻折变换的性质得出CG=FG,设FG=x,则BG=8-x,再利用勾股定理即可求出x的值.本题考查的是图形翻折变换的性质及矩形的性质,全等三角形的判定,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.。
新人教版 2017-2018 学年八年级下期中考试数学试题含答案2018.4(考试时间:120 分钟总分150分)一、选择题(每小题 4 分,共 48 分)1.如图,下列哪组条件能判别四边形ABCD是平行四边形?()A.AB ∥ CD,AD= BCB.AB = CD, AD= BCC. ∠ A=∠ B,∠ C=∠ DD.AB= AD, CB= CD2. 三角形的三边为 a、b、 c,由下列条件不能判断它是直角三角形的是()A . a:b:c =13∶ 5∶12B. a 2-b 2=c22D. a:b:c=8 ∶16∶ 17C . a =(b+c )(b-c)3.在△ ABC中,∠ C=90°,周长为 60,斜边与一直角边比是13: 5,?则这个三角形三边分别是()A . 5, 4,3B . 13, 12, 5C . 10, 8, 6D . 26, 24,104.已知:如图,在矩形 ABCD中, E、 F、G、 H 分别为边 AB、BC、 CD、DA的中点.若 AB= 2,AD = 4,则图中阴影部分的面积为( )A.5B.4.5C.4D.3.5A DB C第 1题第4题第5题5.如图 ABCD是平行四边形,下列条件不一定使四边形ABCD是矩形的是()。
A.AC ⊥ BDB.∠ABC=90°C.OA=OB=OC=ODD.AC=BD6.如图,在由单位正方形组成的网格图中标有AB,CD,EF,GH 四条线段,其中能构成一个直角三角形三边的线段是()A . CD,EF,GH B.AB,EF,GH C.AB,CD,GH D.AB,CD,EF7.若a 2 b24b 4c2c10 ,则 b2a c =()4A . 4B. 2C. -2D. 111则ab(a b)8.若a1, bb) 的值为(2 2 1aA. 2B.-2C.2D.229.如图, D 是△ ABC内一点, BD⊥ CD,AD=6, BD=4,CD=3, E,F,G,H 分别是 AB,AC,CD,BD的中点,则四边形EFGH的周长是 ( )A . 7 B.9 C.10 D.1110.如图,边长为 6 的大正方形中有两个小正方形,若两个小正方形的面积分别为S1, S2,则 S +S 值为()12A . 16 B.17 C.18 D.19[来源 : 学科网 ZXXK]第 11 题第 12 题11.如图,在 Rt△ ABC中,∠ BAC=90°, D、E 分别是 AB、BC的中点, F 在 CA延长线上,∠ FDA=∠ B,AC=6, AB=8,则四边形 AEDF的周长为()A. 14 B.15 C.16 D.1812. 已知如图,矩形ABCD中, BD=5cm, BC=4cm, E 是边 AD上一点,且BE = ED, P是对角线上任意一点, PF⊥ BE, PG⊥ AD,垂足分别为F、 G。
2017-2018学年第二学期期中考试初二数学试卷一、选择题:(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,把答案直接填写在答题卡上相应的位置.........处) 1.下列标志既是轴对称图形又是中心对称图形的是 ( )A .B .C .D .2.为了了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,那么这批电视机中,每台电视机的使用寿命是这个问题的 ( ) A .个体B .总体C .总体的一个样本D .样本容量3.代数式-3x 2,4x -y ,x +y ,21x π+,78 ,5b3a 中是分式的有 ( )A .1个B .2个C .3个D .4个 4.把分式2x -y2x +y中的x 、y 都扩大到原来的4倍,则分式的值 ( ) A .扩大到原来的8倍 B .扩大到原来的4倍 C .缩小到原来的14 D .不变5.若分式x 2-1x -1的值为0,则x 的值为 ( ) A .0 B .±1 C .1D .﹣16.以下说法正确的是 ( ) A .在367人中至少有两个人的生日相同B .一次摸奖活动的中奖率是1%,那么摸100次必然会中一次奖C .一副扑克牌中,随意抽取一张是红桃K ,这是必然事件D .一个不透明的口袋中装有3个红球,5个白球,搅匀后想从中任意摸出一个球,摸到红球的可能性大于摸到白球的可能性▲ ▲ ▲▲▲ ▲7.如图,把一个长方形的纸片按图示对折两次,然后剪下一部分,为了得到一个钝角为100°的菱形,剪口与第二次折痕所成角的度数应为 ( ) A .30°或50° B .30°或60° C .40°或50° D .40°或60°8. 平行四边形ABCD 中,对角线AC ,BD 相交于点O ,给出下列四个条件:①AC 平分∠BCD ,②AC ⊥BD ,③OA =OC ,④OB =OC ,⑤∠BAD +∠BCD =180°⑥AB =BC 从中任选两个条件,能使平行四边形ABCD 为正方形的选法有 ( ) A . 3种 B .6种 C .7种 D .8种 9. 规定★为:x ★))(1(11A y x xy y +++=.已知2★1=23.则25★26的值为 ( )A .2675-B . 4675C . 22-675675或D . 267510.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B n 的坐标是 ( ) A . 1(21,2)nn -- B . 1(2,21)n n -- C . 1(2,2)n n - D .1(2,2)n n-二、填空题:(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置.........处) 11.下列4个分式:①a +3a 2+3 ;②x -y x 2-y 2 ;③m 2m 2n ;④2m +1 ,中最简分式有___▲ _个.12. 已知ABCD 中,∠C =2∠B ,则∠A = ▲ 度.13.xyzx y xy 61,4,13-的最简公分母是 ▲ . ▲▲▲ ▲第7题第10题第17题AB CEFM P第18题14.为了了解我市6000名学生参加初中毕业会考数学考试的成绩情况,从中抽取了200 名考生的成绩进行统计,在这个问题中,样本容量是 ▲ .15.一个平行四边形的一条边长为3,两条对角线的长分别为4和25,则它的面积为 ▲. 16. 要使关于x 的方程)1)(2(121-+=--++x x ax x x x 的解是正数,a 的取值范围是__▲_..17.如图,在Rt △ABC 中,∠BAC =90°,AB =5,AC =12, P 为边BC 上一动点(P 不与B 、C 重合),PE ⊥AB 于E , PF ⊥AC 于F ,M 为EF 中点,则AM 的取值范围是________.18.如图,正方形ABCD 与正三角形AEF 的顶点A 重合,将△AEF 绕 其顶点A 旋转,在旋转过程中,当BE =DF 时,∠BAE 的大小可以 是 ▲ .三、解答题:(本大题共9小题,共74分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题10分)计算:(1)1a +2 -44-a 2 (2)x 2-1x ·x x +1 +(3x +1)20. (本题10分)解方程:(1)x x +3 +2x =1 (2)23+x 3x -1=19x -3▲21.(本题6分)化简:x 2+1x 2-1 -x -2x -1÷x -2x ,并在-3≤x ≤2中选取一个你喜欢的整数x 的值代入求值.22.(本题6分)如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求 画图和解答下列问题:(1)以A 点为旋转中心,将△ABC 绕点A 顺时针旋 转90°得△AB 1C 1,画出△AB 1C 1.(2)作出△ABC 关于坐标原点O 成中心对称的△A 2B 2C 2.(3)作出点C 关于x 轴的对称点P . 若点P 向右平移x 个单位长度后落在△A 2B 2C 2的内部(不含落在 △A 2B 2C 2的边上),请直接写出x 的取值范围.. (提醒:每个小正方形边长为1个单位长度)23. (本题6分)某校初二年级数学考试,(满分为100分,该班学生成绩均不低于50分)作了统计分析,绘制成如图频数分布直方图和频数、频率分布表,请你根据图表提供的信息,解答下列问题:(1)频数、频率分布表中a = ▲ ,b = ▲ ;(答案直接填在题中横线上) (2)补全频数分布直方图;(3)若该校八年级共有600名学生,且各个班级学生成绩分布基本相同,请估计该校八年级上学期期末考试成绩低于70分的学生人数.24. (本题8分)如图,点D 、E 、F 分别是AC 、BC 、AB 中点,且 BD 是△ABC 的角平分线.求证:BE =AF .ABCEDF25. (本题10分)如图,在口ABCD中,AB⊥AC,AB=1,BC=5,对角线BD、AC交于点O.将直线AC绕点O顺时针旋转分别交BC、AD于点E、F.(1)试说明在旋转过程中,AF与CE总保持相等;(2)当旋转角为90⁰时,判断四边形ABEF的形状并证明;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,求出此时AC 绕点O顺时针旋转的角度.26.(本题8分)如图,矩形ABCD中,AB=8cm,BC=6cm,动点P从点A出发,以每秒3cm的速度沿线段AB向点B运动,连接DP,把∠A沿DP折叠,使点A落在点A′ 处.求出当△BP A′ 为直角三角形时,点P运动的时间.27.(本题10分)在正方形ABCD中,O是AD的中点,点P从A点出发沿A→B→C→D的路线匀速运动,移动到点D时停止.(1)如图1,若正方形的边长为12,点P的运动速度为2单位长度/秒,设t秒时,正方形ABCD与∠POD重叠部分的面积为y.①求当t=4,8,14时,y的值.②求y关于t的函数解析式.(2)如图2,若点Q从D出发沿D→C→B→A的路线匀速运动,移动到点A时停止.P、Q两点同时出发,点P的速度大于点Q的速度.设t秒时,正方形ABCD与∠POQ (包括边缘及内部)重叠部分的面积为S,S与t的函数图象如图3所示.①P,Q两点在第__ ▲____秒相遇;正方形ABCD的边长是__ ▲____.②点P的速度为_ ▲____单位长度/秒;点Q的速度为___ ▲___单位长度/秒.。
2017-2018学年度第二学期期中考试试卷八年级数学 2018.04本试卷由填空题、选择题和解答题三大题组成,共28题,满分130分.考试用时120分钟. 注意事项:1.答题前,考生务必将学校、姓名、考场号、座位号、考试号填写在答题卷相应的位置上.2.答题必须用0.5mm 黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.3.考生答题必须在答题卷上,答在试卷和草稿纸上一律无效一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑.)1.若分式1xx +有意义,则x 的取值范围是A. 1x ≠B. 1x ≠-C. 0x ≠D. 1x >-2.下列调查中,适宜采用普查方式的是A.了解一批灯泡的寿命B.了解全国八年级学生的睡眠时间C.考察人们保护环境的意识D.检查一枚用于发射卫星的运载火箭的各零部件3.如图,将右图的正方形图案绕中心O 旋转180︒后,得到的图案是4.反比例函数,6y x =的图像在A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限 5.下列性质中,矩形具有而平行四边形不一定具有的是 A.对角线互相平分 B.两组对角相等C.对角线相等D.两组对边平行且相等6.如图,四边形ABCD 是菱形,8,6,AC DB DH AB ==⊥于H , 则DH 等于A. 245B. 125 C. 5 D. 47.某工厂进行技术创新,现在每天比原来多生产50台机器,且现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设现在每天生产x 台机器,根据题意得方程为A. 6004505x x =+ B. 6004505x x =- C. 60045050x x =+ D. 60045050x x =- 8.已知1122(,),(,)A x y B x y 是反比例函数(0)ky k x =≠图象上的两个点,当120x x <<时,12y y >,那么一次函数y kx k =-的图象不经过A.第一象限B.第二象限C.第三象限D.第四象限 9.如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折 痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折 痕为BE .若AB 的长为2,则FM 的长为 A. 2 B.3 C. 2 D. 110.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA分别在x 轴、y 轴的正半轴上,反比例函数(0)ky x x =>与AB 相交于点D ,与BC 相交于点E ,若3BD AD =,且ODE ∆的面积是9, 则k 的值是A. 92B. 74C. 245 D. 12二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卷相对应的位置上)11.己知反比例函数(0)ky k x =≠的图像经过点(2,3)P -,k 的值为 .12.分式211a a -+的值为0,则a = .13.一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.搅匀后从中随机地抽出1张卡片,则“该卡片上的数字大于163”的概率是 .14.如图,延长矩形ABCD 的边BC 至点E ,使CE BD =,如果30ADB ∠=︒,则E ∠=度.15.若解关于x 的方程2111x m x x ++=--产生增根,则m 的值为 . 16.已知反比例函数10y x =,当12x <<时,y 的取值范围是.17.如图,在正方形ABCD 中,对角线AC 与BD 相交于点,O E 为BC 上一点,5,CE F =为DE 的中点.若CEF ∆的周长为18,则OF 的长为 .18.如图,己知直线1y k x b =+与x 轴、y 轴相交于P 、Q 两点,与2k y x =的图像相交于是(2,)A m -、(1,)B n 两点,连接OA 、OB .给出下列结论:①120k k <;②12m n +=;③AOP BOQS S ∆∆=;④不等式21k k x b x +>的解集是2x <-或01x <<,其中正确的结论的序号是 .三、解答题:(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明).19.(本题满分5分)解方程: 32111x x x -=--20.(本题满分5分)已知222111x x xA x x ++=---,在1,0,1-选一个合适的数,求A 的值.21.(本题满分6分)己知1,6y x xy =-=,求111x y ++的值.22.(本题满分6分)为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”、“锻炼”、“看电视”和“其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调结果绘制成如下统计图.根据统计图所提供的信息,解答下列问题: (1)本次共调查了 名市民; (2)补全条形统计图;(3)该市共有480万市民,估计该市市民 晚饭后1小时内锻炼的人数.23.(本题满分6分)一纸箱中放有大小均匀的x 只白球和y 只黄球,从中随机地取出一只白球的概率是25.(1)试写出y 与x 的函数关系式;(2)当x =10时,再往箱中放进20只白球,求随机地取出一只黄球的概率P .24.(本题满分8分)如图,将平行四边形ABCD 的边AB 延长至 点E ,使AB BE =,连接,,DE EC DE 交BC 于点O . (1)求证: ABD BEC ∆≅∆;(2)连接BD ,若2BOD A ∠=∠,求证:四边形是矩形.25.(本题满分10分)如图,在ABC ∆中,点,,D E F 分别是,,AB BC CA 的中点,AH 是边BC 上的高. (1)求证:四边形ADEF 是平行四边形; (2)求证: DHF DEF ∠=∠.26.(本题满分10分)某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:21教育网(1)观察表中数据,,x y 满足什么函数关系?请求出这个函数关系式;(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?27.(本题满分10分)己知四边形ABCD 是菱形,4,60,AB ABC EAF =∠=︒∠的两边分别与射线,CB DC 相交于点,E F ,且60EAF ∠=︒.(1)如图1,当点E 是线段CB 上任意一点时(点E 不与,B C 重合),求证: BE CF =; (2)如图2,当点E 在线段CB 的延长线上,且15EAB ∠=︒时,求CF 的长.28.(本题满分10分)如图,在平面直角坐标系xOy 中,四边形OABC 是正方形,点,A C 的坐标分别为(2, 0), (0, 2), D 是x 轴正半轴上的一点,且1AD = (点D 在点A 的右边),以BD 为边向外作正方形BDEF (,E F 两点在第一象限),连接FC 交AB 的延长线于点G .(1)侧点B 的坐标为 ,点E 的坐标为 . (2)求点F 的坐标;(3)是否存在反比例函ky x =的图像同时经过点E 、G 两点?若存在,求k 值;若不存在,请说明理由.。
2017—2018学年度第二学期期中教学质量评估测试八年级数学试卷题号一 二 三 总分 得分注意事项:全卷共120分,考试时间120分钟.一、选择题:(每小题3分,共30分)1.下列二次根式中,最简二次根式的是( )A .B .C .D . 2.下列计算正确的是( ).A.2(3)9=B .822÷=C .236⨯=D .2(2)2-=-3. 下列各组数中,能构成直角三角形的是( )A. 4,5,6B. 1,1,C. 6,8,11D. 5,12,23 4. 在Rt△ABC 中,△C =90°,△B =45°,c =10,则a 的长为( )A. B. C.5 D.5.在下列给出的条件中,能判定四边形ABCD 为平行四边形的是( ) A. AB=BC,CD=DA B. AB//CD,AD=BC C. AB//CD,C A ∠=∠ D.D C B A ∠=∠∠=∠, 6.正方形面积为36,则对角线的长为( ) A.B .6C .9D. 7.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )A. 10mB. 15mC. 18mD. 20m8.如图,在平行四边形ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分△BAD 交BC 边于点E ,则EC 等于( )A .1cmB .2cmC .3cmD .4cm9.如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF=3,则菱形ABCD 的周长是( )A .12B .16C .20D .2410.如图,在矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠,点D 落在点D′处,则重叠部分△AFC 的面积为( )A .6B .8C .10D .12二、填空题:(每小题3分,共30分)11. 木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 .(填“合格”或“不合格” ) 12.若式子 在实数范围内有意义,则 的取值范围是 .13.在数轴上表示实数a 的点如图所示,化简()2-a 5-a 2+的结果为______.14.计算()2252-的结果是________.15.一个直角三角形的两边长分别为4与5,则第三边长为________.16.平行四边形ABCD 中一条对角线分△A 为35°和45°,则△B= 度. 17. 如右图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则EF= cm . 18. 在△ABC 中,△C=90°,AC=12,BC=16,则AB 边上的中线CD 为 .19.在平面直角坐标系中,点A (﹣1,0)与点B (0,2)的距离是 . 20.对于任意不相等的两个数a ,b ,定义一种运算△如下:a△b = ,座号得 分 评卷人 题号1 2 3 4 5 6 7 8 9 10 答案得 分 评卷人学校 年级 姓名 学号密封线内不要答题八年级 数学 第1页 (共6页) 八年级 数学 第2页 (共6页)212510252612-+x x x 8.04529a b a b+-如3△2= =5.那么12△4= .三.解答题:(本大题共60分)21. (6分)(共2小题,每小题3分)(1) (2)22.(8分)若最简二次根式31025311x x y x y -+--+和是同类二次根式. (1)求x y 、的值; (5分) (2)求22y x +的值.(3分)23.(7分)有如图所示的一块地,已知AD=4米,CD=3米,090ADC ∠=,AB=13米,BC=12米.(1)试判断以点A 、点B 、点C 为顶点的三角形是什么三角形?并说明理由. ( 4分)(2)求这块地的面积.(3分)24. (8分)如图,四边形ABCD 中,AC ,BD 相交于点O ,O 是AC 的中点,AD △BC ,AC =8,BD =6.(1)求证:四边形ABCD 是平行四边形; (4分) (2)若AC △BD ,求平行四边形ABCD 的面积. (4分)25 . (8分)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 是CD 的中点,连接OE .过点C 作CF △BD 交线段OE 的延长线于点F ,连接DF . 求证:(1)△ODE △△FCE (4分)(2)四边形ODFC 是菱形 (4分)得 分 评卷人DACB八年级 数学 第3页 (共6页) 八年级 数学 第4页 (共6页)3232+-)227(328--+5232232⨯÷26.(8分)已知:如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形EFGH (即四边形ABCD 的中点四边形). (1)四边形EFGH 的形状是 ,证明你的结论;(4分)(2)当四边形ABCD 的对角线满足 条件时,四边形EFGH 是矩形(不证明)(2分) (3)你学过的哪种特殊四边形的中点四边形是矩形? (不证明)(2分)27.(6分)某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口 小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?28.(9分)观察下列等式: △ △ + = △……回答下列问题:(1)仿照上列等式,写出第n 个等式: ; (2分) (2)利用你观察到的规律,化简:(3分)(3)计算: + + +……+(4分)八年级 数学 第5页 (共6页) 八年级 数学 第6页 (共6页)23321+211+231+34)34)(34(34341-=-+-=+231+1031+)23)(23(23-+-23-2017—2018学年度第二学期期中教学质量评估测试八年级数学参考答案一、选择题1.D 2.B 3. B 4.A 5.C 6. A 7.C 8.B 9.D 10. C 二、填空题11.合格 12.x ≥﹣2且x ≠1 13. 3 14. 15.3或41 16.100 17 . 2.5 18. 10 19. . 20.1.2三、解答题:(共60分)21(1)解: + 2 ﹣(﹣ ) =2 +2 ﹣3 + ------(2分) =3 ﹣ ------(3分) (2)解: ÷ ×== ------(2分)= -------(3分) 22.(1)x=4,y=3;(5分) (2)5 (3分) 解:(1)由题意得:3x-10=2 , ---------(2分)2x+y-5=x-3y+11 ----------(4分)解得x=4 y=3 --------(5分)(2)当x=4 , y=3时22y x += =5 -----(3分) 23.解(1)以点A 、点B 、点C 为顶点的三角形是直角三角形(4分)(2)这块地的面积24m 2. (3分) 解:(1)连接AC . -------(1分) 由勾股定理可知:AC=---(2分)又∵AC 2+BC 2=52+122=132=AB 2--------(3分) ∴△ABC 是直角三角形 --------(4分) (2)这块地的面积=△ABC 的面积-△ACD 的面积 ----(1分)=×5×12- ×3×4 --- (2分) =24(m 2). ----(3分)24. (1)证明:∵O 是AC 的中点,∴OA =OC. ------(1分) ∵AD ∥BC ,∴∠DAO =∠BCO. -------(2分) 又∵∠AOD =∠COB ,∴△AOD ≌△COB ,(ASA ) -----------------(3分) ∴OD =OB ,∴四边形ABCD 是平行四边形 --------------(4分) (2)∵四边形ABCD 是平行四边形,AC ⊥BD ,∴四边形ABCD 是菱形 ---------------(2分)∴ ABCD 的面积= AC •BD = ×8×6=24 ---------------(4分)25 .证明:(1)∵CF ∥BD ∴∠ODE=∠FCE----------------(1分)∵E 是CD 中点 ∴CE=DE , -------------------(2分) 在△ODE 和△FCE 中2222435AD CD +=+=12121222410.-1.232322528528332⨯⨯10110102234+32722332235∴△ODE ≌△FCE (ASA ) --------------(4分) (2)∵△ODE ≌△FCE ∴OD=FC , -------------(1分) 又∵CF ∥BD , ∴四边形ODFC 是平行四边形-----(2分)∵矩形ABCD ∴AC=BD OC= AC,OD= BD ∴ OC=OD ----------------(3分)∴四边形ODFC 是菱形. -----------------------(4分) 26(1)平行四边形;(4分)(2)互相垂直(2分)(3)菱形.(2分)(1)证明:连结BD . -------------------- (1分)∵E 、H 分别是AB 、AD 中点,∴EH ∥BD ,EH= BD , ----------------------(2分)同理FG ∥BD ,FG= BD , ---------------------(3分)∴EH ∥FG ,EH=FG ,∴四边形EFGH 是平行四边形 --------------------------(4分) 27. 解:根据题意,得PQ=16×1.5=24(海里) - -----------(1分)PR=12×1.5=18(海里) -----------(2分) QR=30(海里)∵242+182=302, 即PQ 2+PR 2=QR 2∴∠QPR=90°. ----------------(4分) 由“远洋号”沿东北方向航行可知∠QPS=45°,则∠SPR=45°(5分) 即“海天”号沿西北方向航行. -------(6分)28. (1)(2)2311- (3)解:(1)第n 个等式 (2分)(2)原式=1121123111211=-=-+. (3分)原式=2-1+3-2+4-3+……+10-9=10-1 ( 4分)12121212=-+++=++)1)(1(11n n n n n n 101nn -+1=-+++=++)1)(1(11n n n n n n nn -+1n n -+1n n -+1。
2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.按下列各组数据能组成直角三角形的是()A.11,15,13B.1,4,5C.8,15,17D.4,5,62.要使式子有意义,则x的值可以是()A.2B.0C.1D.93.菱形和矩形一定都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分且相等D.对角线互相平分4.如图,矩形ABCD中,AB<BC,对角线AC、BD相交于点O,则图中的等腰三角形有()A.2个B.4个C.6个D.8个5.下列二次根式中,是最简二次根式的是()A.B.C.D.6.若函数y=(2m+1)x2+(1﹣2m)x(m为常数)是正比例函数,则m的值为()A.m>B.m=C.m<D.m=7.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.3B.4C.15D.7.28.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1 cm B.2 cm C.3 cm D.4 cm9.如图所示,要在离地面5米处引拉线固定电线杆,使拉线和地面成45°角.若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2米,L2=6.2米,L3=7.2米,L4=10米四种备用拉线材料中,拉线AC最好选用()A.L1B.L2C.L3D.L410.如图,OA和BA分别表示甲乙两名学生运动的一次函数的图象,图s和t分别表示路程和时间,根据图象判定快者比慢者的速度每秒快()A.2.5米B.2米C.1.5米D.1米二.填空题(共6小题,满分24分,每小题4分)11.一次函数y=(2m﹣1)x+(1﹣4m)的图象不经过第三象限,则m的取值范围.12.在,,,中,是最简二次根式的是.13.如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m,高为16cm,现将一根长度为28cm 的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是cm.14.已知点(﹣4,y1),(2,y2)都在直线y=﹣(k2+1)x+2上,则y1,y2的大小关系是.15.如图是一组有规律的图案,第1个图案由6个基础图形组成,第2个图案由11个基础图形组成,…,第n(n是正整数)个图案中由个基础图形组成.(用含n的代数式表示)16.如图,菱形ABCD的边长为6,∠DAB=60°,点P是对角线AC上一动点,Q是AB的中点,则BP+PQ的最小值是.三.解答题(共9小题,满分86分)17.计算:(1)﹣+(2)(﹣)(+)+(﹣1)218.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.19.如图,反映了小明从家到超市的时间与距离之间关系的一幅图.(1)图中反映了哪两个变量之间的关系?超市离家多远?(2)小明到达超市用了多少时间?小明往返花了多少时间?(3)小明离家出发后20分钟到30分钟内可以在做什么?(4)小明从家到超市时的平均速度是多少?返回时的平均速度是多少?20.如图,在四边形ABCD中,AB=AD,BC=CD,E,F,G,H分别为AB,BC,CD,AD的中点,顺次连接E,G,F,H,求证:四边形EFGH是矩形.21.如图,把矩形ABCD沿对角线BD折叠使点C落在F处,BF交AD于点E.(1)求证:△BEA≌△DEF;(2)若AB=2,AD=4,求AE的长.22.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.23.如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.(1)若EF=2,求△AEF的面积;(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.24.如图,以△ABC的边AB、AC为边的等边三角ABD和等边三角形ACE,四边形ADFE是平行四边形.(1)当∠BAC满足什么条件时,四边形ADFE是矩形;(2)当∠BAC满足什么条件时,平行四边形ADFE不存在;(3)当△ABC分别满足什么条件时,平行四边形ADFE是菱形,正方形?25.如图,两个全等的含30°、60°角的三角板ADE和三角板ABC放置在一起,∠DEA=∠ACB =90°,∠DAE=∠ABC=30°,E、A、C三点在一条直线上,连接BD,取BD中点M,连接ME、MC,试判断△EMC的形状,并说明理由.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.按下列各组数据能组成直角三角形的是()A.11,15,13B.1,4,5C.8,15,17D.4,5,6【分析】能不能组成直角三角形,需验证两小边的平方和是否等于最长边的平方.【解答】解:A、112+152≠132,故不能组成直角三角形;B、12+42≠52,故不能组成直角三角形;C、82+152=172,故不能组成直角三角形;D、42+52≠62,故不能组成直角三角形;故选:C.【点评】解答此题要用到勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.2.要使式子有意义,则x的值可以是()A.2B.0C.1D.9【分析】根据二次根式的性质意义,被开方数大于等于0,即可求得.【解答】解:依题意得:x﹣5≥0,解得:x≥5.观察选项,只有选项D符合题意.故选:D.【点评】此题主要考查了二次根式的定义,首先利用二次根式的定义求出字母的取值范围,然后利用x取整数的要求即可解决问题.3.菱形和矩形一定都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分且相等D.对角线互相平分【分析】根据矩形的对角线的性质(对角线互相平分且相等),菱形的对角线性质(对角线互相垂直平分)可解.【解答】解:菱形的对角线互相垂直且平分,矩形的对角线相等且平分.菱形和矩形一定都具有的性质是对角线互相平分.故选:D.【点评】此题主要考查矩形、菱形的对角线的性质.熟悉菱形和矩形的对角线的性质是解决本题的关键.4.如图,矩形ABCD中,AB<BC,对角线AC、BD相交于点O,则图中的等腰三角形有()A.2个B.4个C.6个D.8个【分析】本题需先根据矩形的性质得出OA=OB=OC=OD,从而得出图中等腰三角形中的个数,即可得出正确答案.【解答】解:∵矩形ABCD中,AB<BC,对角线AC、BD相交于点O,∴OA=OB=OC=OD,∴图中的等腰三角形有△AOB、△AOD、△COD、△BOC四个.故选:B.【点评】本题主要考查了等腰三角形的判定,在解题时要把等腰三角形的判定与矩形的性质相结合是本题的关键.5.下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、是最简二次根式,正确;B、不是最简二次根式,错误;C、不是最简二次根式,错误;D、不是最简二次根式,错误;故选:A.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.6.若函数y=(2m+1)x2+(1﹣2m)x(m为常数)是正比例函数,则m的值为()A.m>B.m=C.m<D.m=【分析】根据正比例函数的定义,2m+1=0,1﹣2m≠0.从而求解.【解答】解:根据题意得:2m+1=0,解得:m=﹣.故选:D.【点评】主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.7.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.3B.4C.15D.7.2【分析】首先根据勾股定理求出斜边AB的长,再根据三角形的面积为定值即可求出则点C到AB 的距离.【解答】解:在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2,∵BC=12,AC=9,∴AB==15,=AC•BC=AB•h,∵S△ABC∴h==7.2,故选:D.【点评】本题考查了勾股定理在直角三角形中的应用,解本题的关键是正确的运用勾股定理,确定AB为斜边.8.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1 cm B.2 cm C.3 cm D.4 cm【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的长.【解答】解:∵AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=3cm,∵BC=AD=5cm,∴EC=BC﹣BE=5﹣3=2cm,故选:B.【点评】本题主要考查了平行四边形的性质,等腰三角形的判定;在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.9.如图所示,要在离地面5米处引拉线固定电线杆,使拉线和地面成45°角.若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2米,L2=6.2米,L3=7.2米,L4=10米四种备用拉线材料中,拉线AC最好选用()A.L1B.L2C.L3D.L4【分析】先利用勾股定理计算出AC,然后进行无理数估算后进行判断.【解答】解:在Rt△ACD中,∵AD=5,CD=5,∴AC==5≈7.07,∴拉线AC最好选用L3.故选:C.【点评】本题考查了勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.10.如图,OA和BA分别表示甲乙两名学生运动的一次函数的图象,图s和t分别表示路程和时间,根据图象判定快者比慢者的速度每秒快()A.2.5米B.2米C.1.5米D.1米【分析】利用图象分别得出快、慢者行驶的路程和时间,进而求出速度差.【解答】解:如图所示:快者的速度为:64÷8=8(m/s),慢者的速度为:(64﹣12)÷8=6.5(m/s),故快者比慢者的速度每秒快:8﹣6.5=1.5(m/s).故选:C.【点评】此题主要考查了函数的图象,利用图象得出正确信息是解题关键.二.填空题(共6小题,满分24分,每小题4分)11.一次函数y=(2m﹣1)x+(1﹣4m)的图象不经过第三象限,则m的取值范围m≤.【分析】由于一次函数y=(2m﹣1)x+(1﹣4m)的图象不经过第三象限,则得到,解不等式组即可得到m的取值范围.【解答】解:∵一次函数y=(2m﹣1)x+(1﹣4m)的图象不经过第三象限,∴,∴m≤.则m的取值范围是m≤.故答案为:m≤.【点评】本题考查的知识点为:一次函数y=(2m﹣1)x+(1﹣4m)的图象不经过第三象限,说明x的系数小于0,常数项大于等于0.12.在,,,中,是最简二次根式的是.【分析】根据最简二次根式的定义(被开方数不含有能开的尽方的因式或因数,被开方数不含有分数),判断即可.【解答】解:在,=4,=,=3中,是最简二次根式的是,故答案为:【点评】本题考查了对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键.13.如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m,高为16cm,现将一根长度为28cm 的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是8cm.【分析】先根据勾股定理求出玻璃棒在容器里面的长度的最大值,再根据线段的和差关系即可求解.【解答】解:6×2=12(cm),由勾股定理得=20(cm),则玻璃棒露在容器外的长度的最小值是28﹣20=8(cm).故答案为8.【点评】考查了勾股定理的应用,关键是运用勾股定理求得玻璃棒在容器里面的长度的最大值,此题比较常见,难度适中.14.已知点(﹣4,y1),(2,y2)都在直线y=﹣(k2+1)x+2上,则y1,y2的大小关系是y1>y2.【分析】先根据一次函数的解析式判断出一次函数的增减性,再根据﹣4<2即可得出结论.【解答】解:∵一次函数y=﹣(k2+1)x+2(k为常数)中,﹣(k2+1)<0,∴y随x的增大而减小,∵﹣4<2,∴y1>y2.故答案为:y1>y2.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.如图是一组有规律的图案,第1个图案由6个基础图形组成,第2个图案由11个基础图形组成,…,第n(n是正整数)个图案中由(5n+1)个基础图形组成.(用含n的代数式表示)【分析】观察图形不难发现,后一个图形比前一个图形多5个基础图形,根据此规律写出第n个图案的基础图形个数即可.【解答】解:第1个图案由6个基础图形组成,第2个图案由11个基础图形组成,11=5×2+1,第3个图案由16个基础图形组成,16=5×3+1,…,第n个图案由5n+1个基础图形组成.故答案为:5n+1.【点评】本题是对图形变化规律的考查,观察图形得到后一个图形比前一个图形多5个基础图形是解题的关键.16.如图,菱形ABCD的边长为6,∠DAB=60°,点P是对角线AC上一动点,Q是AB的中点,则BP+PQ的最小值是.【分析】根据已知可得到当P点位于AB的中垂线时,BP+PQ有最小值.过点Q作PQ⊥AB,交AC与P,则PA=PB,根据已知可求得PQ,PA的会值,从而不难求得BP+PQ的最小值.【解答】解:如图,∵在菱形ABCD中,点B与点D关于对角线AC对称.∴连接DQ,DQ与AC的交点为P,连接BP,此时BP+PQ有最小值.∵∠DAB=60°∴∠BAC=30°∴PA=2PQ在Rt△APQ中,PA2=PQ2+32∴PQ=,PA=2∴BP+PQ=PA+PQ=3故答案为3.【点评】本题考查的是中垂线、菱形的性质、勾股定理和最值.根据题意得出:当P点位于AB 的中垂线时,BP+PQ有最小值是解本题的关键.三.解答题(共9小题,满分86分)17.计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.18.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.【分析】如图,本题需要判断点C到AB的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C作CD⊥AB于D,然后根据勾股定理在直角三角形ABC中即可求出AB的长度,然后利用三角形的公式即可求出CD,然后和250米比较大小即可判断需要暂时封锁.【解答】解:如图,过C作CD⊥AB于D,∵BC=400米,AC=300米,∠ACB=90°,∴根据勾股定理得AB=500米,∵AB•CD=BC•AC,∴CD=240米.∵240米<250米,故有危险,因此AB段公路需要暂时封锁.【点评】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.19.如图,反映了小明从家到超市的时间与距离之间关系的一幅图.(1)图中反映了哪两个变量之间的关系?超市离家多远?(2)小明到达超市用了多少时间?小明往返花了多少时间?(3)小明离家出发后20分钟到30分钟内可以在做什么?(4)小明从家到超市时的平均速度是多少?返回时的平均速度是多少?【分析】(1)(2)(3)可由图象直接得出.(4)数与形相结合,理解时间与路程之间的关系.【解答】解:根据图形可知:(1)图中所反映的是时间与距离之间的关系;超市离家900米;(2)小明到达超市用了20分钟;返回用了15分钟,往返共用了35分钟;(3)小明离家出发后20分钟到30分钟可以在超市购物或休息;(4)小明到超市的平均速度是900÷20=45米/分钟;返回的平均速度是900÷15=60米/分钟.【点评】结合图形反映小明从离家到返回的全过程.20.如图,在四边形ABCD中,AB=AD,BC=CD,E,F,G,H分别为AB,BC,CD,AD的中点,顺次连接E,G,F,H,求证:四边形EFGH是矩形.【分析】根据连接AC、BD交于点O,根据三角形中位线定理、平行四边形的判定定理得到四边形EFGH是平行四边形,根据线段垂直平分线的性质、矩形的判定定理证明.【解答】证明:连接AC、BD交于点O,∵E,F分别为AB,BC的中点,∴EF∥AC,EF=AC,∵G,H分别为CD,AD的中点,∴HG∥AC,HG=AC,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形,∵AB=AD,BC=CD,∴AC是线段BD的垂直平分线,∵E,H分别为AB,AD的中点,∴EH∥BD,又EF∥AC,∴∠HEF=90°,∴四边形EFGH是矩形.【点评】本题中点四边形、矩形的判定、三角形中位线定理,掌握矩形的判定定理是解题的关键.21.如图,把矩形ABCD沿对角线BD折叠使点C落在F处,BF交AD于点E.(1)求证:△BEA≌△DEF;(2)若AB=2,AD=4,求AE的长.【分析】(1)根据矩形的性质得出AB=CD,∠A=∠C=90°,根据折叠得出DF=CD,∠F =∠C=90°,求出AB=FD,∠A=∠F,根据全等三角形的判定得出即可;(2)根据全等得出BE=DE,根据勾股定理得出关于AE的方程,求出方程的解即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠C=90°,∵把矩形ABCD沿对角线BD折叠使点C落在F处,BF交AD于点E,∴DF=CD,∠F=∠C=90°,∴AB=FD,∠A=∠F,在△BEA和△DEF中∴△BEA≌△DEF(AAS);(2)解:∵△BEA≌△DEF,∴BE=DE=AD﹣AE=4﹣AE,在Rt△BAE中,由勾股定理得:AB2+AE2=BE2,∴22+AE2=(4﹣AE)2,解得:AE=.【点评】本题考查了勾股定理,折叠的性质,矩形的性质的应用,能灵活运用定理进行推理是解此题的关键.22.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.【分析】(1)由点A的纵坐标、点A所在的象限结合△AOH的面积为3,可求出点A的坐标,再根据点A的坐标利用待定系数法,可求出正比例函数的表达式;(2)设点P的坐标为(a,0),根据△AOP的面积为5,即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)∵点A在第四象限,点A的横坐标为3,且△AOH的面积为3.∴点A的纵坐标为﹣2,∴点A的坐标为(3,﹣2).将点A(3,﹣2)代入y=kx,﹣2=3k,解得:k=﹣,∴正比例函数的表达式为y=﹣x.(2)设点P的坐标为(a,0),=|a|×|﹣2|=5,则S△AOP解得:a=±5,∴在x轴上能找到一点P,使△AOP的面积为5,此时点P的坐标为(﹣5,0)或(5,0).【点评】本题考查了待定系数法求正比例函数解析式以及三角形的面积,解题的关键是:(1)根据三角形的面积找出点A的坐标;(2)利用三角形的面积找出关于a的含绝对值符号的一元一次方程.23.如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.(1)若EF=2,求△AEF的面积;(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.【分析】(1)先证明证明△CDE≌△CBF,得到CD=CB,可得▱ABCD是菱形,则AD=AB,由DE=BF得AE=AF,则△AEF是等边三角形,根据EF的长可得△AEF的面积;(2)延长DP交BC于N,连结FN,证明△CPN≌△EPD,得到AE=BN,证明△FBN≌△DEF,得到FN=FD,根据等腰三角形三线合一的性质可得结论.【解答】(1)解:∵四边形ABCD是平行四边形,∴∠D=∠B,∵BF=DE,∠DCE=∠BCF,∴△CDE≌△CBF(AAS),∴CD=CB,∴▱ABCD是菱形,∴AD=AB,∴AD﹣DE=AB﹣BF,即AE=AF,∵∠A=60°,∴△AEF是等边三角形,∵EF=2,=×22=;∴S△AEF(2)证明:如图2,延长DP交BC于N,连结FN,∵四边形ABCD是菱形,∴AD∥BC,∴∠EDP=∠PNC,∠DEP=∠PCN,∵点P是CE的中点,∴CP=EP.∴△CPN≌△EPD,∴DE=CN,PD=PN.又∵AD=BC.∴AD﹣DE=BC﹣CN,即AE=BN.∵△AEF是等边三角形,∴∠AEF=60°,EF=AE.∴∠DEF=120°,EF=BN.∵AD∥BC,∴∠A+∠ABC=180°,又∵∠A=60°,∴∠ABC=120°,∴∠ABC=∠DEF.又∵DE=BF,BN=EF.∴△FBN≌△DEF,∴DF=NF,∵PD=PN,∴PF⊥PD.【点评】本题考查的是菱形的性质和判定、平行四边形的性质、全等三角形的判定和性质以及等腰三角形的性质,正确作出辅助线,构造全等三角形和等腰三角形是解题的关键.24.如图,以△ABC的边AB、AC为边的等边三角ABD和等边三角形ACE,四边形ADFE是平行四边形.(1)当∠BAC满足什么条件时,四边形ADFE是矩形;(2)当∠BAC满足什么条件时,平行四边形ADFE不存在;(3)当△ABC分别满足什么条件时,平行四边形ADFE是菱形,正方形?【分析】(1)根据矩形的四角相等为90度求解;(2)根据D、A、E在同一条直线上时不能构成四边形求解;(3)分别根据菱形的四边相等和正方形的四边相等,四角相等的特性解题.【解答】解:(1)当∠BAC=150°时,四边形ADFE是矩形,∴∠DAE=360°﹣120°﹣150°=90°;∵四边形ADFE是平行四边形,∴四边形ADFE是矩形(有一个角是直角的平行四边形是矩形);(2)当∠BAC=60°时平行四边形ADFE不存在,∠DAE=180°﹣60°﹣60°﹣60°=0°;(3)当AB=AC且∠BAC不等于60°时平行四边形ADFE是菱形.综上可知:当AB=AC、∠BAC=150°时平行四边形ADFE是正方形.【点评】主要考查了特殊平行四边形的特殊性.其中矩形,菱形,正方形的一些特性要掌握.25.如图,两个全等的含30°、60°角的三角板ADE和三角板ABC放置在一起,∠DEA=∠ACB =90°,∠DAE=∠ABC=30°,E、A、C三点在一条直线上,连接BD,取BD中点M,连接ME、MC,试判断△EMC的形状,并说明理由.【分析】△EMC的形状是等腰直角三角形,求出∠DAB=90°,AD=AB,推出AM⊥BD,AM =BM=DM,求出∠MBC=∠MAE,BM=AM,证△BCM≌△AEM,推出EM=CM,∠3=∠2,求出∠1+∠3=90°即可.【解答】解:△EMC的形状是等腰直角三角形,理由是:连接AM,∵∠8=30°,∠9=60°,∴∠DAB=180°﹣30°﹣60°=90°,∵M为BD中点,AD=AB(已知两个全等的含30°、60°角的三角板ADE和三角板ABC放置在一起),∴AM⊥BD(等腰三角形底边的高也平分底边)AM=BM=DM(直角三角形斜边上中线等于斜边的一半)∴∠5=∠6=(180°﹣90°)=45°,∠4=∠BDA=45°,∵∠7=30°,∴∠MBC=45°+30°=75°,同理∠MAE=75°=∠MBC,在△BCM和△AEM中,∴△BCM≌△AEM(SAS),∴EM=CM,∠3=∠2,∵AM⊥BD,∴∠1+∠2=90°,∴∠1+∠3=90°,∴△EMC是等腰直角三角形.【点评】本题考查了等腰直角三角形,全等三角形的性质和判定,直角三角形斜边上中线等知识点的运用,主要考查学生综合运用性质进行推理的能力,题目比较典型,但是有一定的难度.。
2017-2018学年山东省东营市广饶县八年级(下)期中数学试卷一、选择题(本大题共10小题,共30分)
1.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()
A.m=±2B.m=2C.m=﹣2D.m≠±2
2.用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()
A.(x+2)2=1B.(x+2)2=7C.(x+2)2=13D.(x+2)2=19
3.如果关于x的方程ax2+x﹣1=0有实数根,则a的取值范围是()
A.a B.a且a≠0C.a D.a且a≠0
4.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()
A.B.
C.D.
5.若二次函数y=(m﹣1)x2+2x+1的图象与x轴有两个不同的交点,则m的取值范围是()A.m≤2B.m<2C.m≤2且m≠1D.m<2且m≠1
6.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()
A.50(1+x)2=182
B.50+50(1+x)+50(1+x)2=182
C.50(1+2x)=182
D.50+50(1+x)+50(1+2x)2=182
7.如图,抛物线y=ax2+bx+c(a≠0)与x轴一个交点为(﹣2,0),对称轴为直线x=1,则y<0时x的范围是()
A.x>4或x<﹣2B.﹣2<x<4C.﹣2<x<3D.0<x<3
8.若A(﹣3,y1),B(3,y3),C(2,y2)二次函数y=x2+4x﹣5的图象上的三点,则y1、y2、y3的大小关系是()
A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2
9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为x=﹣1则下列式子正确的个数是(1)abc>0(2)2a+b=0(3)4a+2b+c<0(4)b2﹣4ac<0
()
A.1个B.2个C.3个D.4个
10.如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,点P在边AC上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是()
A.20cm B.18cm C.2cm D.3cm
二、填空题(本大题共8小题,11-14题每题3分,15-18题每题4分,共28分)
11.方程x2﹣2x=0的根是.
12.二次函数y=x2﹣2x﹣3的开口方向是向.
13.用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象时,列出了如下表格:
那么该二次函数在x =0时,y = .
14.关于x 的一元二次方程kx 2﹣x
+2=0有两个不相等的实数根,那么k 的取值范围是 .
15.(4分)将二次函数y =2x 2﹣4x +3写成y =a (
x ﹣h )2+k 的形式为
.
16.(4分)根据图中的程序,当输入一元二次方程x 2﹣2x
=0的解x 时,输出结果y = .
17.(4分)飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是s =60t ﹣t 2,则飞机着陆后滑行的最长时间为 秒.
18.(4分)在如图所示的平面直角坐标系中,桥孔抛物线对应的二次函数关系式是y =﹣x 2,当水位上涨1m 时,水面宽CD 为2m ,则桥下的水面宽AB 为 m .
三、解答题(本大题共62分)
19.(10分)解下列方程.
(1)x 2﹣2x ﹣3=0
(2)(x +3)2=2(x +3)
20.(8分)如图所示,已知在△ABC 中,∠B =90°,AB =6cm ,BC =12cm ,点Q 从点A 开始沿 AB 边向点B 以1cm /s 的速度移动,点P 从点B 开始沿BC 边向点C 以2cm /s 的速度移动. (1)如果Q 、P 分别从A 、B 两点出发,那么几秒后,△PBQ 的面积等于8cm 2?
(2)在(1)中,△PBQ 的面积能否等于10cm 2?试说明理由.
21.(8分)已知关于x的方程x2﹣(2m+1)x+m2+m=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根.
22.(8分)已知二次函数y=x2+bx+c的图象与y轴交于点A(0,﹣6),与x轴的一个交点坐标是B(﹣2,0).
(1)求二次函数的关系式,并写出顶点坐标;
(2)将二次函数图象沿x轴向左平移个单位长度,求所得图象对应的函数关系式.
23.(8分)一条单车道的抛物线形隧道如图所示.隧道中公路的宽度AB=8m,隧道的最高点C到公路的距离为6m.
(1)建立适当的平面直角坐标系,求抛物线的表达式;
(2)现有一辆货车的高度是 4.4m,货车的宽度是2m,为了保证安全,车顶距离隧道顶部至少
0.5m,通过计算说明这辆货车能否安全通过这条隧道.
24.(8分)如图,抛物线经过A(﹣1,0),B(5,0),C(0,﹣)三点.(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标.。