第四章 免疫球蛋白剖析
- 格式:doc
- 大小:56.00 KB
- 文档页数:11
第四章免疫球蛋白第一节基本概念1、抗体:B淋巴细胞在有效的抗原刺激下分化为浆细胞,产生具有与相应抗原发生特异性结合功能的免疫球蛋白,这类免疫球蛋白称为抗体。
1937年,Tiselius用电泳方法将血清蛋白分为白蛋白、α1、α2、β及γ球蛋白等组分,其后又证明抗体的活性部分是在γ球蛋白部分。
因此,相当长一段时间内,抗体又被称为γ球蛋白(丙种球蛋白)。
实际上,抗体的活性除γ球蛋白外,还存在于α和β球蛋白处。
20世纪40年代初期,Tiselius和Kabat用肺炎球菌多糖免疫家兔,证实了抗体活性与血清丙种球蛋白组分相关。
肺炎球菌多糖免疫家兔后可获得高效价免疫血清。
然后加入相应抗原吸收以除去抗体,将除去抗体的血清进行电泳图谱分析,发现丙种球蛋白(γ-G)组分明显减少,从而证明了抗体活性是存在于丙种球蛋白内。
2、免疫球蛋白:具有抗体活性或化学结构与抗体相似的球蛋白统称为免疫球蛋白(immunoglobulin,Ig)。
区别:抗体都是免疫球蛋白,而免疫球蛋白并不都是抗体。
如骨髓瘤蛋白,巨球蛋白血症、冷球蛋白血症等患者血清中存在的异常免疫球蛋白结构与抗体相似,但无抗体活性。
免疫球蛋白可分为分泌型(secreted Ig,SIg)和膜型(membrane Ig, mIg)。
前者主要存在于血清及其他体液或外分泌液中,具有抗体的各种功能;后者是B细胞表面的抗原识别受体。
第二节免疫球蛋白结构一、免疫球蛋白的基本结构(一)重链和轻链免疫球蛋白分子是由两条相同的重链(heavy chain,H链)和两条相同的轻链(light chain,L链)通过链间二硫键连接而成的四肽链结构。
X 射线晶体结构分析发现,IgG分子由3个相同大小的节段组成。
1. 重链分子量约为50~75kD,由450~550个氨基酸残基组成。
免疫球蛋白重链恒定区由于氨基酸的组成和排列顺序不同,故其抗原性也不同。
据此,可将免疫球蛋白分为五类,即IgM、IgD、IgG、IgA和IgE,其相应的重链分别为μ链、δ链、γ链、α链和ε链。
第四章免疫球蛋白第一节基本概念1、抗体:B淋巴细胞在有效的抗原刺激下分化为浆细胞,产生具有与相应抗原发生特异性结合功能的免疫球蛋白,这类免疫球蛋白称为抗体。
1937年,Tiselius用电泳方法将血清蛋白分为白蛋白、α1、α2、β及γ球蛋白等组分,其后又证明抗体的活性部分是在γ球蛋白部分。
因此,相当长一段时间内,抗体又被称为γ球蛋白(丙种球蛋白)。
实际上,抗体的活性除γ球蛋白外,还存在于α和β球蛋白处。
20世纪40年代初期,Tiselius和Kabat用肺炎球菌多糖免疫家兔,证实了抗体活性与血清丙种球蛋白组分相关。
肺炎球菌多糖免疫家兔后可获得高效价免疫血清。
然后加入相应抗原吸收以除去抗体,将除去抗体的血清进行电泳图谱分析,发现丙种球蛋白(γ-G)组分明显减少,从而证明了抗体活性是存在于丙种球蛋白内。
2、免疫球蛋白:具有抗体活性或化学结构与抗体相似的球蛋白统称为免疫球蛋白(immunoglobulin,Ig)。
区别:抗体都是免疫球蛋白,而免疫球蛋白并不都是抗体。
如骨髓瘤蛋白,巨球蛋白血症、冷球蛋白血症等患者血清中存在的异常免疫球蛋白结构与抗体相似,但无抗体活性。
免疫球蛋白可分为分泌型(secreted Ig,SIg)和膜型(membrane Ig, mIg)。
前者主要存在于血清及其他体液或外分泌液中,具有抗体的各种功能;后者是B细胞表面的抗原识别受体。
第二节免疫球蛋白结构一、免疫球蛋白的基本结构(一)重链和轻链免疫球蛋白分子是由两条相同的重链(heavy chain,H链)和两条相同的轻链(light chain,L链)通过链间二硫键连接而成的四肽链结构。
X 射线晶体结构分析发现,IgG分子由3个相同大小的节段组成。
1. 重链分子量约为50~75kD,由450~550个氨基酸残基组成。
免疫球蛋白重链恒定区由于氨基酸的组成和排列顺序不同,故其抗原性也不同。
据此,可将免疫球蛋白分为五类,即IgM、IgD、IgG、IgA和IgE,其相应的重链分别为μ链、δ链、γ链、α链和ε链。
第四章免疫球蛋白抗体与免疫球蛋白的概念抗体(antibody,Ab)分子是能与抗原特异结合的大分子球蛋白。
包括可溶性抗体分子和和膜性抗体分子。
免疫球蛋白分子(immunoglobulin,Ig)具有抗体活性或化学结构与抗体相似的的球蛋白。
抗体的发现及其特性一、发现:1890年德国学者Behring和日本学者北里用白喉杆菌外毒素免疫动物,在其血清中发现一种能中和这种外毒素的组分称为抗毒素。
这是在血清中发现的第一种抗体。
二、抗体的理化性质1、抗体是球蛋白(Globulin)通过电泳证明抗体是两种球蛋白后又经电泳分析,超速离心分析和分子量测定等方法,发现大部分抗体是r球蛋白,小部分是β球蛋白。
所以早期对抗体性质的研究证明抗体不是由均质性球蛋白(γ??β)组成,是异均性的。
2、免疫球蛋白(lmmunoglobulin, Ig)为了准确描述抗体球蛋白的性质,在60年代初提出将具有抗体活性的球蛋白称为免疫球蛋白。
从此r球蛋白则改称为IgG,BIM 称为IgM,而BIA称为IgA,其后又发现IgD和IgE。
抗体主要存在于血清中,但也存在于体液和外分泌液中,所以含有抗体的血清称为免疫血清。
B细胞表面上也存在免疫球蛋白,称为膜表面免疫球蛋白Surface membrane Ig,SmIg。
第一节、免疫球蛋白的结构(一)免疫球蛋白的基本结构Ig分子基本结构是由四个肽链组成的,包括二条较小的轻链和二条较大的重链,轻链与重链之间是由二硫键连接形成Ig分子单体,分为氨基端(N端),羧基端(C端)。
1、重链和轻链(1)重链(heavy chain,H链)450-550个氨基酸残基组成,分子量50-75KD,含糖数量不同,4-5个链内二硫键,可分为5类,μ、γ、α、δ、ε链,不同的H链与L链(κ或λ)组成完整的Ig分子。
分别称为:IgM,IgG,IgA,IgD 和IgE。
(2)轻链(light chain,L链)214个氨基酸残基组成,通常不含碳水化合物,分子量为24KD,有两个由链内二硫键组成的环肽,L链可分为:Kappa(κ)与lambda(λ)2个亚型。
第四章免疫球蛋白第一节基本概念1、抗体:B淋巴细胞在有效的抗原刺激下分化为浆细胞,产生具有与相应抗原发生特异性结合功能的免疫球蛋白,这类免疫球蛋白称为抗体。
1937年,Tiselius用电泳方法将血清蛋白分为白蛋白、α1、α2、β及γ球蛋白等组分,其后又证明抗体的活性部分是在γ球蛋白部分。
因此,相当长一段时间内,抗体又被称为γ球蛋白(丙种球蛋白)。
实际上,抗体的活性除γ球蛋白外,还存在于α和β球蛋白处。
20世纪40年代初期,Tiselius和Kabat用肺炎球菌多糖免疫家兔,证实了抗体活性与血清丙种球蛋白组分相关。
肺炎球菌多糖免疫家兔后可获得高效价免疫血清。
然后加入相应抗原吸收以除去抗体,将除去抗体的血清进行电泳图谱分析,发现丙种球蛋白(γ-G)组分明显减少,从而证明了抗体活性是存在于丙种球蛋白内。
2、免疫球蛋白:具有抗体活性或化学结构与抗体相似的球蛋白统称为免疫球蛋白(immunoglobulin,Ig)。
区别:抗体都是免疫球蛋白,而免疫球蛋白并不都是抗体。
如骨髓瘤蛋白,巨球蛋白血症、冷球蛋白血症等患者血清中存在的异常免疫球蛋白结构与抗体相似,但无抗体活性。
免疫球蛋白可分为分泌型(secreted Ig,SIg)和膜型(membrane Ig, mIg)。
前者主要存在于血清及其他体液或外分泌液中,具有抗体的各种功能;后者是B细胞表面的抗原识别受体。
第二节免疫球蛋白结构一、免疫球蛋白的基本结构(一)重链和轻链免疫球蛋白分子是由两条相同的重链(heavy chain,H链)和两条相同的轻链(light chain,L链)通过链间二硫键连接而成的四肽链结构。
X 射线晶体结构分析发现,IgG分子由3个相同大小的节段组成。
1. 重链分子量约为50~75kD,由450~550个氨基酸残基组成。
免疫球蛋白重链恒定区由于氨基酸的组成和排列顺序不同,故其抗原性也不同。
据此,可将免疫球蛋白分为五类,即IgM、IgD、IgG、IgA和IgE,其相应的重链分别为μ链、δ链、γ链、α链和ε链。
不同的同种型具有不同的特征,包括链内二硫键的数目和位置、连接寡糖的数量、功能区的数目以及铰链区的长度等。
同一类Ig根据其铰链区氨基酸组成和重链二硫键的数目和位置的差别,又可分为不同的亚类。
如IgG可分为IgG1~IgG4;IgA可分为IgA1和IgA2。
IgM、IgD和IgE尚未发现有亚类。
2.轻链免疫球蛋白轻链的分子量约25 kD,由214个氨基酸残基构成。
轻链可分为两型,即κ(kappa)型和λ(lambda)型,一个天然Ig分子上两条轻链的型别总是相同的,两型轻链的功能无差异。
不同种属中,两型轻链的比例不同,正常人血清免疫球蛋白κ:λ约为2:1,而在小鼠则为20:1。
κ:λ比例的异常可能反映免疫系统的异常,例如人类免疫球蛋白λ链过多,提示可能有产生λ链的B细胞肿瘤。
根据λ链恒定区个别氨基酸的差异,又可分为λ1、λ2、λ3和λ4 四个亚型。
(二)可变区和恒定区通过分析不同免疫球蛋白重链和轻链的氨基酸序列,发现重链和轻链靠近N端的约110个氨基酸的序列变化很大,称为可变区(variableregion,V区),而靠近C端的其余氨基酸序列相对稳定,称为恒定区(constant region, C区)。
1.可变区重链和轻链的V区分别称为VH 和VL。
①高变区(hypervariable region,HVR):比较许多不同抗体V区的氨基酸序列,发现VH和VL各有三个区域的氨基酸组成和排列顺序特别易变化,这些区域称为高变区,分别用HVR1、HVR2和HVR3表示,一般HVR3变化程度更高。
VL的三个高变区分别位于28~35、49~56和91~98位氨基酸;VH 的三个高变区分别位于29~31、49~58和95~102位氨基酸。
②骨架区(framework region,FR):高变区之外区域的氨基酸组成和排列顺序相对不易变化,称为骨架区。
V H 或VL各有四个骨架区,分别用FR1、FR2、FR3和FR4表示。
稳定CDR结构,以利IgCDR与抗原决定簇精细特异地结合。
③互补性决定区(complementarity-determining region,CDR):VH和VL的三个高变区共同组成Ig的抗原结合部位,该部位形成一个与抗原决定簇互补的表面,故高变区又被称为互补性决定区,分别用CDR1、CDR2和CDR3表示。
不同的抗体其CDR序列不相同,并因此决定抗体的特异性。
2. 恒定区重链和轻链的C区分别称为CH和CL。
不同类Ig重链CH长度不一,有的包括CH 1、CH2和CH3;有的更长,包括CH1、CH2、CH3和CH4。
同一种属动物中,同一类别Ig分子其C区氨基酸的组成和排列顺序比较恒定。
例如:针对不同抗原的人IgG抗体,它们的V区不相同,只能与相应的抗原发生特异性结合,但其C区的抗原性是相同的,应用抗人IgG抗体(第二抗体),均能与不同人的IgG结合。
(三)免疫球蛋白的功能区:1.定义:Ig的H链、L链每隔110个氨基酸由链内二硫键连接构成一个能行使特定功能的球形结构,称为Ig的功能区。
这些功能区的功能虽不同,但其结构相似。
每个功能区约由110个氨基酸组成,其氨基酸的序列具有相似性或同源性。
轻链有VL和CL两个功能区;IgG、IgA和IgD重链有VH、CH1、CH2和CH3四个功能区;IgM和IgE重链有五个功能区,比IgG多一个CH4。
2.功能区的作用为:①VH和VL是结合抗原的部位,其中HVR(CDR)是V区中与抗原表位互补结合的部位;②CH和CL上具有部分同种异型(allotype)的遗传标志;③IgG的CH2和IgM的CH3具有补体C1q结合位点,可启动补体活化经典途径;④IgG可通过胎盘;⑤IgG的CH3可与单核细胞、巨噬细胞、中性粒细胞、B细胞和NK细胞表面的IgG Fc受体(FcγR)结合,IgE的CH2和CH3可与肥大细胞和嗜碱性粒细胞的IgE Fc受体(FcεR)结合。
3.铰链区铰链区位于CH1与CH2之间,含有丰富的脯氨酸,因此易伸展弯曲,而且易被木瓜蛋白酶、胃蛋白酶等水解。
铰链区连接抗体的Fab段和Fc段,使两个Fab段易于移动和弯曲,从而可与不同距离的抗原部位结合。
五类Ig或亚类的铰链区不尽相同,例如IgG1、IgG2、IgG4和IgA的铰链区较短,而IgG3和IgD的铰链区较长。
IgM和IgE无铰链区。
1.利于抗体分子超变区与抗原决定簇吻合2.Ag和Ab结合后,铰链区发生构型变化,使存在于CH2区补体结合位点暴露,使补体得以结合。
二、免疫球蛋白的其他结构(一)J链 J链(joining chain)是一条多肽链,富含半胱氨酸,由浆细胞合成。
J链可连接Ig 单体形成二聚体、五聚体或多聚体。
两个单体IgA由J链连接形成二聚体,五个单体IgM由二硫键相互连接,并通过二硫键与J链连接形成五聚体。
IgG、IgD、IgE为单体,无J链。
(二)分泌片分泌片(secretory piece,SP)又称为分泌成分(secretory component, SC),是分泌型IgA分子上的一个辅助成分,为一种含糖的肽链,由粘膜上皮细胞合成和分泌,以非共价形式结合到二聚体上,并一起被分泌到粘膜表面。
分泌片具有保护分泌型IgA的铰链区免受蛋白水解酶降解的作用,并介导IgA二聚体从粘膜下通过粘膜等细胞到粘膜表面的转运。
三、免疫球蛋白的水解片段(一)木瓜蛋白酶水解片段木瓜蛋白酶水解IgG的部位是在铰链区二硫键连接的2条重链的近N端,裂解后可得到两个片段:① 2个相同的Fab段即抗原结合片段(fragment antigen binding, Fab),相当于抗体分子的两个。
Fab段为单价,与抗原结合后,不能形成凝集反应或沉淀反应;② 1个Fc段(fragment crystallizable,Fc),即可结晶片段。
Fc段相当于IgG 的CH2和CH3功能区,无抗原结合活性,是抗体分子与效应分子和细胞相互作用的部位。
Ig同种型的抗原性主要存在于Fc段。
(二)胃蛋白酶水解片段胃蛋白酶在铰链区连接重链的二硫键近C端水解IgG,获得一个F(ab’)2片段,由于抗体分子的两个臂仍由二硫键连接,因此F(ab’)2片段为双价,与抗原结合可发生凝集反应和沉淀反应。
Ig的Fc段被胃蛋白酶裂解为若干小分子片段,被称为pFc’,失去生物学活性。
胃蛋白酶水解IgG后的F(ab’)2片段,保留了结合相应抗原的生物学活性,又避免了Fc段抗原性可能引起的副作用,因而作为生物制品有较大的实际应用价值,例如白喉抗毒素、破伤风抗毒素经胃蛋白酶消化后精制提纯的制品,因去掉Fc段而减缓发生超敏反应。
第二节免疫球蛋白的生物学活性一、能与相应抗原发生特异性结合,形成抗原抗体复合物识别并特异性结合抗原是免疫球蛋白分子的主要功能,这种特异性是由免疫球蛋白V区,特别是HVR(CDR)的空间构型所决定。
抗体在体内与相应抗原特异结合,发挥免疫效应,清除病原微生物或导致免疫病理损伤。
例如,抗毒素可中和外毒素,保护细胞免受毒素作用,IgG和IgA都具有这种中和作用;病毒的中和抗体可阻止病毒吸附和穿入细胞从而阻止感染相应的靶细胞;分泌型IgA可抑制细菌粘附到宿主细胞。
抗体在体外与抗原结合引起各种抗原抗体反应。
B细胞膜表面的IgM和IgD是B细胞识别抗原受体,能特异性识别抗原分子。
二、可以激活补体IgM、IgG(IgG1、IgG2和IgG3)与抗原结合后,可通过经典途径激活补体系统,产生多种效应功能,其中IgM、IgG1和IgG3激活补体系统的能力较强,IgG2较弱。
IgD、IgE和IgG4不能激活补体;聚合的IgA可通过旁路途径激活补体系统。
三、可与许多细胞表面Fc受体发生结合(一)调理促吞噬作用:如IgG促进吞噬细胞发挥吞噬功能;抗体的调理作用是指IgG抗体(特别是IgG1和IgG3)的Fc段与中性粒细胞、巨噬细胞上的IgG Fc受体结合,从而增强吞噬细胞的吞噬作用。
IgA也具有调理作用。
(二)介导过敏反应:如IgE与肥大细胞结合介导Ⅰ型过敏反应IgE的Fc段可与肥大细胞和嗜碱性粒细胞表面的高亲和力IgE Fc受体(FcεRI)结合,促使这些细胞合成和释放生物活性物质,引起Ⅰ型超敏反应。
(三)ADCC效应:IgGFc段与NK细胞、单核吞噬细胞上Fc段受体结合,使其发挥ADCC效应。
抗体依赖的细胞介导的细胞毒作用(antibody-dependent cell-mediatedcytotoxicity,ADCC)是指表达Fc受体的细胞通过识别抗体的Fc段直接杀伤被抗体包被的靶细胞。
例如IgG抗体与带有相应抗原的靶细胞结合后,表达FcγR的NK细胞、巨噬细胞和中性粒细胞,可通过与IgG Fc段的结合,而直接杀伤被IgG抗体包被的靶细胞。