第24章圆(全章热门考点整合应用)
- 格式:docx
- 大小:177.11 KB
- 文档页数:19
人教版九年级数学第二十四章《圆》单元知识点总结1.弦弦:连结圆上任意两点的线段叫做弦. 直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.2.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.①半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;②优弧:大于半圆的弧叫做优弧;③劣弧:小于半圆的弧叫做劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.5、弧、弦、圆心角的关系(1)圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.(2)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.6、圆周角(1)圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.(2).圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(3).圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.7.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).8.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。
【学习目标】九年级数学上册第24 章《圆》知识点梳理1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;5.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段 OA 绕着它的一个端点 O 旋转一周,另一个端点 A 所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心1 2n是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2) 轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. ②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. ③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. ⑤平行弦夹的弧相等. 要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3. 两圆的性质(1) 两个圆是一个轴对称图形,对称轴是两圆连心线.(2) 相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.4. 与圆有关的角(1) 圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角. ④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1. 判定一个点 P 是否在⊙O 上设⊙O 的半径为 ,OP= ,则有点 P 在⊙O 外;点 P 在⊙O 上; 点 P 在⊙O 内.要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2. 判定几个点A 、A 、 A 在同一个圆上的方法 当时, 在⊙O 上.3. 直线和圆的位置关系设⊙O 半径为 R ,点 O 到直线 的距离为 .(1)直线和⊙O没有公共点直线和圆相离.(2)直线和⊙O有唯一公共点直线和⊙O相切.(3)直线和⊙O有两个公共点直线和⊙O相交.4.切线的判定、性质(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1) 和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2) 和没有公共点,且的每一个点都在内部内含(3) 和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4) 和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O 表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的 2倍,通常用G 表示.(4)垂心:是三角形三边高线的交点.要点诠释:(1)任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2)解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S 为三角形的面积,P 为三角形的周长,r 为内切圆的半径). (3)三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外三角形三边中垂线的(1)OA=OB=OC ;(2)外心不一接圆的圆心) 交点定在三角形内部内心(三角形内三角形三条角平分线(1)到三角形三边距离相等;切圆的圆心) 的交点(2)OA、OB、OC 分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为 R 的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为 R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R ,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积 S、扇形半径 R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】13 (1 + 1)2 + (0 - 3)2 OE 2 - EF 2 3 3 类型一、圆的基础知识1.如图所示,△ABC 的三个顶点的坐标分别为 A (-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为 .【答案】 ;【解析】由已知得 BC∥x 轴,则 BC 中垂线为 x =-2 + 4 = 12那么,△ABC 外接圆圆心在直线 x=1 上,设外接圆圆心 P(1,a),则由 PA=PB=r 得到:PA 2=PB 2即(1+1)2+(a-3)2=(1+2)2+(a+2)2化简得 4+a 2-6a+9=9+a 2+4a+4 解得 a=0即△ABC 外接圆圆心为 P(1,0) 则 r = PA = = 【总结升华】 三角形的外心是三边中垂线的交点,由 B 、C 的坐标知:圆心 P (设△ABC 的外心为 P )必在直线x=1 上;由图知:BC 的垂直平分线正好经过(1,0),由此可得到 P (1,0);连接 PA 、PB ,由勾股定理即可求得⊙P 的半径长.类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,⊙O 的直径 AB 和弦 CD 相交于点 E ,已知 AE =1cm ,EB =5cm ,∠DEB=60°, 求 CD 的长.【答案与解析】作 OF⊥CD 于 F ,连接 OD .∵ AE =1,EB =5,∴ AB =6. ∵ OA =AB = 3 ,∴ OE =OA-AE =3-1=2.2在 Rt△OEF 中,∵ ∠DEB=60°,∴ ∠EOF=30°, ∴ EF = 1OE = 1 ,∴ OF = = .2在 Rt△DFO 中,OF = ,OD =OA =3,13OD 2 - OF 2∵ OF⊥CD,∴ DF =CF ,∴ CD =2DF = 2 cm .【总结升华】因为垂径定理涉及垂直关系,所以常常可以利用弦心距(圆心到弦的距离)、半径和半弦组成一个直角三角形,用勾股定理来解决问题,因而,在圆中常作弦心距或连接半径作为辅助线,然后用垂弦定理来解题.作 OF⊥CD 于 F ,构造 Rt△OEF,求半径和 OF 的长;连接 OD ,构造 Rt△OFD,求 CD 的长.举一反三:【变式】如图,AB 、AC 都是圆 O 的弦,OM⊥AB,ON⊥AC,垂足分别为 M 、N ,如果 MN =3,那么 BC = .C【答案】由 OM⊥AB,ON⊥AC,得 M 、N 分别为 AB 、AC 的中点(垂径定理),则 MN 是△ABC 的中位线,BC=2MN=6.3.如图,以原点 O 为圆心的圆交 x 轴于点 A 、B 两点,交 y 轴的正半轴于点 C ,D 为第一象限内⊙O 上的一点,若∠DAB = 20°,则∠OCD = .yCDAOBx(第 3 题)【答案】65°.【解析】连结 OD ,则∠DOB = 40°,设圆交 y 轴负半轴于 E ,得∠DOE= 130°,∠OCD =65°. 【总结升华】根据同弧所对圆周角与圆心角的关系可求. 举一反三:【变式】(2015•黑龙江)如图,⊙O 的半径是 2,AB 是⊙O 的弦,点 P 是弦 AB 上的动点,且 1≤OP ≤2,则弦 AB 所对的圆周角的度数是()A .60°B .120°C .60°或 120°D .30°或 150°【答案】C.【解析】作 OD ⊥AB ,如图,N O AMB∴ DF = = 32 - ( 3)2 = 6 (cm).6∵点P 是弦AB 上的动点,且1≤OP≤2,∴OD=1,∴∠OAB=30°,∴∠AOB=120°,∴∠AEB= ∠AOB=60°,∵∠E+∠F=180°,∴∠F=120°,即弦AB 所对的圆周角的度数为60°或120°.故选C.类型三、与圆有关的位置关系4.如图,在矩形 ABCD 中,点O 在对角线 AC 上,以OA 的长为半径的圆 O 与AD、AC 分别交于点 E、F,且∠ACB= ∠DCE.请判断直线 CE 与⊙O 的位置关系,并证明你的结论.【答案与解析】直线 CE 与⊙O相切理由:连接 OE∵OE=OA∴∠OEA=∠OAE∵四边形 ABCD 是矩形∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB∴∠DCE+∠DEC=90°, ∠ACB=∠DAC又∠DCE=∠ACB∴∠DEC+∠DAC=90°∵OE=OA∴∠OEA=∠DAC∴∠DEC+∠OEA=90°∴∠OEC=90°∴OE⊥EC∴直线 CE 与⊙O相切.【总结升华】本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线.举一反三:【变式】如图,P 为正比例函数图象上的一个动点,的半径为3,设点P 的坐标为(x、y).(1)求与直线相切时点P 的坐标.(2)请直接写出与直线相交、相离时 x 的取值范围.【答案】(1)过作直线的垂线,垂足为.当点在直线右侧时,,得,(5,7.5).当点在直线左侧时,,得,( ,).当与直线相切时,点的坐标为(5,7.5)或( ,).(2)当时,与直线相交.当或时,与直线相离.类型四、圆中有关的计算5.(2015•丽水)如图,在△ABC 中,AB=AC,以AB 为直径的⊙O 分别与BC,AC 交于点D,E,过点D 作⊙O 的切线DF,交AC 于点F.(1)求证:DF⊥AC;(2)若⊙O 的半径为4,∠CDF=22.5°,求阴影部分的面积.【答案与解析】(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF 是⊙O 的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O 的半径为4,∴S 扇形AOE=4π,S△AOE=8 ,∴S 阴影=4π﹣8.【总结升华】本题主要考查了切线的性质,扇形的面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结合是解答此题的关键.类型五、圆与其他知识的综合运用6.如图(1)是某学校存放学生自行车的车棚示意图(尺寸如图(1)),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图(2)是车棚顶部截面的示意图, AB 所在圆的圆心为 O .车棚顶部用一种帆布覆盖,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留 π).【答案与解析】连接 OB ,过点 O 作 OE⊥AB,垂足为 E ,交 AB 于点 F ,如图(2). 由垂径定理,可知 E 是 AB 中点,F 是 AB 的中点,∴ AE= 1AB = 2 2,EF =2.设半径为 R 米,则 OE =(R-2)m .在 Rt△AOE 中,由勾股定理,得 R 2 = (R - 2)2 + (2 3)2 . 解得 R =4.∴ OE =2,OE = 1AO ,∴ ∠AOE=60°,∴ ∠AOB=120°.2∴ AB 的长为120 ⨯ 4π = 8π(m). 180 3 ∴ 帆布的面积为 8π⨯ 60 = 160π(m 2).3【总结升华】本题以学生校园生活中的常见车棚为命题背景,使考生在考场上能有一种亲切的感觉,这也体现了中考命题贴近学生生活实际的原则.求覆盖棚顶的帆布的面积,就是求以 AB 为底面的圆柱的侧面积.根据题意,应先求出 AB 所对的圆心角度数以及所在圆的半径,才能求 AB 的长.举一反三:【变式】某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所 示是水平放置的破裂管道有水部分的截面.①请你补全这个输水管道的圆形截面图;②若这个输水管道有水部分的水面宽 AB=16cm ,水最深的地方的高度为 4cm ,求这个圆形截面 的半径.【答案】①作法略.如图所示.3②如图所示,过 O 作OC⊥AB于D,交于 C,∵ OC⊥AB,∴.由题意可知,CD=4cm.设半径为x cm,则.在Rt△BOD中,由勾股定理得:∴.∴.即这个圆形截面的半径为 10cm.圆的基本概念和性质【学习目标】1.知识目标:在探索过程中认识圆,理解圆的本质属性;2.能力目标:了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;3.情感目标:通过圆的学习养成学生之间合作的习惯.【要点梳理】要点一、圆的定义及性质1.圆的定义(1)动态:如图,在一个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 随之旋转所形成的图形叫做圆,固定的端点 O 叫做圆心,线段 OA 叫做半径. 以点 O 为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.(2)静态:圆心为 O,半径为 r 的圆是平面内到定点 O 的距离等于定长 r 的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:①圆有无数条对称轴;②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.3.两圆的性质两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB 是⊙O 的直径,CD 是⊙O 中任意一条弦,求证:AB≥CD.证明:连结OC、OD2.弧∵AB=AO+OB=CO+OD≥CD(当且仅当CD 过圆心O 时,取“=”号) ∴直径AB 是⊙O 中最长的弦.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.【典型例题】类型一、圆的定义1.(2014 秋•邳州市校级月考)如图所示,BD,CE 是△ABC 的高,求证:E,B,C,D 四点在同一个圆上.【思路点拨】要证几个点在同一个圆上,就是证明这几个点到同一点的距离都相等即可.【答案与解析】证明:如图所示,取BC 的中点F,连接DF,EF.∵BD,CE 是△ABC 的高,∴△BCD 和△BCE 都是直角三角形.∴DF,EF 分别为Rt△BCD 和Rt△BCE 斜边上的中线,∴DF=EF=BF=CF.∴E,B,C,D 四点在以F 点为圆心,BC 为半径的圆上.【总结升华】要证几个点在同一个圆上,只能依据圆的定义,去说明这些点到平面内某一点的距离相等.举一反三:【变式】下列命题中,正确的个数是()⑴直径是弦,但弦不一定是直径;⑵半圆是弧,但弧不一定是半圆;⑶半径相等且圆心不同的两个圆是等圆;⑷一条弦把圆分成的两段弧中,至少有一段是优弧.A.1 个B.2 个C.3 个D.4 个【答案】⑴、⑵、⑶是正确的,⑷是不正确的.故选 C.类型二、圆及有关概念2.判断题(对的打√,错的打×,并说明理由)①半圆是弧,但弧不一定是半圆;()②弦是直径;()③长度相等的两段弧是等弧;()④直径是圆中最长的弦. ()【答案】①√ ②× ③× ④√.【解析】①因为半圆是弧的一种,弧可分为劣弧、半圆、优弧三种,故正确;②直径是弦,但弦不一定都是直径,只有过圆心的弦才是直径,故错;③只有在同圆或等圆中,长度相等的两段弧才是等弧,故错;④直径是圆中最长的弦,正确.【总结升华】理解弦与直径的关系,等弧的定义.举一反三:【变式】(2014•长宁区一模)下列说法中,结论错误的是()A .直径相等的两个圆是等圆B .长度相等的两条弧是等弧C .圆中最长的弦是直径D .一条弦把圆分成两条弧,这两条弧可能是等弧【答案】B.提示:A 、直径相等的两个圆是等圆,正确,不符合题意;B 、长度相等的两条弧圆周角不一定相等,它们不一定是等弧,原题的说法是错误的,符合题意;C 、圆中最长的弦是直径,正确,不符合题意;D 、一条直径把圆分成两条弧,这两条弧是等弧,正确,不符合题意,故选:B .3.直角三角形的三个顶点在⊙O 上,则圆心 O 在 .......................【答案】斜边的中点.【解析】根据圆的定义知圆心 O 到三角形的三个顶点距离相等,由三角形斜边的中线等于斜边的一半可知,斜边上的中点到各顶点的距离相等.【总结升华】圆心到圆上各点的距离相等. 4.判断正误:有 AB 、C D , AB 的长度为 3cm, C D 的长度为 3cm ,则 AB 与C D 是等弧.【答案】错误.【解析】“能够完全重合的弧叫等弧”.在半径不同的圆中也可以出现弧的长度相等,但它们不会完全重合,因此, 只有在同圆或等圆中,长度相等的弧才是等弧.【总结升华】在同圆或等圆中,长度相等的弧才是等弧.举一反三:【变式】有的同学说:“从优弧和劣弧的定义看,大于半圆的弧叫优弧,小于半圆的弧叫劣弧,所以优弧一定比劣 弧长.”试分析这个观点是否正确.甲同学:此观点正确,因为优弧大于半圆,劣弧小于半圆,所以优弧比劣弧长.乙同学:此观点不正确,如果两弧存在于半径不相等的两个圆中,如图,⊙O 中的优弧 AmB ,中的劣弧C D ,它们的长度大小关系是不确定的,因此不能说优弧一定比劣弧长.请你判断谁的说法正确?【答案】弧的大小的比较只能是在同圆或等圆中进行. 乙的观点正确.类型三、圆的对称性5.已知:如图,两个以 O 为圆心的同心圆中,大圆的弦 AB 交小圆于 C,D.求证:AC=BD.【答案与解析】证明:过 O 点作OM⊥AB于M,交大圆与 E、F 两点.如图,则EF 所在的直线是两圆的对称轴,所以 AM=BM,CM=DM,故AC=BD.【总结升华】作出与AB垂直的圆的对称轴,由圆的对称性可证得结论.垂径定理【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.利用垂径定理及其推论进行简单的计算和证明.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(2)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(3)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;OD 2 + AD 2 42 + 32 (4) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1.如图,AB 是⊙O 的弦,半径 OC⊥AB 于点 D ,且 AB =6 cm ,OD =4 cm ,则 DC 的长为( )A .5 cmB .2.5 cmC .2 cmD .1 cm【思路点拨】欲求 CD 的长,只要求出⊙O 的半径 r 即可,可以连结 OA ,在 Rt△AOD 中,由勾股定理求出 OA.【答案】D ;【解析】连 OA ,由垂径定理知 AD = 1AB = 3cm , 2所以在 Rt△AOD 中, AO = = = 5 (cm ).所以 DC =OC -OD =OA -OD =5-4=1(cm ).【点评】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形。
第24章圆第一节圆的有关性质知识点一:圆的定义1、圆可以看作是到定点(圆心O)的距离等于定长(半径r)的点的集合。
2、圆的特征(1)圆上各点到定点(圆心O)的距离都等于定长(半径)。
(2)到定点的距离等于定长的点都在同一个圆上。
注意:(1)圆指的是圆周,即一条封闭的曲线,而不是圆面。
(2)“圆上的点”指圆周上的点,圆心不在圆周上。
知识点二:圆的相关概念1、弦与直径:连结圆上任意两点的线段叫做弦,经过圆心的弦叫做直径。
2、弧、半圆、优弧、劣弧:圆上任意两点间的部分叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
大于半圆的弧(用三个点表示)叫优弧;小于半圆的弧叫做劣弧.注意:半圆是弧,但弧不一定是半圆。
半圆既不是优弧,也不是劣弧。
3、等圆:能够重合的两个圆叫做等圆周。
4、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
知识点三:圆的对称性1、圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴。
注意:(1)圆的对称轴有无数条(2)因为直径是弦,弦是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”或说成“圆的对称轴是经过圆心的直线”。
2、圆是中心对称图形,圆心就是它的对称中心,不仅如此,把圆绕圆心旋转任意一个角度,所得的图形都与原图形重合。
知识点四:垂径定理及推论(重点)1、垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
如图,AB是⊙O的直径,CD 是⊙O的弦,AB交CD于点E,若AB⊥CD,则CE=DE,CB=DB,AC=AD注意:(1)这里的垂径可以是直径、半径或过圆心的直线或线段,其本质是“过圆心”。
B (2)垂径定理中的“弦”为直径时,结论仍成立。
2、垂径定理的推论:如图:CD 是非直径的弦,AB 是直径,若CE=DE ,则AB ⊥CD ,CB=DB ,AC=AD 。
注意:被平分的弦不是直径,因为直径是弦,两直径互相平分,结论就不成立,如图 直径AB 平分CD ,但AB 不垂直于CD 。
炸初中系列 方肘 创新教辅领跑-=1ir-“£1全章热门考点整合应用名师点金:圆的知识是初中数学的重点内容, 也是历年中考命题的热点.本章题型广泛, 主要考查圆的概念、 基本性质以及圆周角定理及其推论,直线与圆的位置关系, 切线的性质和判定,正多边形与圆的计算和证明等, 通常以这些知识为载体,与函数、方程等知识综合 考查.全章热门考点可概括为:一个概念、三个定理、三个关系、两个圆与三角形、三个公 式、两个技巧、两种思想.1.下列说法正确的是( )A. 直径是弦,弦也是直径B. 半圆是弧,弧是半圆C. 无论过圆内哪一点,只能作一条直径 D .在同圆或等圆中,直径的长度是半径的 |l —匚 I 三个定理定理1垂径定理2.【2015北京】如图,AB 是O O 的直径,过点 B 作O O 的切线BM ,弦CD // BM , 交AB 于点F ,且DA = DC ,连接AC , AD ,延长AD 交BM 于点E.⑴求证:△ ACD 是等边三角形; ⑵连接OE ,若DE = 2,求OE 的长.JTK定理2圆心角、弦、弧间的关系定理3.如图,AB 是O O 的直径,点C 在O O 上,/ AOC = 40 ° D 是BC 的中点,求/ ACD的度数.■\一过夷一个概念圆的相关概念色蒸邂藝初中系列方肘创新教辅领跑(第3题)定理3圆周角定理4.如图,已知AB是O O的弦,0B = 2,/ B = 30 ° C是弦AB上任意一点(不与点A , B重合),连接CO并延长CO交O 0于点D,连接AD.⑴弦长AB = (结果保留根号);⑵当/ D = 20。
时,求/ BOD的度数.三个关系关系1点与圆的位置关系5.如图,有两条公路0M , ON相交成30。
角,沿公路0M方向离两条公路的交叉处0殊蒸初中系列方肘创新教辅领跑点80 m 的A 处有一所希望小学,当拖拉机沿 ON 方向行驶时,距拖拉机 50 m 范围内会受到噪音影响,已知有两台相距30 m 的拖拉机正沿 ON 方向行驶,它们的速度均为5 m/s ,则这两台拖拉机沿ON 方向行驶时给小学带来噪音影响的时间是多长?关系2直线与圆的位置关系6.如图,在平行四边形 ABCD 中,/ D = 60°以AB 为直径作O O ,已知 AB = 10, AD = m.⑴求点O 到CD 的距离;(用含m 的代数式表示)(2)若m = 6,通过计算判断O O 与CD 的位置关系; (3)若O O 与线段CD 有两个公共点,求 m 的取值范围.S ------ 叫(第6题)关系3正多边形和圆的位置关系7.如图,已知O O 的内接正十边形 ABCD …,AD 交0B , 0C 于M , N.求证: (1)MN // BC ; (2)MN + BC = OB.(第 7 题)(第 5 题)蒸邂藝初中系列方肘创新教辅领跑圆与三角形1三角形的外接圆&【中考哈尔滨】如图,O 0是^ ABC的外接圆,弦BD交AC于点E,连接CD,且AE = DE, BC = CE.(1)求/ ACB的度数;⑵过点0作OF丄AC于点F,延长F0交BE于点G , DE = 3, EG = 2,求AB的长.SI蒸邂藝初中系列方肘创新教捕领>6圆与三角形2三角形的内切圆9.如图,若△ ABC 的三边长分别为 AB = 9, BC = 5, CA = 6, △ ABC 的内切圆O O 切A . 5B . 10C . 7.5D . 410.如图,在△ ABC 中,AB = AC ,内切圆O O 与边BC , AC , AB 分别切于 D , E , F./ BAC = 120 ° BF = 2>/3.则内切圆O O 的半径为()A. 2 B A /3 C . 4西—6 D.9L A Ail 三个公式公式1弧长公式11.如图,已知正六边形 ABCDEF 是边长为2 cm 的螺母,点P 是FA 延长线上的点,在A , P 之间拉一条长为12 cm 的无伸缩性细线,一端固定在点 A ,握住另一端点 P 拉直细A. 13 ncmB. 14ncmC. 15 ncm D . 16 ncm12.【2016昆明】如图,AB 为O O 的直径,AB = 6, AB 丄弦CD ,垂足为G , EF 切O OAB , BC , AC 于点 D ,F ,则AF 的长为( )线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P 运动的路径长为()第12题)A0(第10题)AOD(?于点B ,连接AD , OC , BC ,/ A = 30°下列结论不正确的是 ( )A . EF // CDB. A COB 是等边三角形 C . CG = DG D.BC 的长为3n公式2扇形面积公式13.设计一个商标图案,如图,在矩形 ABCD 中,若AB = 2BC ,且AB = 8 cm ,以点A 为圆心,AD 长为半径作弧,交 BA 的延长线于点F ,则商标图案(阴影部分)的面积等于B. (4 n+ 16) cm 2D. (3 n+ 16) cm2如图,以AB 为直径,点0为圆心的半圆经过点 C ,若AC = BC =<2, 则图中阴影部分的面积是 ( )C. nD.2+n公式3圆锥的侧面积和全面积公式15•在手工课上,王红制成了一顶圆锥形纸帽,已知纸帽底面圆的半径为长为50 cm ,则制作一顶这样的纸帽所需纸板的面积至少为( )A. 250 ncm 2 B . 500 ncm 22 2C. 750 ncm D . 1 000 ncmA. 4 nB. 8 nC. 12 nD. 16 nA. (4 n+ 8) cm 2C. (3 n+ 8) cm 2(第13题)(第14题)14.【2016重庆】 10 cm ,母线16.已知圆锥底面圆的半径为2,母线长是 4,则它的全面积为( )DF 4C___ |[ *取蒸邂蛊初中系列方肘创新教辅领践I两个技巧技巧1作同弧所对的圆周角(特别的:直径所对的圆周角)17.如图,在△ ABC中,AB = AC,以AC为直径的O O交AB于点D,交BC于点E.⑴求证:BE = CE;(2)若/ B = 70 °求DE的度数;⑶若BD = 2, BE = 3,求AC的长.(第17 题)技巧2作半径(特别的:垂直于弦的半径、过切点的半径)18 .如图,AB为O O的直径,PQ切O O于E,AC丄PQ于C.(1)求证:AE平分/ BAC ;⑵若EC = V3,/ BAC = 60 °求O O的半径.P K C Q(第18 题)炸蒸®藝初中系列方肘创新教4#领典思想1分类讨论思想1 的O O 中,弦 AC =p 2,弦 AB = J 3,则/ CAB =ABCD 的边长是4,以BC 为直径作圆,从点 A 引圆的切线,切点 DC 于点E.求:⑴△ ADE 的面积;19.已知在半径为思想2方程思想20.如图,正方形 为F , AF 的延长线交直sss初中系列方肘创新教辅领跑(2)BF的长.a: (第20 题)■\直sss 初中系列方肘创新教辅领跑AD = AC = CD.•••△ ACD 是等边三角形.(第2题)⑵解:如图,过 0作ON 丄AD 于N.由⑴知^ ACD 是等边三角形,•/ DAC = 60 °•/ AD = AC , CD 丄 AB ,•••/ DAB = 30°,• BE = ^AE , ON = ^AO.设O O 的半径为 r , • ON =》,• AN = DN =¥「,••• EN = 2 + 乎r , AE = 2+ 迈r ;. BE = jAE =茫 + 2.在 RtA NEO 与 RtA BEO 中,OE 2=ON 2 + NE 2 = OB 2 + BE 2,即卩夕 + 2+当rr2也去).••• OE 2= 2 + 2+*r = 28.又•/ OE>0 ,3.解:•••/ AOC = 40°1•••/ BOC = 180° - 40°= 140° / ACO = § X (180。
— 40° = 70°.如图,连接 OD. •/ D 是 BC的中点,•/ COD =二 BOC = 70°.•/ OCD = 180「70= 55°•••/ ACD = / ACO +/ OCD = 70°+ 55°= 125°4. 解:(1)2也.⑵如图,连接OA..-亠— ./■-1. D2. (1)证明: •••CD // BE ,••• D A = DC , 答案•/ AB 是O O 的直径,BM 是O O 的切线,••• AB 丄BE.••• CD 丄 AB. ••• A D = A C D A = AC = CD=「2+ [•••「= 2颐=••• OE = 2^/7.n4fln (第 3 )•/ OA = OB , OA = OD , •••/ BAO = / B , / DAO =/ D. •••/ BAD =/ BAO +/ DAO =/ B + / D. 又•••/ B = 30° / D = 20° •••/ BAD = 50°.•••/ BOD = 2 / BAD = 100°点拨:圆周角定理、垂径定理在与圆有关的证明、计算题中经常出现,要牢固掌握.(第5题)5. 解:如图,过点A 作AC 丄ON ,垂足为C. •// MON = 30° OA = 80 m ,以点A 为圆心,50 m 为半径作圆,交 ON 于B ,D 点时第二台拖拉机在 C 点,还需前行30 m 后才对小学没有噪音影 响.•••影响时间应是 90^5= 18(s ).即这两台拖拉机沿 ON 方向行驶时给小学带来噪音影响的时间是18 s.6.解:(1)根据平行线间的距离相等,知点 O 到CD 的距离即为点 A 到CD 的距离.过点A 作AE 丄CD 于点E.根据/ D = 60° AD = m ,利用直角三角形中“ 30°角所对的直角边 等于斜边的一半”及勾股定理,得AE = ¥m ,即点O 到CD 的距离是^m.(2)由题可得 OA = 5.当m = 6时,^23m = 3^/3>5,故O O 与CD 相离.⑶若O O 与线段CD 有两个公共点,则该圆和线段 CD 相交,当点C 在O O 上时,易得 m = 2A B = 5;D 两点,连接AB , AD.当第一台拖拉机到 B 点时对小学产生噪音影响,••• AB = 50 m ,.・.由勾股定理得 BC =30 m ,第一台拖拉机到D 点时对小学产生的噪音消失,易得 CD = 30 m.•••两台拖拉机相距 30 m ,•••第一台拖拉机到|['当线段CD与O O相切时,有^23m = 5, m=霁.所以m的取值范围是5W m<7.证明:⑴如图,连接OA ,0D,则/ AOB =/ BOC = / COD = 360 T0= 36° 则/ AOD =/ AOB + / BOC + / COD = 108°又••• OA = OD,•••/ OAD = / ODA = 36°•••/ ANO =/ COD + / ODA = 36° + 36° = 72°.•// BOC = 36° OB = OC,•••/ BCO = / OBC = 72°•••/ ANO =/ BCO.••• MN // BC.(第7题)(2) •// AON =/ AOB + / BOC = 72 °,/ ANO = 72°AN = AO = OB.•/ MN // BC,•••/ AMB =/ OBC = 72°"ABM =叮=72°•••/ ABM =/ AMB. ••• AB = AM.又AB = BC. ••• AN = AM + MN = AB + MN = BC + MN.••• MN + BC = OB.&解:⑴在O O中,/ A = / D.•// AEB = / DEC , AE = DE,•••△ AEB N DEC. ••• EB = EC.又••• BC = CE ,• BE = CE= BC.•••△ EBC 为等边三角形ACB = 60°(2) •/ OF 丄 AC ,• AF = CF. •••△ EBC 为等边三角形,•••/ GEF = 60°.;/ EGF = 30°.•/ EG = 2 ,••• EF = 1.又••• AE = ED = 3,; CF = AF = 4.; AC = 8, CE = 5.; BC = 5.如图,作 BM 丄 AC 于点 M ,•••/ BCM = 60°,•••/ MBC = 30°.; CM = I ; BM = p BC 2- CM 2=晋,AM = AC — CM =号.• AB = ^AM 2+ BM 2= 7.9. A10. C 点拨:设O O 的半径为r ,连接AO , OD , OE ,易得A , 0, D 三点共线,AD=2, AO = 2— r ,/ AEO = 90° / AOE = 30°••• AE = 2AO = ^(2 — r).又根据已知条件易求得 AE = 4 — 2A /3 ,••• 4-2©= 2(2 — r),•- r = 4^3- 6,即内切圆O 0的半径是4寸3— 6.由题图可知,点 P 运动的路径长是题图中六个扇形的弧长之和,每个扇12X 2n= 4n •侧面积是-X4 nX 4= 8 n,底面积是 nX 22•••全面积是8 n+ 4 n= 12 n(第8题)11. B 点拨: 形的圆心角均为60 ,半径从12 cm 依次减2 cm ,所以点P 运动的路径长为18060 nX 12 + 60 nX 1018060 nX 8 60nX 6+180 180:,—(12 + 10+8+ 6 +4+ 2) = 14ncm).故选 B. 180 312. D13. A 点拨:•••在矩形 ABCD 中,AB = 2BC , AB = 8 cm ,; AD = BC = 4 cm , / DAF=90 .…S 扇形1AFD = 4 nAD 2= 4 Xcm 2). S 矩形 ABCD = AB -AD = 8 X 4= 32(cm 2).又T AF = AD = 41 1cm,; BF = AF + AB = 4+ 8= 12(cm). • S ^BCF = 2BF BC = -X 12 X 4= 24(cm 2). • S 阴影=S扇形 AFD+ S 矩形 ABCD — S A BCF = 4 n+ 32 — 24= (4 计 8)(cm 2).故选 A.14. A 15. B点拨:由圆锥的侧面展开图的面积计算公式,得S = nl = n X 10X 50 =500 ncm 2). 故选B.16. C 点拨:•••底面周长是炸蒸邂蛊初中系列方肘创新数辅领跑17.⑴证明:如图,连接 AE,T AC 为直径,•••/ AEC = 90°.• AE 丄BC. •/ AB = AC , • BE = CE.⑵解:如图,连接 OD , OE ,在 RtA ABE 中,/ BAE = 90 -/ B = 90。