人教版七年级数学上册易考易错题
- 格式:doc
- 大小:77.00 KB
- 文档页数:3
一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上的点表示的数为,点表示的数为,点到点、点的距离相等,动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,设运动时间为 ( 大于秒.(1)点表示的数是________.(2)求当等于多少秒时,点到达点处?(3)点表示的数是________(用含字母的式子表示)(4)求当等于多少秒时,、之间的距离为个单位长度.【答案】(1)1(2)解:[6-(-4)]÷2=10÷2=5(秒)答:当t=5秒时,点P到达点A处.(3)2t-4(4)解:当点P在点C的左边时,2t=3,则t=1.5;当点P在点C的右边时,2t=7,则t=3.5.综上所述,当t等于1.5或3.5秒时,P、C之间的距离为2个单位长度.【解析】【解答】解:(1)依题意得,点C是AB的中点,故点C表示的数是: =1. 故答案是:1;( 3 )点P表示的数是2t-4.故答案是:2t-4;【分析】(1)根据x c=可求解;(2)根据数轴上两点间的距离等于两点坐标之差的绝对值可求得AB的距离,再根据时间=路程÷速度可求解;(3)根据题意可得点P表示的数=点P运动的距离+X B可求解;(4)由题意可分两种情况讨论求解:① 当点P在点C的左边时,由题意可列关于t的方程求解;② 当点P在点C的右边时,同理可求解.2.(1)观察发现,,,……,.=1﹣=.=1﹣=.=________.(2)构建模型=________.(n为正整数)(3)拓展应用:① =________.② =________.③一个数的八分之一,二十四分之一,四十八分之一,八十分之一的和比这个数的四分之一小1,这个数是________.【答案】(1)(2)(3);;20.【解析】【解答】(1) ==1﹣=,故答案为:;(2) ==1﹣=,故答案为:;(3)①原式==1﹣=,故答案为:;②原式===1﹣=,故答案为:;③设这个数为x,根据题意得:( )x= x﹣1,整理得: x= x﹣1,去分母得:( )x=x﹣4,即(1﹣ )x=x﹣4,整理得: x=x﹣4,解得:x=20,答:这个数是20.【分析】(1)各项拆项后,计算即可求出值;(2)归纳总结得到一般性规律,写出即可;(3)①原式拆项后,计算即可求出值;②原式变形后拆项,计算即可求出值;③设这个数为x,根据题意列出方程,求出方程的解即可得到结果.3.我们知道,在数轴上,表示数表示的点到原点的距离,这是绝对值的几何意义,进一步地,如果数轴上两个点A、B,分别对应数a,b,那么A、B两点间的距离为:如图,点A在数轴上对应的数为a,点B对应的数为b,且a,b满足:(1)求a,b的值;(2)求线段AB的长;(3)如图①,点C在数轴上对应的数为x,且是方程的解,在数轴上是否存在点M使?若存在,求出点M对应的数;若不存在,说明理由. (4)如图②,若N点是B点右侧一点,NA的中点为Q,P为NB的三等分点且靠近于B点,当N在B的右侧运动时,请直接判断的值是不变的还是变化的,如果不变请直接写出其值,如果是变化的请说明理由.【答案】(1)解:,,且,解得,,;(2)解:(3)解:存在.设M点对应的数为m,解方程,得,点C对应的数为,,,即,①当时,有,解得,;②当时,有,此方程无解;③当时,有,解得, .综上,M点对应的数为:或4.(4)解:设点N对应的数为n,则,,若N点是B点右侧一点,NA的中点为Q,P为NB的三等分点且靠近于B点,,,,点Q对应的数为:,点P对应的数为:,,①当时,,此时的值随N点的运动而变化;②当时,,此时的值随N点的运动而不变化.【解析】【分析】(1)根据“若非负数和等于0,则非负数均为0”列出方程进行解答便可;(2)根据数轴上两点的距离公式进行计算便可;(3)根据已知线段的关系式,列出绝对值方程进行解答便可;(4)用N点表示的数n,列出关于n的代数式进行讨论解答便可.4.已知:b是最小的正整数,且a、b满足,请回答问题:(1)请直接写出a、b、c的值: a=________; b=________; c=________.(2)a、b、c所对应的点分别为A、B、C,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC—AB的值.(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和x(x>3)个单位长度的速度向右运动,请问:是否存在x,使BC-AB的值随着时间t的变化而不变,若存在求出x;不存在请说明理由.【答案】(1)-1;1;4(2)解:BC-AB=(4-1)-(1+1)=3-2=1.故此时BC-AB的值是1(3)解:t秒时,点A对应的数为-1-t,点B对应的数为3t+1,点C对应的数为xt+4.∴BC=(xt+4)-(3t+1)=(x-3)t+3,AB=(3t+1)-(-1-t)=4t+2,∴BC-AB=(x-3)t+3-(4t+2)=(x-7)t+1,∴BC-AB的值不随着时间t的变化而改变时,其值为7【解析】【解答】解:(1)∵b是最小的正整数,∴b=1,∵|c-4|+(a+b)2=0,∴c-4=0,a+b=0,∴a=-1,c=4【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)根据两点间的距离公式可求BC、AB的值,进一步得到BC-AB的值;(3)先求出BC=4t+3,AB=4t+2,从而得出BC-AB,从而求解.5.观察下面的式子:, , ,(1)你发现规律了吗?下一个式子应该是________;(2)利用你发现的规律,计算:【答案】(1)(2)解:==== .【解析】【解答】(1)根据规律,下一个式子是:【分析】(1)规律:两个自然数(0除外)的乘积的倒数等于这两个自然数倒数的差,据此写出结论即可;(2)利用规律将原式转化为加减运算,然后利用加法结合律进行计算即可.6.快递员小王下午骑摩托车从总部出发,在一条东西走向的街道上来回收送包裹.他行驶的情况记录如下(向东记为“ ”,向西记为“ ”,单位:千米):,,,,,,(1)小王最后是否回到了总部?(2)小王离总部最远是多少米?在总部的什么方向?(3)如果小王每走米耗油毫升,那么小王下午骑摩托车一共耗油多少毫升?【答案】(1)解:+2-3.5+3-4-2+2.5+2=0,∴小王最后回到了总部(2)解:第一次离总部2=2千米;第二次:2-3.5=-1.5千米;第三次:-1.5+3=1.5千米;第四次:1.5-4=-2.5千米;第五次:-2.5-2=-4.5千米;第六次:-4.5+2.5=-2千米;第七次:-2+2=0千米.所以离总部最远是4.5千米,在总部的西方向(3)解:|+2|+|-3.5|+|+3|+|-4|+|-2|+|+2.5|+|+2|=2+3.5+3+4+2+2.5+2=19千米又∵摩托车每行驶1千米耗油30毫升,∴19×30=570(毫升)∴这一天下午共耗油570毫升.【解析】【分析】(1)根据有理数的加减法,再根据正负数即可;(2)根据有理数的加减法,再根据正负数即可;(3)根据绝对值的性质,再根据正负数即可;7.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣40|+(b+8)2=0.点O是数轴原点.(1)点A表示的数为________,点B表示的数为________,线段AB的长为________.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为________.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?【答案】(1)40;﹣8;48(2)8或﹣40(3)解:(i)当0<t≤8时,点Q还在点B处,∴PQ=t=4;(ii)当8<t≤12时,点P在点Q的右侧,∴解得:;(iii)当12<t≤48时,点P在点Q的左侧,∴3(t﹣8)﹣t=4,解得:t=14,综上所述:当t为4秒、10秒和14秒时,P、Q两点相距4个单位长度.【解析】【解答】解:(1)∵|a﹣40|+(b+8)2=0,∴a﹣40=0,b+8=0,解得a=40,b=﹣8,AB=40﹣(﹣8)=48.故点A表示的数为40,点B表示的数为﹣8,线段AB的长为48;(2)点C在线段AB 上,∵AC=2BC,∴AC=48× =32,点C在数轴上表示的数为40﹣32=8;点C在射线AB上,∵AC=2BC,∴AC=40×2=80,点C在数轴上表示的数为40﹣80=﹣40.故点C在数轴上表示的数为8或﹣40;【分析】(1)根据偶次方以及绝对值的非负性即可求出a、b的值,可得点A表示的数,点B表示的数,再根据两点间的距离公式可求线段AB的长;(2)分两种情况:点C在线段AB上,点C在射线AB上,进行讨论即可求解;(3)分0<t≤8、8<t≤12,12<t≤48三种情况考虑,根据P,Q移动的路程结合PQ=4即可得出关于t的一元一次方程,解之即可得出结论.8.如图,数轴上两点分别表示有理数-2和5,我们用来表示两点之间的距离.(1)直接写出的值=________;(2)若数轴上一点表示有理数m,则的值是________;(3)当代数式∣n +2∣+∣n -5∣的值取最小值时,写出表示n的点所在的位置;(4)若点分别以每秒2个单位长度和每秒3个单位长度的速度同时向数轴负方向运动,求经过多少秒后,点到原点的距离是点到原点的距离的2倍.【答案】(1)7(2)(3)解:n点位于线段AB上(包括A、B两点),即时有最小值7;即:(4)解:设经过x秒后点A到原点的距离是点B到原点的距离的2倍,第一种情况:2+2x=2(5-3x),解得:x=1第二种情况:2+2x=2(3x-5),解得:x=3答:经过1秒或3秒后点A到原点的距离是点B到原点的距离的2倍.【解析】【解答】解:(1)故答案为:7(2)【分析】(1)根据两点间距离公式求解即可;(2)根据两点间距离公式求解即可;(3)根据n+2和n-5以及两点间距离公式,即可得出n的取值范围;(4)设经过x秒后点A到原点的距离是点B到原点的距离的2倍,利用两点间距离公式分两种情况列出方程,求解即可.9.阅读下列材料:1×2=(1×2×3-0×1×2),2×3=(2×3×4-1×2×3),3×4=(3×4×5-2×3×4),由以上三个等式相加,可得1×2+2×3+3×4= ×3×4×5=20.读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程);(2)1×2+2×3+3×4+…+ n×( n+1)=________;(3)1×2×3+2×3×4+3×4×5+…+7×8×9=________.【答案】(1)解:1×2+2×3+3×4+…+10×11,= ×(1×2×3-0×1×2)+ ×(2×3×4-1×2×3)+ ×(3×4×5-2×3×4)+…+ ×(10×11×12-9×10×11),= ×(1×2×3-0×1×2+2×3×4-1×2×3+3×4×5-2×3×4+…+10×11×12-9×10×11),= ×10×11×12,=440;(2) n(n+1)(n+2)(3)1260【解析】【解答】解:(2)∵1×2+2×3+3×4= ×3×4×5,∴1×2+2×3+3×4+…+n×(n+1)= n(n+1)(n+2);(3)1×2×3+2×3×4+3×4×5+…+7×8×9=×7×8×9×10=1260.故答案为:n(n+1)(n+2);1260.【分析】(1)根据题目信息列出算式,然后提取,进行计算即可得解;(2)观察不难发现,两个连续的自然数的积等于这两个数与后面的数的积减去与前面的数的积的,然后列出算式进行计算即可得解;(3)根据(2)的规律类比列式进行计算即可得解.10.阅读材料:如图①,若点B把线段分成两条长度相等的线段AB和BC,则点B叫做线段AC的中点.回答问题:(1)如图②,在数轴上,点A所表示的数是﹣2,点B所表示的数是0,点C所表示的数是3.①若A是线段DB的中点,则点D表示的数是________;②若E是线段AC的中点,求点E表示的数________.(2)在数轴上,若点M表示的数是m,点N所表示的数是n,点P是线段MN的中点.①若点P表示的数是1,则m、n可能的值是________(填写符合要求的序号);(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5;(iv)m=﹣1,n=2②直接用含m、n的代数式表示点P表示的数________.【答案】(1)﹣4;;(2)(i)(ii)(iii); .【解析】【解答】解:(1)①点A所表示的数是﹣2,点B所表示的数是0,A是线段DB 的中点,∴点D表示的数是﹣4,故答案为﹣4;②点A所表示的数是﹣2,点C所表示的数是3,E是线段AC的中点,∴点E表示的数为.(2)①点M表示的数是m,点N所表示的数是n,点P是线段MN的中点,点P表示的数是1,∴1=,即m+n=2,∴m、n可能的值是:(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5.故答案为(i)(ii)(iii);②点P表示的数为.【分析】(1)①依据点A所表示的数是-2,点B所表示的数是0,A是线段DB的中点,即可得到点D表示的数;②依据点A所表示的数是-2,点C所表示的数是3,E是线段AC 的中点,即可得到点E表示的数;(2)①依据点M表示的数是m,点N所表示的数是n,点P是线段MN的中点,点P表示的数是1,即可得到m、n可能的值;②依据中点公式即可得到结果.11.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1)若b=-4,则a的值为________.(2)若OA=3OB,求a的值.(3)点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.【答案】(1)10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,,所以,OA= ,点A在原点O的右侧,a的值为 .当A在原点的左侧时(如图),a=-综上,a的值为± .(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=- .当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.当点A在原点的左侧,点B在点C的右侧时,图略,c= .当点A在原点的左侧,点B在点C的左侧时,图略,c=8.综上,点c的值为:±8,± .【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA 的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.12.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.【答案】(1)3;3;4;;1或-3;-1≤x≤2;解:④.④由③可知,要使最小,则在1和2015之间即可,要使最小,则在2和2014之间即可…… 以此类推,要使最小,则在1007和1009之间即可,最后还剩余最小时,取即可,当时,原式【解析】【解答】解:①表示2和5的两点间的距离为,表示-2和-5的两点之间的距离为,表示1和-3的两点之间的距离为;②表示和-1的两点和之间的距离为,若,则,∴,∴或③ ,是到的距离,表示到的距离,当在和2之间时,距离之和最小,∴取最小值时,相应的的取值范围是【分析】①根据(1)中的两点间距离公式可求答案;②根据(1)中的两点间距离公式列出方程求解;③根据线段上的点到两端的距离之和最小可得结果;④根据线段上的点到两端的距离之和最小列出算式计算即可;。
人教版数学七年级上册全册单元试卷易错题(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知长方形纸片ABCD,点E,F,G分别在边AB,DA,BC上,将三角形AEF沿EF翻折,点A落在点处,将三角形EBG沿EG翻折,点B落在点处.(1)点E,,共线时,如图,求的度数;(2)点E,,不共线时,如图,设,,请分别写出、满足的数量关系式,并说明理由.【答案】(1)解:如图中,由翻折得: ,(2)解:如图,结论: .理由:如图中,由翻折得:,如图,结论:,理由: ,,.【解析】【分析】(1)根据翻折不变性得:,由此即可解决问题.(2)根据翻折不变性得到:,根据分别列等式可得图和的结论即可.2.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是多少.②数轴上表示﹣2和﹣6的两点之间的距离是多少.③数轴上表示﹣4和3的两点之间的距离是多少.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.(3)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1, A2, A3,A4, A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.【答案】(1)解:①数轴上表示5和2的两点之间的距离是3.②数轴上表示﹣2和﹣6的两点之间的距离是4.③数轴上表示﹣4和3的两点之间的距离是7.(2)解:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,a=10或﹣4.②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4+3﹣a=7;③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小=5+0+2=7,理由是:a=1时,正好是3与﹣4两点间的距离.(3)解:点P选在A1007A1008这条线段上【解析】【分析】(1)根据两点间的距离公式:数轴上表示数m和数n的两点之间的距离等于|m﹣n|,分别计算可得出答案。
人教版七年级上册数学期末试卷易错题(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,在平面直角坐标系中,已知点A(0,4),B(3,0),线段AB平移后对应的线段为CD,点C在x轴的负半轴上,B、C两点之间的距离为8.(1)求点D的坐标;(2)如图(1),求△ACD的面积;(3)如图(2),∠OAB与∠OCD的角平分线相交于点M,探求∠AMC的度数并证明你的结论.【答案】(1)解:∵B(3,0),∴OB=3,∵BC=8,∴OC=5,∴C(﹣5,0),∵AB∥CD,AB=CD,∴D(﹣2,﹣4)(2)解:如图(1),连接OD,∴S△ACD=S△ACO+S△DCO﹣S△AOD=﹣=16(3)解:∠M=45°,理由是:如图(2),连接AC,∵AB∥CD,∴∠DCB=∠ABO,∵∠AOB=90°,∴∠OAB+∠ABO=90°,∴∠OAB+∠DCB=90°,∵∠OAB与∠OCD的角平分线相交于点M,∴∠MCB=,∠OAM=,∴∠MCB+∠OAM==45°,△ACO中,∠AOC=∠ACO+∠OAC=90°,△ACM中,∠M+∠ACM+∠CAM=180°,∴∠M+∠MCB+∠ACO+∠OAC+∠OAM=180°,∴∠M=180°﹣90°﹣45°=45°.【解析】【分析】(1)利用B的坐标,可得OB=3,从而求出OC=5,利用平移的性质了求出点D的坐标.(2)如图(1),连接OD,由S△ACD=S△ACO+S△DCO+S△AOD,利用三角形的面积公式计算即得.(3)连接AC,利用平行线的性质及直角三角形两锐角互余可得∠OAB+∠DCB=90°,利用角平分线的定义可得∠MCB+∠OAM==45°,根据三角形的内角和等于180°,即可求出∠M的度数.2.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,(1)在图1中,若∠AOC=40°,则∠BOC=°,∠NOB=°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【答案】(1)解:如图1,∵∠AOC与∠BOC互余,∴∠AOC+∠BOC=90°,∵∠AOC=40°,∴∠BOC=50°,∵OC平分∠MOB,∴∠MOC=∠BOC=50°,∴∠BOM=100°,∵∠MON=40°,∴∠BON=∠MON-∠BOM=140°-100°=40°,(2)解:β=2α-40°,理由是:如图1,∵∠AOC=α,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,又∵∠MON=∠BOM+∠BON,∴140°=180°-2α+β,即β=2α-40°;(3)解:不成立,此时此时α与β之间的数量关系为:2α+β=40°,理由是:如图2,∵∠AOC=α,∠NOB=β,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,∵∠BOM=∠MON+∠BON,∴180°-2α=140°+β,即2α+β=40°,答:不成立,此时此时α与β之间的数量关系为:2α+β=40.【解析】【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°-α)=180°-2α,再根据∠BON=∠MON-∠BOM列等式即可;(3)同理可得∠MOB=180°-2α,再根据∠BON+∠MON=∠BOM列等式即可.3.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:⑴如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA=|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|⑵如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|⑶如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA=|b|+|a|=a+(﹣b)=|a﹣b|回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=________.(2)数轴上表示2和﹣4的两点A和B之间的距离AB=________.(3)数轴上表示x和﹣2的两点A和B之间的距离AB=________,如果AB=2,则x的值为________.(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为________.【答案】(1)(2)6(3);0或-4(4)5【解析】【解答】(1)综上所述,数轴上A、B两点之间的距离 (2)数轴上表示2和-4的两点A和B之间的距离 (3)数轴上表示和-2的两点A和B之间的距离如果,则的值为或由题意可知:当x在−2与3之间时,此时,代数式|x+2|+|x−3|取最小值,最小值为故答案为:(1);(2)6;(3),0或-4;(4)5.【分析】(1)发现规律:在数轴上两点之间的距离为这两点所表示的数的差的绝对值,故可求解;(2)根据(1),即可直接求出结果;(3)先根据(1)即可表示出AB;当AB=2时,得到方程,解出x的值即可;(4)|x+2|+|x-3|表示数轴上一点到-2与3两点的距离的和,当这点是-2或5或在它们之间时和最小,最小距离是-2与3之间的距离。
人教版七年级数学上册期末试卷易错题(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知线段AB=6.(1)取线段AB的三等分点,这些点连同线段AB的两个端点可以组成多少条线段?求这些线段长度的和;(2)再在线段AB上取两种点:第一种是线段AB的四等分点;第二种是线段AB的六等分点,这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段?求这些线段长度的和。
【答案】(1)解:如图:点C、D为线段AB的三等分点,可以组成的线段为:3+2+1=6(条),∵AB=6,点C、D为线段AB的三等分点,∴AC=CD=DB=2,AD=BC=4,∴这些线段长度的和为:2+2+2+4+4+6=20.(2)解:再在线段AB上取两种点:第一种是线段AB的四等分点D1、D2、D3;第二种是线段AB的六等分点E1、E2,∴这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段共有1+2+3+…+8=36(条);根据题意以A为原点,AB为正方向,建立数轴,则各点对应的数为:A:0;B:6;C:2;D:4;D1:1.5;D2:3;D3:4.5;E1:1;E2:5;∴①以A、B为端点的线段有7+7+1=15(条),长度和为:6×8=48;②不以A、B为端点,以E1、E2为端点的线段有5+5+1=11(条),长度和为:4×6=24;③不以A、B、E1、E2为端点,以D1、D3为端点的线段有3+3+1=7(条),长度和为:3×4=12;④不以A、B、E1、E2、D1、D3为端点,以C、D为端点的线段有1+1+1=3(条),长度和为:2×2=4;∴这些线段长度的和为:48+24+12+4=88.【解析】【分析】(1)如图,根据线段的三等分点可分别求得每条线段的长度,再由线段的概念先找出所有线段,从而求得它们的和.(2)再在线段AB上取两种点:第一种是线段AB的四等分点D1、D2、D3;第二种是线段AB的六等分点E1、E2;根据线段定义和数线段的规律求得线段条数;根据题意以A为原点,AB为正方向,建立数轴,则各点对应的数为:A:0;B:6;C:2;D:4;D1:1.5;D2:3;D3:4.5;E1:1;E2:5;再分情况讨论,从而求得所有线段条数和这些线段的长度.2.如图,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向.已知射线OB的方向是南偏东m°,射线OC的方向是北偏东n°,且m+n=90°.(1)①若m=50,则射线OC的方向是________,②图中与∠BOE互余的角有________,与∠BOE互补的角有________.(2)若射线OA是∠BON的角平分线,则∠SOB与∠AOC是否存在确定的数量关系?如果存在,请写出你的结论以及计算过程;如果不存在,请说明理由.【答案】(1)北偏东40°;∠BOS,∠EOC;∠BOW(2)解:∠AOC= ∠SOB.理由如下:∵OA平分∠BON,∴∠NOA= ∠NOB,又∵∠BON=180°-∠SOB,∴∠NOA= ∠BON=90°- ∠SOB,∵∠NOC=90°-∠EOC,由(1)知∠BOS=∠EOC,∴∠NOC=90°-∠SOB,∠AOC=∠NOA-∠NOC=90°- ∠SOB-(90°-∠SOB),即∠AOC= ∠SOB.【解析】【解答】解:(1)①∵m+n=90°,m=50°,∴n=40°,∴射线OC的方向是北偏东40°;②∵∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,∴图中与∠BOE互余的角有∠BOS,∠EOC;∠BOE+∠BOW=180°,∴图中与∠BOE互补的角有∠BOW,故答案为:①北偏东40°;②∠BOS,∠EOC;∠BOW.【分析】(1)①由m+n=90°,m=50°可求得n值,从而可得射线OC的方向.②根据余角定义可知∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,从而可得图中与∠BOE互余的角;由补角定义可得∠BOE+∠BOW=180°,从而可得图中与∠BOE互补的角.(2)∠AOC=∠SOB.理由如下:由角平分线定义和领补角定义可得∠NOA= ∠BON=90°-∠SOB,结合(1)中条件可得∠NOC=90°-∠SOB;由∠AOC=∠NOA-∠NOC即可求得它们之间的数量关系.3.已知O为直线AB上一点,射线OD、OC、OE位于直线AB上方,OD在OE的左侧,∠AOC=120°,∠DOE=50°,设∠BOE=(1)若射线OE在∠BOC的内部(如图所示):①若 =43°,求∠COD的度数;②当∠AOD=3∠COE时,求∠COD的度数;(2)若射线OE恰为图中某一个角(小于180°)的角平分线,试求的值.【答案】(1)①∵∠BOC=180°−∠AOC,∠AOC=120°∴∠BOC=180°−120°=60°∵∠COE=∠BOC−∠BOE,∠BOE=n=43°∠COD=∠DOE−∠COE,∠DOE=50°∴∠COD=50°−(60°−43°)=33°②当∠DOE在∠BOC之间时,设∠COD=x,则由题意可得:120+x=3(50+x)无解;当OD在∠AOC之间时,设∠COD=x,则由题意可得120-x=3(50-x)解得x=15°所以当∠AOD=3∠COE时,∠COD=15°(2)解:如图,当OE1平分∠BOC时,∵∠AOC=120°∴∠BOC=180°−120°=60°∴n=∠BOE1= ∠BOC=30°;如图,当OE2平分∠BOD2时,n=∠BOE2=∠D2OE=50°;如图,当OE3平分∠COD3时,∵∠E3OC=∠D3OE3=50°,∠BOC=180°−∠AOC=180°−120°=60°∴n=∠BOE3=∠BOC+∠E3OC=60°+50°=110°;如图,当OE4平分∠AOC时,∵∠COE4= ∠AOC= ×120°=60°∠BOC=180°−∠AOC=180°−120°=60°∴n=∠BOE4=∠BOC+∠COE4=60°+60°=120°【解析】【分析】(1) ① 根据平角的定义,由∠BOC=180°−∠AOC 算出∠BOC的度数,根据角的和差,由∠COE=∠BOC−∠BOE ,∠COD=∠DOE−∠COE ,算出∠COD的度数;②扶摇分类讨论:当∠DOE在∠BOC之间时,设∠COD=x,则∠AOD=120+x,∠COE=50+x,根据∠AOD=3∠COE 列出方程,求解即可;当OD在∠AOC之间时,设∠COD=x,则则∠AOD=120-x,∠COE=50-x,根据∠AOD=3∠COE 列出方程,求解即可,综上所述即可得出答案;(2)需要分类讨论:①当OE1平分∠BOC时,根据平角的定义算出∠BOC 的度数,根据角平分线的定义得出n=∠BOE1= ∠BOC=30°;② 当OE2平分∠BOD2时,n=∠BOE2=∠D2OE=50°;③ 当OE3平分∠COD3时, n=∠BOE3=∠BOC+∠E3OC ,④ 当OE4平分∠AOC时, n=∠BOE4=∠BOC+∠COE4,综上所述即可得出答案。
人教版七年级数学上册全册单元试卷易错题(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.【答案】(1)解:∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°-∠AOB=180°-120°=60°(2)解:∠DOC= ×∠BOC= ×70°=35°,∠AOE= ×∠AOC= ×50°=25°.∠DOE与∠AOB互补,理由:∵∠DOE=∠DOC+∠COE=35°+25°=60°,∴∠DOE+∠AOB=60°+120°=180°,故∠DOE与∠AOB互补【解析】【分析】(1)由∠BOC、∠AOC的度数,求出∠AOB=∠BOC+∠AOC的度数,再求出∠AOB补角的度数;(2)根据角平分线定义求出∠DOC、∠AOE的度数,再由(1)中的度数得到∠DOE与∠AOB互补.2.如图①②所示,将两个相同三角板的两个直角顶点O重合在一起,像图①②那样放置.(1)若∠BOC=60°,如图①,猜想∠AOD的度数;(2)若∠BOC=70°,如图②,猜想∠AOD的度数;(3)猜想∠AOD和∠BOC的关系,并写出理由.【答案】(1)解:因为,,所以,又因为,所以(2)解:因为,,,,所以(3)解:由(1)知,由(2)知,故由(1),(2)可猜想:【解析】【分析】(1)由题意可得∠BOC+∠AOC=,则∠AOC=-∠BOC,由角的构成可得∠AOD=+∠AOC即可求解;(2)由图知,∠COD+∠BOC+∠AOB+∠AOD=,把∠COD、∠BOC、∠AOB代入计算即可求解;(3)由(1)和(2)中求得的∠AOD和∠BOC的值即可计算求解。
人教版七年级上册数学全册单元试卷易错题(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.一副三角板OAC、OBD如图(1)放置,(∠BDO=30°、∠CAO=45°)(1)若OM、ON分别平分∠BOA、∠DOC,求∠MON的度数;(2)将三角板OBD从图(1)绕O点顺时针旋转如图(2),若OM、ON分别平分∠BOA、∠DOC,则在旋转过程中∠MON如何变化?(3)若三角板OBD从图(1)绕O点逆时针旋转如图(3),若其它条件不变,则(2)的结论是否成立?(4)若三角板OBD从图(1)绕O点逆时针旋转,其它条件不变,在旋转过程中,∠MON是否一直不变,在备用图中画图说明.【答案】(1)解:∵OM、ON分别平分∠BOA、∠DOC∴∠AOM=∠BOA,∠AON=∠AOC∵∠MON=∠AOM+∠AON=(∠BOA+∠AOC)∵∠BDO=30°、∠CAO=45°∴∠AOB=90°,∠AOC=45°∴∠MON= (90°+45°)=67.5°答:∠MON的度数为67.5°.(2)解:设∠AOM=∠BOM=x,∠CON=∠DON=y,∠AOD=α则:2x+α=90°,2y+α=45°,∴2x+2y+2α=135°,∴∠MON=x+y+α=67.5°(3)解:(2)的结论成立理由:设∠AOM=∠BOM=x,∠CON=∠DON=y,∠AOD=α则:2x-α=90°,2y-α=45°,∴2x+2y-2α=135°,∴∠MON=x+y-α=67.5°∠MON=x+y-α=67.5°(4)解:在变化,有时∠MON=112.5°。
如图,将三角板OBD从图(1)绕O点逆时针旋转如图所示,设∠AOD=x∵∠BOD=90°,∠AOC=45°∴∠AOB=90°+x,∠DOC=360°-45°-x=315°-x∵OM、ON分别平分∠BOA、∠DOC,∴∠BOM=∠AOB=,∠DON=∠DOC=∴∠MON=∠BOM+∠DON-∠DOB=+-90°=202.5°-90°=112.5°答:在变化,有时∠MON=112.5°.【解析】【分析】(1)利用角平分线的定义,可得出∠AOM=∠BOA,∠AON=∠AOC,再根据∠MON=∠AOM+∠AON,代入计算可解答。
一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为8个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是________;(2)当t=3秒时,点A与点P之间的距离是________个长度单位;(3)当点A表示的数是-3时,用含t的代数式表示点P表示的数;(4)若点P到点A的距离是点P到点B的距离的2倍,请直接写出t的值.【答案】(1)-4(2)6(3)解:当点A为-3时,点P表示的数是-3+2t;(4)解:当点P在线段AB上时,AP=2PB,即2t=2(8−2t),解得,t=,当点P在线段AB的延长线上时,AP=2PB,即2t=2(2t−8),解得,t=8,∴当t=或8秒时,点P到A的距离是点P到B的距离的2倍.【解析】【解答】解:(1)设点A表示的数是a,点B表示的数是b,则|a|+|b|=8,又|a|=|b|,∴|a|=4,∴a=−4,则点A表示的数是−4;( 2 )∵P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴当t=3秒时,点A与点P之间的距离为6个单位长度;【分析】(1)设点A表示的数是a,点B表示的数是b,两点间的距离是8及互为相反数的两个数分别位于原点的两侧,到原点的距离相等即可判断得出答案;(2)根据路程等于速度乘以时间即可得出答案;(3)由点A表示的数结合AP的长度,即可得出点P表示的数;(4)分当点P在线段AB上时,AP=2t,BP=(8-2t),根据AP=2PB 列出方程,求解即可;当点P在线段AB的延长线上时,AP=2t,BP=(2t-8),根据 AP=2PB 列出方程,求解即可,综上所述即可得出答案.2.(1)观察发现,,,……,.=1﹣=.=1﹣=.=________.(2)构建模型=________.(n为正整数)(3)拓展应用:① =________.② =________.③一个数的八分之一,二十四分之一,四十八分之一,八十分之一的和比这个数的四分之一小1,这个数是________.【答案】(1)(2)(3);;20.【解析】【解答】(1) ==1﹣=,故答案为:;(2) ==1﹣=,故答案为:;(3)①原式==1﹣=,故答案为:;②原式===1﹣=,故答案为:;③设这个数为x,根据题意得:( )x= x﹣1,整理得: x= x﹣1,去分母得:( )x=x﹣4,即(1﹣ )x=x﹣4,整理得: x=x﹣4,解得:x=20,答:这个数是20.【分析】(1)各项拆项后,计算即可求出值;(2)归纳总结得到一般性规律,写出即可;(3)①原式拆项后,计算即可求出值;②原式变形后拆项,计算即可求出值;③设这个数为x,根据题意列出方程,求出方程的解即可得到结果.3.我们知道,在数轴上,表示数表示的点到原点的距离,这是绝对值的几何意义,进一步地,如果数轴上两个点A、B,分别对应数a,b,那么A、B两点间的距离为:如图,点A在数轴上对应的数为a,点B对应的数为b,且a,b满足:(1)求a,b的值;(2)求线段AB的长;(3)如图①,点C在数轴上对应的数为x,且是方程的解,在数轴上是否存在点M使?若存在,求出点M对应的数;若不存在,说明理由. (4)如图②,若N点是B点右侧一点,NA的中点为Q,P为NB的三等分点且靠近于B点,当N在B的右侧运动时,请直接判断的值是不变的还是变化的,如果不变请直接写出其值,如果是变化的请说明理由.【答案】(1)解:,,且,解得,,;(2)解:(3)解:存在.设M点对应的数为m,解方程,得,点C对应的数为,,,即,①当时,有,解得,;②当时,有,此方程无解;③当时,有,解得, .综上,M点对应的数为:或4.(4)解:设点N对应的数为n,则,,若N点是B点右侧一点,NA的中点为Q,P为NB的三等分点且靠近于B点,,,,点Q对应的数为:,点P对应的数为:,,①当时,,此时的值随N点的运动而变化;②当时,,此时的值随N点的运动而不变化.【解析】【分析】(1)根据“若非负数和等于0,则非负数均为0”列出方程进行解答便可;(2)根据数轴上两点的距离公式进行计算便可;(3)根据已知线段的关系式,列出绝对值方程进行解答便可;(4)用N点表示的数n,列出关于n的代数式进行讨论解答便可.4.仔细观察下列等式:第1个:22﹣1=1×3第2个:32﹣1=2×4第3个:42﹣1=3×5第4个:52﹣1=4×6第5个:62﹣1=5×7…这些等式反映出自然数间的某种运算规律.按要求解答下列问题:(1)请你写出第6个等式:________;(2)设n(n≥1)表示自然数,则第n个等式可表示为________;(3)运用上述结论,计算: .【答案】(1)72﹣1=6×8(2)(n+1)2-1=n(n+2)(3)解:===【解析】【解答】解:(1)∵第1个:22-1=1×3第2个:32-1=2×4第3个:42-1=3×5第4个:52-1=4×6第5个:62-1=5×7,∴第6个等式:72-1=6×8;故答案为:72-1=6×82)设n(n≥1)表示自然数,则第n个等式可表示为:(n+1)2-1=n(n+2);故答案为:(n+1)2-1=n(n+2);【分析】(1)根据题中所给出的例子找出规律,即可得到第六个等式.(2)根据题中所给出的例子找出规律,进行解答即可.(3)根据所得结论,进行化简,即可得到答案.5.观察下面的式子:, , ,(1)你发现规律了吗?下一个式子应该是________;(2)利用你发现的规律,计算:【答案】(1)(2)解:==== .【解析】【解答】(1)根据规律,下一个式子是:【分析】(1)规律:两个自然数(0除外)的乘积的倒数等于这两个自然数倒数的差,据此写出结论即可;(2)利用规律将原式转化为加减运算,然后利用加法结合律进行计算即可.6.先阅读下面的材料,再解答后面的各题:现代社会对保密要求越来越高,密码正在成为人们生活的一部分.有一种密码的明文(真实文)按计算机键盘字母排列分解,其中Q,W,E,……,N,M这26个字母依次对应1,2,3,……,25,26这26个自然数(见下表).Q W E R T Y U I O P A S D12345678910111213F G H J K L Z X C V B N M14151617181920212223242526给出一个变换公式:将明文转成密文,如:,即R变为L;,即A 变为S.将密文转换成明文,如:,即X变为P;13 3×(13-8)-1=14,即D变为F.(1)按上述方法将明文NE T译为密文.(2)若按上方法将明文译成的密文为DWN,请找出它的明文.【答案】(1)解:即NET密文为MQP.(2)解:即密文DWN的明文为FYC .【解析】【分析】(1)由图表找出N、E、T对应的自然数,再根据变换公式变成密文即可;(2)由图表找出D、W、N对应的自然数,再根据变换公式变成明文即可.7.先阅读下列材料,再解决问题:学习数轴之后,有同学发现在数轴上到两点之间距离相等的点,可以用表示这两点表示的数来确定.如:(1)到表示数4和数10距离相等的点表示的数是7,有这样的关系7= (4+10);(2)到表示数和数距离相等的点表示的数是,有这样的关系 =.解决问题:根据上述规律完成下列各题:(1)到表示数50和数150距离相等的点表示的数是________(2)到表示数和数距离相等的点表示的数是________(3)到表示数 12和数 26距离相等的点表示的数是________(4)到表示数a和数b距离相等的点表示的数是________【答案】(1)100(2)(3)-14(4)【解析】【解答】解:(1)由题意得:到表示数50和数150距离相等的点表示的数为:(2)到表示数和数距离相等的点表示的数为:(3)到表示数 -12 和数 -26 距离相等的点表示的数为:(4)到表示数a和数b距离相等的点表示的数为: .故答案为:100,, -14,.【分析】根据题中的叙述分别表示出数轴上这些到两点之间距离相等的点,最后得出规律到两点之间距离相等的点的数等于这两点坐标之和除以2, 即x=.8.我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法.例如,代数式的几何意义是数轴上x所对应的点与2所对应的点之间的距离;因为,所以的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离.⑴发现问题:代数式的最小值是多少?⑵探究问题:如图,点分别表示的是,.∵的几何意义是线段与的长度之和∴当点在线段上时, ;当点点在点的左侧或点的右侧时∴的最小值是3.⑶解决问题:①. 的最小值是 ________ ;②.利用上述思想方法解不等式:________③.当为何值时,代数式的最小值是2________.【答案】6;设A表示-3,B表示1,P表示x,∴线段AB的长度为4,则,的几何意义表示为PA+PB,∴不等式的几何意义是PA+PB>AB,∴P 不能在线段AB上,应该在A的左侧或者B的右侧,即不等式的解集为或.故答案为:或.;设A表示-a,B表示3,P表示x,则线段AB 的长度为,的几何意义表示为PA+PB,当P在线段AB上时PA+PB取得最小值,∴∴或,即或;故答案为:或 .【解析】【解答】解:(3)①设A表示的数为4,B表示的数为-2,P表示的数为x ,∴表示数轴上的点P到4的距离,用线段PA表示,表示数轴上的点P到-2的距离,用线段PB表示,∴的几何意义表示为PA+PB,当P在线段AB上时取得最小值为AB,且线段AB的长度为6,∴的最小值为6.故答案为:6.【分析】(3)①根据绝对值的几何意义可知,变成数轴上的点到-2的距离和到4的距离之和的最小值;②根据题意画出相应的图形,确定出所求不等式的解集即可;③根据原式的最小值为2,得到3左边和右边,且到3距离为2的点即可.9.阅读理解:若A,B,C为数轴上的三点,且点C到点A的距离是点C到点B的距离的2倍,我们就称点C是【A,B】的好点。
人教版数学七年级上册全册单元试卷易错题(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图 1,CE 平分∠ACD,AE 平分∠BAC,且∠EAC+∠ACE=90°.(1)请判断 AB 与 CD 的位置关系,并说明理由;(2)如图2,若∠E=90°且AB 与CD 的位置关系保持不变,当直角顶点E 移动时,写出∠BAE 与∠ECD 的数量关系,并说明理由;(3)如图 3,P 为线段 AC 上一定点,点 Q 为直线 CD 上一动点,且 AB 与 CD 的位置关系保持不变,当点 Q 在射线 CD 上运动时(不与点 C 重合),∠PQD,∠APQ 与∠ BAC 有何数量关系?写出结论,并说明理由.【答案】(1),理由如下:CE 平分,AE 平分,;(2),理由如下:如图,延长AE交CD于点F,则由三角形的外角性质得:;(3),理由如下:,即由三角形的外角性质得:又,即即.【解析】【分析】(1)根据角平分线的定义、平行线的判定即可得;(2)根据平行线的性质(两直线平行,内错角相等)、三角形的外角性质即可得;(3)根据平行线的性质(两直线平行,同旁内角互补)、三角形的外角性质、邻补角的定义即可得.2.如图①②所示,将两个相同三角板的两个直角顶点O重合在一起,像图①②那样放置.(1)若∠BOC=60°,如图①,猜想∠AOD的度数;(2)若∠BOC=70°,如图②,猜想∠AOD的度数;(3)猜想∠AOD和∠BOC的关系,并写出理由.【答案】(1)解:因为,,所以,又因为,所以(2)解:因为,,,,所以(3)解:由(1)知,由(2)知,故由(1),(2)可猜想:【解析】【分析】(1)由题意可得∠BOC+∠AOC=,则∠AOC=-∠BOC,由角的构成可得∠AOD=+∠AOC即可求解;(2)由图知,∠COD+∠BOC+∠AOB+∠AOD=,把∠COD、∠BOC、∠AOB代入计算即可求解;(3)由(1)和(2)中求得的∠AOD和∠BOC的值即可计算求解。
一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上点表示的数为,是数轴上位于点左侧一点,且AB=20,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,设运动时间t(t>0)秒.(1)写出数轴上点表示的数________;点表示的数________(用含的代数式表示)(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,若点、同时出发,问多少秒时、之间的距离恰好等于?(3)动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问多少秒时、之间的距离恰好又等于?(4)若为的中点,为的中点,在点运动的过程中,线段的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段的长.【答案】(1);(2)解:若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=2.25;②点P、Q相遇之后,由题意得3t-2+5t=20,解得t=2.75.答:若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2(3)解:设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,则5x-3x=20-2,解得:x=9;②点P、Q相遇之后,则5x-3x=20+2解得:x=11.答:若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2(4)解:线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB= ×20=10,②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP) AB=10,则线段MN的长度不发生变化,其值为10【解析】【解答】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8-20=-12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8-5t.故答案为-12,8-5t;【分析】(1)根据已知可得B点表示的数为8-20;点P表示的数为8-5t;(2)设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(3)设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(4)分①当点P 在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.2.阅读材料,并回答问题如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.(单位:cm)由此可得,木棒长为__________cm.借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?(1)请你画出示意图,求出村长爷爷和美羊羊现在的年龄.(2)若羊村中的小羊均与美羊羊同岁,老羊均与村长爷爷同岁。
人教版七年级数学上册易考易错题
教学目标
1 让学生回忆本学期所学内容哪些知识在运用时较容易出错并列举例子。
2要求学生能够在所举易错例子中找出错误原因并能写出正确答案
3加强学生学会发现问题和解决问题的能力同时培养学生多积累多总结的习惯
教学重难点
在易错题中找出错误原因并能写出正确答案
教学课时2课时
教学过程
一确定有效数字时容易忽略0而出错。
例1 近似数0.40350有几个有效数字?
常见错解近似数0.40350 有3个有效数字分别是4,3,5
错解分析
正确答案
二应用乘法分配律时运算符号出错
例2 计算(-48)*(1-1/12+3/4)
常见错解原式=-48-4+36=-16
错解分析
正确答案
三违背有理数的运算顺序出错
例3 计算-4-(-12)÷(-3)
常见错解原式=-4+12÷(-3)=8÷(-3)=-8/3
错解分析
正确答案
四对乘方的意义理解不透而出错
例4 计算-2^2-50÷(-5)^2-1
常见错解原式=4-50÷25-1=4-2-1=1
错解分析
正确答案
五错用运算律而出错
例五计算12÷(1/2-1/4+1/6)
常见错解原式=12÷1/2-12÷1/4+12÷1/6=24-48+72=48
错解分析
正确答案
六确定单项式的系数和次数出错
例六单项式-2a^2b∏/3的系数是__次数是__
常见错解-2/3,4次
错解分析
正确答案
七同类项的概念把握不准而出错
例七判断下列各项是否是同类项
-x^2y与 3yx^2 (2)2^3 与 x^3
常见错解(1)不是(2)是
错解分析
正确答案
八去括号法则理解不透而出错
例八计算 3x-[x-2(x-y)]
常见错解1原式=3x-(x-2x-2y)=3x-x+2x-2y=4x-2y
常见错解2原式=3x-(x-2x+y)=3x-(-x+y)=3x+x-y=2x-y 错解分析
正确答案
九移项没变号而出错
例九解方程 2x-3=x+4
常见错解 2x-x=4-3
X=1
错解分析
正确答案
十去括号没变号而出错
例10 解方程2*(x-3)-3*(x+1)=6
常见错解 2x-3-3x+3=6
2x-3x=6
-x=6
X=-6
错解分析
正确答案
十一去分母时出错
例11 解方程(4-x)/3=1-(x-3)/5
常见错解1 5*(4-x)=1-3*(x-3)
20-5x=1-3x+9
-5x+3x=1+9-20
-2x=-10
X==5
常见错解2 5*(4-x)=15-3x-9
20-5x=15-3x-9
-5x+3x=15-9-20
-2x=-14
X=7
错解分析
正确答案
随堂练习
(1)近似数0.302050有几个有效数字?
(2)计算(-48)*(1-1/6+3/4)
(3)计算-6-(-24)÷(-3)
(4)计算-3^2-50÷(-5)^2-1
(5)计算2÷(1/2-1/4+1/6)
(6)单项式(-3ab^3)/5的系数和次数分别是什么
(7)判断下列各组十分是同类项(1)-3a^2b 与 10ba^2 (2) 3^2与 x^2(8)计算3a-[a-2(a-b)]+b
(9)解方程 3x-3=x+1
(10)解方程 3(x-3)-2(2x-1)=6
(11)解方程 (4-x)/3=(x-3)/5-1
小结我们这节课有什么收获?
作业。