入射粒子角度对薄膜生长形貌结构影响的二维平面模拟
- 格式:doc
- 大小:2.99 MB
- 文档页数:11
磁控溅射技术是目前最重要的工业化大面积真空镀膜技术之一。
溅射技术的历史发展如图3-1所示,从中可以看出发展的驱动力主要来自:降低工艺成本、解决工艺难题和满足进一步提高薄膜性能的工艺参数优化。
前者关注于靶材利用率、沉积速率、薄膜均匀性以及溅射过程稳定性等方面的问题;后者由于低能离子轰击在薄膜沉积过程中的重要作用,主要要求增加溅射原子离化率和能独立控制/调节微观等离子体工艺参数等,以更好地满足实际镀膜工艺中的多种需求。
其中,HIPIMS:高功率脉冲磁控溅射high power impulse magnetron sputtering,MFMS:中频磁控溅射middle frequency magnetron sputtering,CFUBMS:闭合场非平衡磁控溅射closed field unbal anced magnetron sputtering,UBMS:非平衡磁控溅射unbalanced magnetron sputtering,IBAMS:离子束辅助磁控溅射ion beam aiding magnetron sputtering,HCM:空心阴极磁控溅射hollow cath ode sputtering,ICPMS:感应耦合等离子磁控溅射inductively coupled plasma magnetron sputterin g。
(一)磁控溅射工艺原理相对于其它的制备工艺(如CVD、PLD、Spray pyrolysis等),磁控溅射是目前制备薄膜最为常用的方法之一。
概括起来磁控溅射主要具有如下优点[20]:●∙∙∙∙∙∙∙ 较低的制备温度(可室温沉积);●∙∙∙∙∙∙∙ 较高的成膜质量,与衬底附着力好;●∙∙∙∙∙∙∙ 可控性好,具有较高的沉积速率;●∙∙∙∙∙∙∙ 可溅射沉积具有不同蒸汽压的合金与化合物;●∙∙∙∙∙∙∙ 成本较低,重复性好,可实现规模化大面积生产。
本贴对一般性溅射过程原理部分从略,其详细介绍可参考文献[147-150],而主要结合制备AZO薄膜的情况,重点对磁控靶构造、磁路设计和部分表观工艺参数(external paramet ers)与微观/等离子体参数(plasma parameters)的关系做一简要评述。
平面靶原理磁控溅射技术是目前最重要的工业化大面积真空镀膜技术之一。
溅射技术的历史发展如图3-1所示,从中可以看出发展的驱动力主要来自:降低工艺成本、解决工艺难题和满足进一步提高薄膜性能的工艺参数优化。
前者关注于靶材利用率、沉积速率、薄膜均匀性以及溅射过程稳定性等方面的问题;后者由于低能离子轰击在薄膜沉积过程中的重要作用,主要要求增加溅射原子离化率和能独立控制/调节微观等离子体工艺参数等,以更好地满足实际镀膜工艺中的多种需求。
其中,HIPIMS:高功率脉冲磁控溅射high power impulse magnetron sputtering,MFMS:中频磁控溅射middle frequency magnetron sputtering,CFUBMS:闭合场非平衡磁控溅射closed field unbalanced magnetron sputtering,UBMS:非平衡磁控溅射unbalanced magnetron sputtering,IBAMS:离子束辅助磁控溅射ion beam aiding magnetron sputtering,HCM:空心阴极磁控溅射hollow cathode sputtering,ICPMS:感应耦合等离子磁控溅射inductively coupled plasma magnetron sputtering。
(一)磁控溅射工艺原理相对于其它的制备工艺(如CVD、PLD、Spray pyrolysis等),磁控溅射是目前制备薄膜最为常用的方法之一。
概括起来磁控溅射主要具有如下优点[20]:较低的制备温度(可室温沉积);较高的成膜质量,与衬底附着力好;可控性好,具有较高的沉积速率;可溅射沉积具有不同蒸汽压的合金与化合物;成本较低,重复性好,可实现规模化大面积生产。
本贴对一般性溅射过程原理部分从略,其详细介绍可参考文献[147-150],而主要结合制备AZO薄膜的情况,重点对磁控靶构造、磁路设计和部分表观工艺参数(external parameters)与微观/等离子体参数(plasma parameters)的关系做一简要评述。
薄膜物理学中的表面散射与界面效应薄膜物理学是研究薄膜特性和性质的学科领域。
在这个领域中,表面散射和界面效应是关键的研究内容。
表面散射是指当粒子(如电子、光子等)与薄膜表面发生碰撞时,发生的散射现象。
而界面效应则研究的是在两种不同材料的接触界面上,由于化学、电子结构和晶格不匹配引起的物理和化学变化。
这两个方面的研究对于理解薄膜材料的性质和应用具有重要意义。
在薄膜物理学中,表面散射是一个重要的现象。
当入射粒子与薄膜表面发生碰撞时,常常会发生反射、散射和吸收等现象。
这些现象的发生取决于入射角度、入射粒子能量、薄膜表面的结构和化学组成等因素。
通过研究这些散射现象,我们可以了解薄膜表面的形态结构和电子行为,从而揭示出材料的微观性质。
表面散射的机理可以通过量子力学的衍射理论来解释。
根据衍射理论,入射粒子在薄膜表面发生散射时会受到晶体结构的影响。
晶体的周期性结构会导致入射粒子的干涉,从而造成散射波的干涉现象。
这种干涉现象对于不同入射角度和波长的入射粒子都有不同的效应,因此通过测量薄膜散射角度和强度的变化,我们可以了解薄膜表面的晶格结构和周期性。
另一方面,界面效应是薄膜物理学中的另一个重要研究方向。
在薄膜材料的界面上,由于两种材料的化学、晶体结构、电子结构等的不匹配,会引起一系列的物理和化学变化。
这些变化对于薄膜材料的性质和性能具有重要影响。
例如,当两种材料接触时,界面上常常发生电荷转移现象。
这种电荷转移现象可以改变材料的导电性和光学性质。
此外,界面上的电子结构和晶体结构也可能发生变化,这会影响到薄膜的能带结构和禁带宽度,从而导致薄膜的光学和电子性质发生变化。
为了研究界面效应,科学家们采用了多种表征技术。
例如,X射线光电子能谱(XPS)可以分析材料的化学成分和界面层的电子结构;透射电子显微镜(TEM)可以观察材料的晶格变化和界面形貌;原子力显微镜(AFM)可以测量材料的表面形貌和粗糙度等。
这些技术的应用使得我们能够深入探究界面效应的机理和影响。
一.薄膜制备的真空技术基础:薄膜制备方法物理方法:热蒸发法 溅射法 离子镀方法化学方法:电镀方法 化学气相生长法1,气体分子的平均自由程:气体分子在两次碰撞的间隔时间里走过的平均距离。
21d n πλ= d — 气体分子的有效截面直 2,单位面积上气体分子的通量:气体分子对于单位面积表面的碰撞频率。
3,流导:真空管路中气体的通过能力。
分子流气体:流导C 与压力无关,受管路形状影响,且与气体种类、温度有关。
4,真空泵的抽速: p — 真空泵入口处气体压力Q — 单位时间内通过真空泵入口处气体流量5,真空环境划分:低真空> 102 Pa中真空102 ~ 10-1 Pa高真空10-1 ~ 10-5 Pa超高真空< 10-5 Pa低压化学气相沉积:中、低真空(10~ 100Pa );溅射沉积: 中、高真空(10-2 ~ 10Pa );真空蒸发沉积: 高真空和超高真空(<10-3 Pa );电子显微分析: 高真空;材料表面分析: 超高真空。
6,气体的流动状态:分子流状态:在高真空环境下,气体的分子除了与容器壁外,几乎不发生气体分子间的相互碰撞。
特点:气体分子平均自由程大于气体容器的尺寸或与其相当。
(高真空薄膜蒸发沉积系统、各种材料表面分析仪器)粘滞流状态:当气压较高时,气体分子的平均自由程很短,气体分子间的相互碰撞较为频繁。
粘滞流状态的气体流动模式:层流状态:低流速黏滞流所处的气流状态,即气体宏观运动方向与一组相互平行的流线相一致。
紊流状态:高流速黏滞流所处的气流状态,气体不再能够维持相互平行的层状流动模式,而呈现出一种旋涡式的流动模式。
克努森(Knudsen)准数:分子流状态Kn<1过渡状态Kn=1~100粘滞流状态Kn > 1007,旋片式机械真空泵工作原理:玻意耳-马略特定律(PV=C)即:温度一定的情况下,容器的体积和气体压强成反比。
性能参数:理论抽速Sp:单位时间内所排出的气体的体积。
1. 引言等离子处理是一种常见的表面改性技术,它通过改变材料表面的化学成分和结构,从而影响其性能和应用。
本文将以等离子处理对薄膜表面形貌的影响为主题,深入探讨其在材料科学领域中的重要性和潜在应用。
2. 等离子处理的原理等离子处理是通过在特定气氛中产生等离子体,利用其对材料表面进行化学反应和物理处理,从而改变表面性质的技术。
在等离子体作用下,薄膜表面的化学键和晶格结构可能会发生改变,进而影响其形貌和性能。
3. 等离子处理对薄膜表面形貌的影响3.1 表面粗糙度的变化等离子处理可以使薄膜表面的微观形貌发生变化,如表面粗糙度的增加或减小。
这种变化可能会影响材料的摩擦性能、光学性质等。
3.2 结晶结构的调控等离子处理还可以对薄膜的晶格结构进行调控,改变晶粒大小和取向,从而影响薄膜的力学性能和电学性能。
3.3 表面成分的改变通过等离子处理,可以在薄膜表面引入新的化学成分,形成功能性膜或者表面修饰层,扩展了材料的应用范围和功能。
4. 应用前景与展望等离子处理对薄膜表面形貌的影响,为新型功能材料的设计和制备提供了新思路。
将来,可以通过精确控制等离子处理的参数和条件,实现对薄膜表面形貌的精准调控,拓展材料的应用领域。
5. 结语通过以上对等离子处理对薄膜表面形貌的影响的探讨,我们不难看出其在材料科学领域的重要性。
随着技术的不断发展,相信等离子处理定能为材料的表面改性和功能性设计提供更多可能。
6. 等离子处理技术在不同材料上的应用等离子处理技术不仅适用于薄膜材料,还广泛应用于金属、陶瓷、塑料等各种材料的表面改性。
在金属材料上,等离子处理可以增强其耐蚀性和耐磨性;在陶瓷材料上,可以改善其表面的粗糙度和附着力;在塑料材料上,可以增加其表面能,提高其涂覆和粘接性能。
等离子处理技术在不同材料领域的应用前景是非常广阔的。
7. 对等离子处理技术的优化与改进尽管等离子处理技术在表面改性方面具有巨大潜力,但其在实际应用中仍存在一些挑战和限制。
入射粒子角度对薄膜生长形貌结构影响的二维平面模拟【摘要】:本文主要讨论了影响薄膜生长形貌的主要因素之一——入射粒子的角度,并用蒙特卡罗法建立了相关模型,模拟了在不同入射角度下的薄膜生长情况,从而总结出了入射粒子角度对薄膜生长形貌结构影响。
【关键词】:入射粒子角度、蒙特卡罗法、扩散几率【ABSTRACT】:This thesis mainly discusses the angle of the incident particle—one of the principal factors which influence the film growth morphology. We established the model by Monte Carlo method and simulated the film growth morphology at different incident angles. Finally, we summarized the influences【KEY WORDS】:The angle of the incident particle, Monte Carlo method, Diffusion chance一、引言影响薄膜生长的主要因素有:入射粒子的能量、基底表面的生长点数目、基底上已生长成的稳定核的尺寸大小和形状、入射粒子的角度等。
这些因素对薄膜生长的效果都有很大影响,所以要小心控制各变量,研究个因素的影响。
二、相关理论1. 薄膜形成过程1.1 薄膜的形成一般有三种形式:(1)岛状形式(Volmer-Weber形式);(2)单层成长形式(Frank-Vander Merwe式);(3)层岛结合形式(Stranski-Krastanov形式)。
其中,大多数薄膜的形成与成长都属于第一种形式,即岛状形式。
薄膜以岛状形式生长时一般分为凝结过程、核形成与生长过程、岛形成与结合生长过程。
1.2 凝结过程凝结过程是薄膜形成的第一阶段:包括入射粒子在基体表面的吸附过程、表面扩散过程和凝结过程。
以真空蒸发薄膜为例,当从蒸发源蒸发出的气相原子入射到基体表面上时,一部分气相原子因能量较大而弹性反射回去,与基体不发生能量交换;一部分气相原子被吸附在基体表面上但仍具有较大的解吸能而再次蒸发出去(二次蒸发);还有一部分气相原子则与基体表面进行能量交换被吸附。
被吸附在基体表面的原子,失去了在表面法线方向的动能,只具有水平方向运动的动能,在基体表面上作不同方向的表面扩散运动,相互碰撞结合成原子对或小原子团后才能产生凝结。
或者可以说凝结过程是指吸附原子在基体表面上形成原子对及其以后的过程。
吸附原子的表面扩散运动是形成凝结的必要条件。
1.3 核形成与生长过程当凝结形成的小原子团中的原子数超过某一个临界值时,进一步与其它吸附原子碰撞结合,就会向着长大方向发展形成稳定原子团。
含有临界值原子数的原子团称为临界核,稳定的原子团称为稳定核。
稳定核再捕获其它吸附原子或者与入射原子相结合使它进一步长大成为小岛。
1.4 岛形成与结合生长过程在稳定核形成后,岛状薄膜形成主要分为四个阶段:岛状阶段、联并阶段、沟道阶段和连续膜阶段。
1.5 薄膜形成过程中若干理论(1)溅射原子比蒸发原子的能量高1~2个数量级在其它成膜条件相同(如基片温度、基片表面吸附的单个原子密度即单位面积上吸附的单原子数、沉积速率等)的情况下,溅射原子在基体表面水平方向上迁移能力强,所形成的薄膜更致密。
(2)成核速率是岛状形式成膜过程中的重要参数成核速率与临界核密度、每个临界核的捕获范围和所有吸附向临界核运动的总速度有关。
其中临界核密度与基体表面单位面积上吸附的单原子数有关。
对于溅射镀膜,由于溅射粒子能量大,会在基体表面形成更多的吸附点,在其它成膜条件均相同的情况下,成膜速率更快且更致密。
(参考“薄膜物理与技术”。
)(3)临界核长大的途径有两个:一个是入射粒子直接与临界核碰撞结合,另一个是吸附原子在基体表面上扩散迁移碰撞结合。
一般说,临界核长大主要依赖于吸附原子的表面扩散迁移碰撞结合。
2.蒙特卡罗法2.1 基本思想当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。
2.2 工作过程蒙特卡罗方法的解题过程可以归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。
(1)构造或描述概率过程对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。
即要将不具有随机性质的问题转化为随机性质的问题。
(2)实现从已知概率分布抽样。
构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。
最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。
随机数就是具有这种均匀分布的随机变量。
随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。
产生随机数的问题,就是从这个分布的抽样问题。
在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。
另一种方法是用数学递推公式产生。
这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。
不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。
由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。
由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。
(3)建立各种估计量。
一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。
建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。
3. 基本原理当入射角度不是特别大时,虽然阴影效应存在,但是一方面由于入射角度不是很大,阴影效应本身并不十分明显,另一方面,由于基板温度较高,原子运动相当频繁、原子扩散充分,原子自身的扩散能弥补阴影效应的影响。
当入射角度非常大时,由于阴影效应加剧,原子扩散不能完全弥补它的影响,在局部形成壁垒,把表面分割成若干部分,使这一部分的原子不能跨跃壁垒而到达那一部分空间,原子只能在各自的局部空间内扩散,因此形成这种具有部分致密,部分却堆积状态不好的结构。
三、建立模型1.首先选择大小为(100×100)的平面二维基体,取各向同性基体。
2.量化基体:以原子尺寸来表示基体。
3.模型的简化。
为分析简单,将原子的沉积和扩散过程简化了单一原子的沉积的扩散过程,即只有当前一个原子的扩散过程完成后,才开始下一原子的沉积和扩散过程。
4.入射粒子角度选择(90°,60°,30°)5.基体表面的沉积原子的扩散。
(1)扩散原子的随机生成(入射离子总数为1000)(2)扩散的随机性:例如从右方入射的粒子朝左方移动概率最大,朝右移动概率最小,朝上下方向移动概率居中。
(3)扩散的边界性条件。
采用连续性边界条件:即左出右进,上出下进或右出左进,下出上进。
(4)扩散过程的停止条件。
a.在扩散过程中遇到了生长点、临界核或团簇。
b.沉积原子的能量耗尽后停止下来,并成为一个生长点。
四、模拟平面效果图1.入射角为90度的平面效果图2.入射角为60度的平面效果图3.入射角为30度的平面效果图由以上三个图的对比可以得出:随着入射粒子入射角度的减小,由于粒子运动的方向性增强,即沿着入射方向运动的概率增大,而反向运动的几率减小,粒子分布均匀性降低。
可见,太小的入射角度对薄膜的结构的均匀性以及致密度不利,必须在尽量增大入射角度的情况下才能制备出结构致密的薄膜。
五、体会及总结经过小组成员的共同努力,终于成功完成了本次课程设计。
刚刚开始接触这个题目时我们一时感到没有头绪,薄膜的理论知识学了将近一年了,基本上忘得差不多了,matlab也只是学的最基本的知识。
然而当我们按照老师所说的真正静下心来仔细考虑的时候,我们发现问题并没有我们想象的那么难,在几位研究生学长的指导下,我们了解了实验的基本思想及思路。
然后,我们进行了分工,由于我们几个编程基础不好,所以感觉本实验最难的部分还是matlab编程,这一块经过同学的帮助和我们组四个人的共同努力,终于圆满完成。
同时,在整个实验过程中,我们学会了怎样查找资料,利用参考资料建立自己的模型,加强了对编程语言的熟悉和运用,更重要的是,真正理解和掌握了薄膜生长的相关知识。
整个课程设计把所学知识和动手能力结合起来,使大家得到真正的锻炼。
同时,我们组学会了协作的重要性,体验到了自己做出成果的乐趣。
总的来说,这次课程设计使我们学到了很多有用的东西。
参考文献:[1] 李言荣,杨春。
薄膜生长与原子尺度的计算机模拟。
重庆师范学院学报(自然科学版),2002.9,3(19):1-6.[2] 单英春,徐久军,林晓东等。
入射角度对PVD Ni薄膜微观结构的影响。
稀有金属材料与工程,2007.4,4(36):583-586.[3] 郝晓东,单英春,李明伟等。
Kinetic Monte Carl模拟PVD 薄膜生长的算法研究。
功能材料,2005,10(36):1542-1544.附录:源程序一、主程序%初始化A=zeros(100,100); %设置一个二维生长区间N=1000; %设置入射离子总数k=10; %用行走步长表示入射离子能量大小(水平方向上)n=70; %初始时在一维平面随机产生的生长点数目while n>0x=ceil(rand*(100)); %x代表行坐标,y代表列坐标,h代表层坐标y=ceil(rand*(100));A(x,y)=1; %1代表该处空间被离子占据n=n-1;end%假设离子入射速度ultraslow,即一个入射离子被完全吸附后,下一个离子才开始入射;%为简化模型,不考虑离子的反射和二次蒸发;同时忽略离子间的作用势能%离子开始入射while N>0x=ceil(rand*(100)); %随机产生入射离子点的坐标y=ceil(rand*(100));while k>0[k,x,y]=Isstop(A,x,y,k);endA(x,y)=1;N=N-1;endfor x=1:100for y=1:100if(A(x,y)==1)plot(x,y,'r*')hold onendendend二、判断是否吸附凝结的函数function [f,m,n]=Isstop(A,x,y,K) %考虑边界处的特殊情况:四个顶点和四条边界if x==1&&y==1if(A(2,1,1)==1)||(A(1,2,1)==1)||(A(100,1,1)==1)||(A(1,100,1)==1)A(1,1,1)=1;f=0;m=x;n=y;else [m,n]=Nextstep(x,y);f=K-1;endelseif x==1&&y==100if(A(1,99,1)==1)||(A(2,100,1)==1)||(A(1,1,1)==1)||(A(100,100,1)==1) A(1,100,1)=1;f=0;m=x;n=y;else [m,n]=Nextstep(x,y);f=f-1;endelseif x==100&&y==1if(A(100,2,1)==1)||(A(99,1,1)==1)||(A(100,100,1)==1)||(A(1,1,1)==1) A(100,1,1)=1;f=0;m=x;n=y;else [m,n]=Nextstep(x,y);f=K-1;endelseif x==100&&y==100if(A(99,100,1)==1)||(A(100,99,1)==1)||(A(100,1,1)==1)||(A(1,100,1)= =1)A(1,1,1)=1;f=0;m=x;n=y;else [m,n]=Nextstep(x,y);f=K-1;endelseif x>1&&x<100&&y==1 %后边界if(A(x-1,1,1)==1)||(A(x+1,1,1)==1)||(A(x,2,1)==1)||(A(x,100,1)==1) A(x,1,1)=1;f=0;m=x;n=y;else [m,n]=Nextstep(x,1);f=K-1;endelseif x>1&&x<100&&y==100 %前边界if(A(x-1,100,1)==1)||(A(x+1,100,1)==1)||(A(x,99,1)==1)||(A(x,1,1)== 1)A(x,100,1)=1;f=0;m=x;n=y;else [m,n]=Nextstep(x,100);f=K-1;endelseif y>1&&y<100&&x==100 %左边界if(A(100,y-1,1)==1)||(A(100,y+1,1)==1)||(A(99,y,1)==1)||(A(1,y,1)== 1)A(100,y,1)=1;f=0;m=x;n=y;else [m,n]=Nextstep(100,y);f=K-1;endelseif y>1&&y<100&&x==1 %右边界if(A(1,y-1,1)==1)||(A(1,y+1,1)==1)||(A(2,y,1)==1)||(A(100,y,1)==1) A(1,y,1)=1;f=0;m=x;n=y;else [m,n]=Nextstep(1,y);f=K-1;endelseif x>1&&x<100&&y>1&&y<100if(A(x,y-1,1)==1)||(A(x,y+1,1)==1)||(A(x-1,y,1)==1)||(A(x+1,y,1)==1 )A(x,y,1)=1;f=0;m=x;n=y;else [m,n]=Nextstep(x,y);f=K-1;endend三、行走策略(1)%定义下一步去向的函数function [c,d]=Nextstep(X,Y) %90a=rand*(1);if a>=0&&a<0.25 %定义该区间为向前走if Y==20d=1;else d=Y+1;endc=X;elseif a>=0.25&&a<0.5 %定义该区间为向后走if Y==1d=20;else d=Y-1;endc=X;elseif a>=0.5&&a<0.75 %定义该区间为向左走if X==20c=1;else c=X+1;endd=Y;elseif a>=0.75&&a<1 %定义该区间为向右走if X==1c=20;else c=X-1;endd=Y;end(2)%定义下一步去向的函数function [c,d]=Nextstep(X,Y) %假设离子从右方以与水平方向成60度角入射到基板上a=rand*(1);if a>=0&&a<0.20 %定义该区间为向前走if Y==20d=1;else d=Y+1;endc=X;elseif a>=0.20&&a<0.40 %定义该区间为向后走if Y==1d=20;else d=Y-1;endc=X;elseif a>=0.4&&a<0.85 %定义该区间为向左走if X==20c=1;else c=X+1;endd=Y;elseif a>=0.85&&a<1 %定义该区间为向右走if X==1c=20;else c=X-1;endd=Y;end(3)%定义下一步去向的函数天津大学2009级电子科学与技术专业课程设计报告function [c,d]=Nextstep(X,Y) %假设离子从右方以与水平方向成30度角入射到基板上a=rand*(1);if a>=0&&a<0.10 %定义该区间为向前走if Y==20d=1;else d=Y+1;endc=X;elseif a>=0.10&&a<0.20 %定义该区间为向后走if Y==1d=20;else d=Y-1;endc=X;elseif a>=0.2&&a<0.95 %定义该区间为向左走if X==20c=1;else c=X+1;endd=Y;elseif a>=0.95&&a<1 %定义该区间为向右走if X==1c=20;else c=X-1;endd=Y;end11。