第八讲_薄膜材料的组织结构(1)
- 格式:ppt
- 大小:9.76 MB
- 文档页数:94
薄膜材料的结构和性质薄膜材料是一种在现代工程和科技领域广泛应用的材料。
薄膜材料的结构和性质是决定其应用领域和性能的关键因素。
本文将介绍薄膜材料的结构和性质,并且阐述其在现代应用中的作用。
一、薄膜材料的结构薄膜材料是用溶液、气相、物理气相沉积或其他特殊方法制备的具有厚度在纳米到微米级之间的材料。
薄膜材料的结构可以分为单层膜和复合膜两种。
单层膜材料的结构简单,是由一个单一的材料组成的。
而复合膜材料由两种或两种以上的材料组成。
单层膜材料中,有机薄膜和无机薄膜是两种主要的类型。
有机薄膜可以是单一的高分子化合物,如聚合物和蛋白质,也可以是多种有机化合物的混合物。
然而,无机薄膜主要是由金属化合物和非金属化合物组成的,如氮化硅、氧化锌和氧化铝。
复合膜材料的结构复杂多样,包括两种材料的层状复合膜、不同材料的交替堆层膜和多元复合膜等。
其中,层状复合膜又可以分为层流复合、分子间作用层间复合以及互分布层间复合。
二、薄膜材料的性质薄膜材料的性质是其应用的关键,因为它们直接影响着材料的功能和性能。
薄膜材料的性质包括物理性质、化学性质和光学性质。
物理性质:薄膜材料的物理性质如密度、熔点、固化温度、硬度、弹性模量等往往与相应材料的体积相比有所变化。
例如,聚合物在形成薄膜后通常比原来的体积密度更低。
在这些性质方面,薄膜材料的行为往往是不同于体积材料的。
化学性质:薄膜材料的化学性质通常是由材料本身和加工方法共同决定的。
由于其表面积大、颗粒小,在化学反应和承受环境变化时,它们的响应也不同于体积材料。
面向化学特性的研究是用来检测这些特性并表征所使用薄膜材料的作用和性能的关键。
光学性质:薄膜材料的光学性质是其应用于光学晶体管等领域的原理依据。
光电材料必须具有较强的吸收、发射、调制和切换光学信号的能力。
因此,它们的光学性质应符合基本的光学特性,如透明度、折射率、色散、发射率和吸收率等。
三、薄膜材料在现代应用中的作用薄膜材料的结构和性质是使其在现代应用中具有广泛适用性的原因。
薄膜材料作业问题一:薄膜的结构形态有哪些类型,如何控制薄膜的结构?薄膜结构有三种类型:组织结构、晶体结构和表面结构。
(一)组织结构:薄膜的组织结构是指它的结晶形态。
四种类型;无定形结构、多晶结构、纤维结构和单晶结构。
1、无定形结构该结构称为非晶结构或玻璃态结构。
原子排列:近程有序结构。
就是在2—3个原子距离内原子排列是有秩序的,大于这个距离其排列是杂乱无规则的。
这种结构显示不出任何晶体的性质。
通过降低基体温度、引入反应气体和掺杂方法实现上述条件。
如硫化物和卤化物薄膜在基体温度低于77K时可形成无定形薄膜。
有些氧化物薄膜(如TiO2、ZrO2、Al2O3等),基体温度在室温时都有形成无定形薄膜的趋向。
在83%ZrO2—l7%SiO2的掺杂薄膜中,由于两种沉积原子尺寸的不同—形成无定形薄膜。
无定形结构薄膜在环境温度下是稳定的。
氧化物、硫化物薄膜等—呈不规则的网络结构(玻璃态);合金薄膜—呈随机密堆积的结构。
用衍射法研究时,这种结构在射线衍射中呈现很宽的漫散射峰,在电子衍射图中则显示出很宽的弥散形光环。
2、多晶结构。
多晶结构薄膜—由若干尺寸大小不等的晶粒所组成。
在薄膜形成过程中生成的小岛就具有晶体的特征(原子有规则的排列)。
由众多小岛聚结形成薄膜就是多晶薄膜。
在多晶薄膜中,常常出现一些块状材料中未曾发现的介稳相结构。
例的在ZrO2薄膜中常存在着介稳四方相。
掺入Y2O3可防止介稳相产生而形成稳定的立方相。
3、纤维结构纤维结构薄膜—晶粒具有择优取向的薄膜根据取向方向、数量分为:单重纤维结构和双重纤维结构。
单重纤维结构晶粒只在一个方向上择优取向—一维取向薄膜;在两个方向上有择优取向—二维取向薄膜。
非晶态基体:多晶薄膜都倾向于显示出择优取向例如:面心立方结构中[111]表面具有最低的表面自由能,在非晶态基体上这种结构的多晶薄膜显示的择优取向是[111]。
六角形密堆积多晶薄膜显示[0001],体心立方结构的多晶薄膜显示[110]择优取向。
第一次作业1.试述狭义薄膜材料的概念。
答:薄膜,薄膜是一种薄而软的透明薄片。
用塑料、胶粘剂、橡胶或其他材料制成。
薄膜科学上的解释为:由原子,分子或离子沉积在基片表面形成的2维材料。
例:光学薄膜、复合薄膜、超导薄膜、聚酯薄膜、尼龙薄膜、塑料薄膜等等。
薄膜被广泛用于电子电器,机械,印刷等行业。
2.简述薄膜在形成稳定核之前及之后的生长过程?答:形成稳定核之前:沉积原子到达基片表面,会发生三种状态。
一种是能量较大,在到达基片表面时就会发生反射离开;如果能量较低,变会停留在基片表面,而另一部分原子能量较大,在到达基片表面时,会发生表面迁移扩散。
如果扩散原子在驻留时间内不能与其它原子结合形成更大原子团,就会发生再蒸发离开基片表面,而扩散原子团在驻留时间内不能与其它原子相结合,便会发生分解。
如果表面原子或原子团在驻留时间内能与其它原子结合,便形成更大原子团;原子团继续吸附其它原子就会不断长到形成稳定核;形成稳定核之后:大多数薄膜通过岛状生长,少部分通过层状生长模式或者层岛复合模式生长成薄膜。
详细过程为形成稳定核后,稳定核长大,彼此连接形成小岛,新面积形成,新面积吸附单体,发生“二次”成核,小岛结合形成大岛,大岛长大并相互结合,有产生新面积,并发生“二次”、“三次”成核;形成沟道和带有孔洞的薄膜;沟道填平,封孔,形成连续薄膜。
3.简述薄膜的生长过模式及主要的控制因素?答:(1)岛状生长模式;(2)层状生长模式;(3)层岛复合模式。
控制因素主要分两类:晶格失配度和基片表面(或者基片湿润性或浸润性);4.从沉积速率和沉积温度出发,简述如何形成单晶或者粗大晶粒?如何形成多晶、微晶甚至非晶?请给出简单图示?答:提高温度或降低沉积速率可以形成单晶或者粗大晶粒;降低温度或提高沉积速率可形成多晶、微晶甚至非晶。
5.薄膜外延生长的概念?影响实现外延生长主要因素是什么?在单晶基片上延续生长单晶薄膜的方法称为外延生长;温度、沉积速率、单晶基片;第二次作业1.真空的概念?怎样表示真空程度,为什么说真空是薄膜制备的基础?答:(1)真空概念:空在给定的空间内,气体的压强低于一个大气压的状态,称为真空;(2)真空程度:真空度、压强、气体分子密度:单位体积中气体分子数;气体分子的平均自由程;形成一个分子层所需的时间等;(3)物理气相沉积法中的真空蒸发、溅射镀膜和离子镀等是基本的薄膜制备技术。
膜材立体构成
膜材料的立体构成可以包括以下几个方面:
1.分子层次:膜材料通常由分子或聚合物链构成。
分子之间通过化
学键或物理力进行连接,形成分子层次的结构。
这些分子可以排列成有序的晶体结构或无序的非晶体结构。
2.超分子层次:膜材料中的分子通常通过非共价作用力(如范德华
力、氢键等)形成超分子结构。
这些超分子结构可以包括聚集态、孔隙结构或有序排列的微相区域等,对膜材料的性能和分离效果起着重要作用。
3.孔隙结构:膜材料可以具有孔隙结构,即在材料中存在空隙或孔
洞。
这些孔隙可以是纳米尺寸的孔洞,也可以是微米尺寸的通道。
孔隙结构对膜材料的渗透性、分离效率和选择性等性能具有重要影响。
4.膜层结构:膜材料通常由多层结构组成,其中包括支撑层和分离
层。
支撑层提供了膜的机械强度和稳定性,而分离层则起到选择性分离物质的作用。
支撑层和分离层可以采用不同的材料和结构,以满足具体的应用需求。
总之,膜材料的立体构成是一个复杂的层次结构,包括分子层次的结构、超分子结构、孔隙结构以及膜层结构。
这些层次的组合和相
互作用决定了膜材料的性能和应用范围。