轴与轴承设计和36
- 格式:pptx
- 大小:8.82 MB
- 文档页数:67
轴设计计算和轴承计算首先,轴设计计算是为了保证轴在运转过程中能够承受机械系统所受的力和力矩而进行的。
轴的强度计算主要包括静强度计算和疲劳强度计算。
静强度计算是指在不发生变形和断裂的情况下,轴能够承受的最大受力。
常用的静强度计算方法有最大剪应力法、根据轴截面积比值计算法、允许应力法等。
疲劳强度计算是指在轴在长时间循环载荷作用下,轴的抗疲劳能力。
常用的疲劳强度计算方法有基于S-N曲线的等效应力法和极限应力法。
除了强度计算,轴的刚度计算也是轴设计中一个重要的方面。
轴的刚度主要包括弹性刚度和刚性刚度。
弹性刚度是指轴在受到外力作用下的形变程度,通常通过轴上产生的最大弯曲应变来计算,而刚性刚度则是指轴在受到外力作用下的弯曲角度。
刚度计算通常使用弯曲刚度公式来求解,根据轴的材料特性和几何形状进行计算。
对于轴承计算,首先需要选取合适的轴承。
轴承的选型要考虑轴承的载荷能力、旋转速度、摩擦和磨损等方面。
轴承的载荷能力一般通过轴向和径向载荷动等效计算得到,这是根据轴承的基本动力公式和轴承载荷特性进行计算的。
轴承的旋转速度也是轴承选型的一个重要因素,一般使用基础额定寿命和修改因素来计算轴承的额定寿命。
摩擦和磨损对轴承的寿命影响很大,需要根据轴承的工作条件和润滑方式进行计算和评估。
在轴承计算中,还需要注意轴承的润滑方式选择,常见的有油润滑和脂润滑两种方式。
润滑方式的选择会在一定程度上影响轴承的寿命。
油润滑通常在高速和高温环境下使用,它能够提供更好的冷却效果,并且能够更好地排除摩擦产生的热量。
而脂润滑则通常在低速和低温环境下使用,它能够提供更好的密封性和防尘效果。
总结来说,轴设计计算和轴承计算是机械设计中非常重要的计算过程。
轴设计计算涉及到轴的强度和刚度计算,而轴承计算则涉及到轴承的选型和寿命计算。
对于这两个方面的计算,需要考虑到机械系统的特性和工作环境,合理选择轴的材料和几何形状,并根据轴承的载荷特性和工作条件选取合适的轴承。
轴承与轴的配合标准
轴承是机械设备中常见的零部件,它承载着旋转机械的轴承,起到支撑和减小摩擦的作用。
而轴则是承载轴承的部件,两者的配合标准对于机械设备的性能和寿命有着重要的影响。
本文将从轴承与轴的配合标准的选择、设计和安装等方面进行详细介绍。
首先,轴承与轴的配合标准的选择是非常重要的。
在选择轴承时,需要考虑轴的直径、圆度、表面粗糙度等参数,以确保轴承能够正确安装在轴上并能够正常工作。
同时,还需要考虑轴承的类型和尺寸,以保证轴承能够承受所需的载荷和转速。
在选择轴时,需要考虑轴承的安装位置、工作环境和受力情况,以确保轴能够满足轴承的要求。
其次,轴承与轴的配合标准的设计是关键的。
在设计轴承与轴的配合时,需要考虑轴承的安装方式、间隙、配合面的形状和表面处理等因素。
合理的设计可以减小轴承与轴之间的摩擦,降低能量损失,提高机械设备的效率和使用寿命。
同时,还需要考虑轴承与轴的配合标准对于轴承的定位和固定,以确保轴承能够稳定地工作在轴上。
最后,轴承与轴的配合标准的安装是至关重要的。
在安装轴承时,需要确保轴承与轴的配合标准的尺寸和形状符合要求,以避免轴承在工作时出现偏摆、摩擦和振动等问题。
同时,还需要注意轴承的安装方式和紧固力度,以确保轴承能够正确地安装在轴上并且能够正常工作。
总之,轴承与轴的配合标准的选择、设计和安装对于机械设备的性能和寿命有着重要的影响。
在实际应用中,需要根据具体的工作条件和要求,选择合适的轴承和轴,并且合理设计和安装轴承与轴的配合标准,以确保机械设备能够稳定可靠地工作。
深沟球轴承与轴的配合方式解释说明以及概述1. 引言1.1 概述在机械工程领域,轴承和轴的配合方式对于机械设备的性能和寿命起着至关重要的作用。
深沟球轴承作为一种常见的轴承类型,被广泛应用于各类机械设备中。
深沟球轴承通过与适当配合的轴协同工作,实现了稳定可靠的运转。
本文将对深沟球轴承与轴的配合方式进行解释说明,并就此进行全面概述。
1.2 文章结构本文分为五个主要部分来展开讨论。
首先,在引言部分简要介绍了论文的背景和目标;随后,在第二部分中详细阐述了深沟球轴承的类型和特点;接下来,在第三部分中探究了不同的轴配合方式以及标准尺寸选择;紧接着,在第四部分中重点研究了深沟球轴承和轴之间的配合关系;最后,在第五部分中总结出文章所得到的主要观点,并提出后续研究展望。
1.3 目的本文旨在提供一个全面而清晰的解释,说明深沟球轴承与轴的配合方式。
通过对深沟球轴承的类型、特点以及结构工作原理的介绍,读者将能够深入了解该类型轴承并明确其优缺点。
同时,本文还将详细描述不同的轴配合方式以及如何选择标准尺寸,帮助读者在实际应用中正确选择和设计轴的配合方式。
最后,通过研究深沟球轴承和轴之间的配合关系,读者将能够更好地理解二者之间的相互作用,并为机械设备的正确安装和运行提供指导。
请问这样清晰明了吗?2. 深沟球轴承的类型和特点2.1 深沟球轴承的定义与分类深沟球轴承是一种常见的滚动轴承,其内部球状滚动元件被安装在外圈和内圈之间,并且可以在各个方向上承受较大的径向和轴向负载。
根据结构形式和使用场景的不同,深沟球轴承可以分为几种常见类型。
- 单列深沟球轴承:最常见的一种类型,由一个外圈、一个内圈、一排钢球和保持器组成。
广泛用于各种机械设备中,如电动工具、家电、汽车、农业机械等。
- 双列深沟球轴承:由两个内圈、一个外圈和一排两行钢球组成。
相对于单列深沟球轴承,双列深沟球轴承能够同时承受更大的径向负载。
- 加宽型深沟球轴承:增加了外环宽度,以提供更高的刚性和额外的载荷能力。
电机转轴与轴承的配合一、引言电机转轴与轴承的配合是电机运转过程中非常重要的一环,直接关系到电机的使用寿命和性能表现。
因此,在电机设计和制造过程中,必须严格控制电机转轴与轴承的配合质量。
二、电机转轴与轴承的配合原理1. 轴承基本原理轴承是一种支持旋转机件的重要部件,主要作用是减少摩擦和支撑力。
其基本原理为利用滚柱或滚珠在内外环之间滚动来减少摩擦,同时通过润滑油膜来支撑力。
2. 配合原理在电机中,通常采用干式或湿式配合方式。
干式配合是指在两个零件之间不加润滑剂进行配合;湿式配合则是在两个零件之间添加润滑剂后进行配合。
3. 配合质量标准为了保证电机运行稳定性和寿命,必须严格控制电机转轴与轴承的配合质量。
一般来说,其标准包括:径向游隙、径向载荷、径向刚度、径向承载能力等。
三、电机转轴与轴承的配合方法1. 配合方式电机转轴与轴承的配合方式有很多种,常见的包括:紧配、松配、中配等。
其中,紧配是指在装配时需要施加一定的力才能将转轴和轴承安装到一起;松配则是指在装配时只需用手就可以将转轴和轴承安装到一起;中配则介于两者之间。
2. 配合精度为了保证电机运行稳定性和寿命,必须控制电机转轴与轴承的配合精度。
通常来说,其精度包括:公差、圆度、直线度等。
3. 配合质量检测为了保证电机转轴与轴承的质量,必须进行严格检测。
常见的检测方法包括:光学测量、三坐标测量、超声波检测等。
四、影响电机转轴与轴承配合质量的因素1. 材料选择材料选择对电机转轴与轴承的质量有着重要影响。
通常来说,应该选择高强度、高硬度和耐磨损的材料。
2. 制造工艺制造工艺对电机转轴与轴承的质量也有着重要影响。
通常来说,应该采用先进的制造工艺和设备,严格控制每个工序的质量。
3. 润滑方式润滑方式也是影响电机转轴与轴承配合质量的因素之一。
通常来说,应该选择适当的润滑方式,并定期更换润滑油。
五、总结电机转轴与轴承的配合是电机运行过程中非常重要的一环,直接关系到电机使用寿命和性能表现。
工作装置的可靠性对液压挖掘机整机性能影响很大,工作装置在工作时的工况为低速重载,这就对轴和轴承的工作性能提出了非常高的要求,而在挖掘机设计中,工作装置的重量在能满足设计性能参数的前提下应尽可能的小,所以合理设计轴和轴承对挖掘机整机性能至关重要。
下面就分别讨论轴、轴承、轴和轴承公差配合的设计.一、轴承的设计:工作装置轴承的种类繁多,按其材料可分为铜轴承、钢轴承、复合轴承等;按其润滑方式可分为干摩擦轴承、含油轴承、不完全油膜轴承、流体膜轴承等:我厂现使用轴承的润滑方式为不完全油膜润滑,先后使用过铜、钢、铜基钢背自润滑等多种轴承。
铜轴承韧性良好,耐磨性一般,对轴有较好的保护作用,但抗变形能力较差,长时间使用后易变形,造成轴承内径扩大,导致结构件晃动;钢轴承强度高,耐磨性好,抗变形能力强,但表面热处理的工艺要求高;铜基钢背自润滑轴承兼有钢轴承和铜轴承的优点,同时油槽润滑和自润滑相结合,能有效避免轴承的烧焦,但其工艺复杂,成本较高。
轴承的设计首要考虑的是轴承的使用寿命,其寿命除烧焦外由轴承内径的磨损量来决定.磨损量主要受摩擦条件的影响,而摩擦又受承载、速度、杂质、表面粗糙度、工作温度、不同运行方式、所使用润滑剂等条件影响,因此,磨损量只能是一个理论估计值,轴套的寿命取决于各种复杂的条件。
若因供油不良,杂质渗入而使磨损急剧变化,就很难预测磨损情况.在正常情况下,铜轴承(ZcuAll0Fe3Mn2)磨损量可由下式近似得出:W=K×P×V×TW:磨损量(mm)K:摩擦系数【mm/(N/mm2·m/min·hr)】P:承载能力(N/mm2)V:线速度(m/min)T:磨损时间(hr)式中K=Ci×k,k为理想状态下的摩擦系数,K=(1~5)×10-8【mm/(N/mm2·m/min·hr)】1、Ci=C0×Cl×C2×C32、承载压力P通常所谓承载压力是指轴承承受载荷时,轴承支撑的最大载荷除以受压面积,所谓受压面积,当轴承为圆筒形时,取与轴承接触部分的载荷方向的投影面积。
内圈m6 n6 p6 外圈H7 G7K7这是正常内圈旋转的配合外圈旋转时内圈h6 k6外圈M6 N6双H配合一般不要采用因为国内加工能力不行孔和轴尺寸和形状达不到要求的话会跑外圈①当轴承内径公差带与轴公差带构成配合时,在一般基孔制中原属过渡配合的公差代号将变为过赢配合,如k5、k6、m5、m6、n6等,但过赢量不大;当轴承内径公差代与h5、h6、g5、g6等构成配合时,不在是间隙而成为过赢配合。
②轴承外径公差带由于公差值不同于一般基准轴,也是一种特殊公差带,大多情况下,外圈安装在外壳孔中是固定的,有些轴承部件结构要求又需要调整,其配合不宜太紧,常与H6、H7、J6、J7、Js6、Js7等配合。
附:一般情况下,轴一般标0~+0。
005 如果是不常拆的话,就是+0。
005~+0。
01的过盈配合就可以了,如果要常常的拆装就是过渡配合就可以了。
我们还要考虑到轴材料本身在转动时候的热胀,所以轴承越大的话,最好是-0。
005~0的间隙配合,最大也不要超过0。
01的间隙配合还有一条就是动圈过盈,静圈间隙0 前言滚动轴承是一种标准化部件,具有摩擦力小、容易起动及更换简便等优点。
我们在日常维修或从事机械设计时,合理、正确选择轴承配合是至关重要的。
1 轴承配合的选择方法正确选择轴承配合,对保证机器正常运转、提高轴承的使用寿命和充分利用轴承的承载能力关系很大。
滚动轴承配合的选择主要是根据轴承套圈承受负荷的性质和大小,并结合轴承的类型、尺寸、工作条件、轴与壳体的材料和结构以及工作温度等因素综合考虑。
(1)套圈是否旋转当轴承的内圈或外圈工作时为旋转圈,应采用稍紧的配合,其过盈量的大小应使配合面在工作负荷下不发生“爬行”,因为一旦发生爬行,配合表面就要磨损,产生滑动,套圈转速越高,磨损越严重。
轴承工作时,若其内圈或外圈为不旋转套圈,为了拆装和调整方便,宜选用较松的配合。
由于不同的工作温升,将使轴颈或外壳孔在纵向产生不同的伸长量。
---------------------------------------------------------------最新资料推荐------------------------------------------------------轴与轴承配合公差及键配合自公差与配合(摘自 GB1800 ~1804 -79 ) 1.配合种类及公差 . 机械制图标准公差和基本偏差国家标准《公差与配合》规定了公差带由标准公差和基本偏差两个要素组成。
标准公差确定公差带的大小,而基本偏差确定公差带的位置,见下图)标准公差(IT)标准公差的数值由基本尺寸和公差等级来决定。
其中公差等级是确定尺寸精确程度的等级。
国家标准《公差与配合》规定了公差带由标准公差和基本偏差两个要素组成。
1)标准公差标准公差(IT)是国家标准规定的极限制中列出的任一公差数值。
下表列出了国家标准(GB/T 1800.31998)规定的机械制造行业常用尺寸(尺寸至 500mm)的标准公差数值。
标准公差等级及其代号标准公差等级是指确定尺寸精确程度的等级。
为了满足机械制造中各零件尺寸不同精度的要求,国家标准在基本尺寸至 500mm 范围内规定了 20 个标准公差等级,用符号 IT 和数值表示:IT01、IT0、IT1、IT2~IT18。
其中,IT01 精度等级最高,其余依次降低,IT18 等级最低。
1 / 10在基本尺寸相同的条件下,标准公差数值随公差等级的降低而依次增大,详见表 1 同一公差等级(例如 IT6)对所有基本尺寸的一组公差被认为具有同等精确程度。
2)基本偏差基本偏差一般是指上下两个偏差中靠近零线的那个偏差。
即当公差带位于零线上方时,基本偏差为下偏差;当公差带位于零线下方时,基本偏差为上偏差,见上图。
国家标准对孔和轴均规定了 28 个不同的基本偏差。
基本偏差代号用拉丁字母表示,大写字母表示孔,小写字母表示轴。
下图是孔和轴的 28 个基本偏差系列图。
高手分享轴承与轴、轴承座的配合在论坛里经常看到社友讨论轴承与轴、轴承座的配合问题。
由于轴承是标准件,尺寸公差是定死了的,这个配合问题也就成了怎么确定轴、轴承座的尺寸公差问题。
截图来自舍弗勒的轴承综合样本HR1。
还有轴承座的配合以上是轴承配合的基本原则。
但是原则并不是放之四海而皆准滴,原则更像世界纪录---是用来打破的。
打破之前你得权衡下打破原则的得与失,或者说利和弊。
轧机轴承内圈与轴的间隙配合就是一个经典的打破轴承配合基本原则的案例。
基本原则也没有包括一些特殊情况---如空心轴、轻金属轴承座等情况。
这种情况要选更紧的配合,要多紧,可以计算。
还有推力轴承的配合。
截图同样来自舍弗勒样本HR1。
推力轴承之轴承座正确选择轴承配合,首先要搞清楚轴承的工况,特别是受到什么性质的载荷。
载荷分点载荷与圆周载荷,区分这两种载荷,是正确选择轴承配合的前提。
说轧机轴承内圈与轴松配合,这说法不准确;不是所有轧机中的轴承内圈与轴都是松配合的。
而是在轧机中有些轴承内圈与轴是松配合,如4列圆锥,及有些4列圆柱。
轴、轴承座与轴承配合公差1)轴承配合一般都是过渡配合,但在有特殊情况下可选过盈配合,但很少。
因为轴承与轴配合是轴承的内圈与轴配合,使用的是基孔制,本来轴承是应该完全对零的,我们在实际使用中也完全可以这样认为,但为了防止轴承内圈与轴的最小极限尺寸配合时产生内圈滚动,伤害轴的表面,所以我们的轴承内圈都有0到几个μ的下偏公差来保证内圈不转动,所以轴承一般选择过渡配合就可以了,即使是选择过渡配合也不能超过3丝的过盈量。
配合精度等级一般就选6级,有的时候也要看材料,还有加工工艺,理论上7级有点偏底了,5级配合的话就要用磨。
我一般选用是:轴承内圈与轴配合轴选k6轴承外圈与孔配合孔选K6或K7 2)轴承与轴的配合公差标准①当轴承内径公差带与轴公差带构成配合时,在一般基孔制中原属过渡配合的公差代号将变为过赢配合,如k5、k6、m5、m6、n6等,但过赢量不大;当轴承内径公差代与h5、h6、g5、g6等构成配合时,不在是间隙而成为过赢配合。
滚动轴承内圈与轴配合的正确标注滚动轴承内圈与轴的配合是滚动轴承中非常重要的一部分。
它直接影响到轴与内圈之间的摩擦、转动灵活性、寿命等关键性能。
正确的配合设计可以提高轴承的工作效率和寿命,减少能量损失和故障率。
滚动轴承是通过滚动元件(如钢球或滚子)在内圈和外圈之间滚动来承载轴上的负荷。
而内圈与轴之间的配合是滚动轴承中最关键的配合之一。
它通常采用间隙配合,即内圈的直径略大于轴的直径,以确保轴能够自由旋转。
同时,通过适当的间隙设计,还可以在一定程度上减少轴承在工作时的振动和噪音。
在滚动轴承内圈与轴的配合设计中,首先需要考虑的是轴的尺寸和形状。
轴的直径和圆度应符合设计要求,以确保内圈能够正确地配合在轴上。
此外,轴的表面质量也是非常重要的。
轴表面应光滑、平整,并且没有明显的划痕、凹坑或氧化层。
这样可以减少摩擦和磨损,提高轴承的寿命。
而内圈的配合孔也是需要特别关注的。
内圈的配合孔应与轴的直径配合良好,既不能过紧,也不能过松。
过紧的配合会增加摩擦和能量损失,导致轴承发热、寿命缩短;过松的配合则会导致轴与内圈之间的间隙过大,使得轴承在工作时产生松动和振动。
因此,内圈的配合孔应根据轴的直径进行合理的加工和调整,确保两者之间的配合良好。
为了进一步提高轴承的性能,还可以采用表面处理技术来改善内圈与轴的配合。
例如,可以在轴的表面进行渗碳处理,形成一层硬度较高的碳化层,增加轴的表面硬度和耐磨性。
同时,还可以在内圈的配合孔表面进行镀铬处理,形成一层光滑的铬层,减少与轴之间的摩擦和磨损。
除了轴和内圈的配合设计外,还需要考虑润滑和密封等因素对轴承性能的影响。
正确的润滑可以减少摩擦和磨损,延长轴承的寿命。
而密封装置可以防止外界杂质进入轴承内部,保持润滑脂的正常工作。
因此,在轴承设计过程中,还需要考虑润滑和密封的要求,并相应地选择适合的润滑脂和密封装置。
滚动轴承内圈与轴的配合是滚动轴承中非常重要的一部分。
正确的配合设计可以提高轴承的工作效率和寿命,减少能量损失和故障率。