2020年宁夏银川二中高考数学一模试卷(理科)
- 格式:docx
- 大小:1.73 MB
- 文档页数:20
高考数学模拟试题一、选择题:(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.复数1a ii+-为纯虚数,则它的共轭复数是( ) A. 2i B. 2i - C. i D. i - 2. 下列函数中,同时具有性质:(1)图象过点(0,1);(2)在区间(0,+∞)上是减函数; (3)是偶函数.这样的函数是 ( )A. y =x 3+1 B. y =log 2(|x|+2) C. y =(12)|x|D. y =2|x|3.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5= ( ) A.33B.72C.84D.1894.角α的终边经过点A (3,)a -,且点A 在抛物线214y x =-的准线上,则sin α=( ) A .12- B .12 C .32-D .325.某程序框图如图所示,该程序运行后,输出的x 值为31,则a 等于( ) A .1- B .0 C .2 D .16.—个几何体的三视图及其尺寸如右图所示,其中正(主)视图是直角三角形,侧(左)视图是半圆,俯视图是等腰三角形,则这个几何体的体积是(单位cm 3)( ) A . B .C .D .7.已知实数m 是2,8的等比中项,则圆锥曲线22y x m+=1的离心率为( )A .32 B .5 C .5 与32D .以上都不对 8.曲线y=11x x -+在点(0,一1)处的切线与两坐标轴围成的封闭图形的面积为( ) A .41B .-12C .43D .189.为了测算如图所示的阴影部分的面积,作一个边长为3的正方形将其包含在内,并向正方形内随机投掷600个点.已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是 ( )A.4B.3C.2D.110.设函数()3cos(2)sin(2)(||)2f x x x πϕϕϕ=+++<,且其图象关于直线0x =对称,则( )A .()y f x =的最小正周期为π,且在(0,)2π上为增函数B .()y f x =的最小正周期为π,且在(0,)2π上为减函数C .()y f x =的最小正周期为2π,且在(0,)4π上为增函数D .()y f x =的最小正周期为2π,且在(0,)4π上为减函数11.已知正方形ABCD 的边长为2,点P,Q 分别是边AB ,BC 边上的动点且,AQ DP ⊥ ,则QP CP ⊥的最小值为( ) A .1 B .2 C .3 D .412. 已知⎩⎨⎧>-≤-=0,230,2)(2x x x x x f ,若ax x f ≥|)(|在]1,1[-∈x 上恒成立,则实数a 的取值范围是( )A.),0[]1(+∞--∞YB.]0,1[-C.]1,0[D.)0,1[-第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每题5分,共20分.各题答案必须填写在答题卡上(只填结果,不要过程) 13.已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为 .14. 已知圆C :x 2+y 2-6x-4y+8=0.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 .15. 如图,为了测得河的宽度CD ,在一岸边选定两点A 、B ,使A 、B 、D 在同一直线上.现测得∠CAB=30°,∠CBA=75°,AB=120 m ,则河的宽度是 .16.球内接正六棱锥的侧棱长与底面边长分别为22和2,则该球的体积为 ;三、解答题:本大题共解答5题,共60分.各题解答必须答在答题卡上(必须写出必要的文字说明、演算步骤或推理过程).17.(本小题满分12分)已知函数22()2(1)57f x x n x n n =-+++-.(Ⅰ)设函数()y f x =的图像的顶点的纵坐标构成数列{}n a ,求证:{}n a 为等差数列; (Ⅱ)设函数()y f x =的图像的顶点到x 轴的距离构成数列{}n b ,求{}n b 的前n 项和n S .18. (本小题满分12分)为了解某商场旅游鞋的日销售情况,现抽取部分顾客购鞋的尺码,将所得数据绘成如图所示频率分布直方图,已知图中从左到右前三组的频率之比为1:2:3,第二组的频数为10. (1)用频率估计概率,求尺码落在区间(37.5,43.5】的概率约是多少?(2)从尺码落在区间(37.5,43.5】和(43.5,45.5】的顾客中任意选取两人,记在区间(43.5,45.5】内的人数为X ,求X 的分布列及数学期望EX 。
宁夏2020年高考数学一模试卷(理科)(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019高一上·西城期中) 已知集合,则()A .B .C .D .2. (2分) (2020高三上·营口月考) 复数满足,则的虚部是()A .B .C .D . -13. (2分) (2020高一上·衢州期末) 函数的大致图象为()A .B .C .D .4. (2分)(2017·深圳模拟) 祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为h(0<h<2)的平面截该几何体,则截面面积为()A . 4πB . πh2C . π(2﹣h)2D . π(4﹣h)25. (2分)(2017·陆川模拟) 下列命题中正确命题的个数是()⑴对于命题p:∃x∈R,使得x2+x+1<0,则¬p:∀x∈R,均有x2+x+1>0;⑵命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题;⑶回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为 =1.23x+0.08;⑷m=3是直线(m+3)x+my﹣2=0与直线mx﹣6y+5=0互相垂直的充要条件.A . 1B . 3C . 2D . 46. (2分) (2018高一下·珠海月考) 如图是把二进制的数11111(2)化成十进制的数的程序框图,则判断框内应填入的条件是()A . i>5?B . i≤5?C . i>4?D . i≤4?7. (2分) (2017高二下·黄山期末) 下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,均值与方差都不变;②设有一个回归方程,变量x增加一个单位时,y平均增加3个单位;③线性回归方程必经过点;④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说现有100人吸烟,那么其中有99人患肺病.其中错误的个数是()A . 0B . 1C . 2D . 38. (2分) (2016高二下·桂林开学考) 若变量x,y满足,则x﹣2y的最小值为()A . ﹣14B . ﹣4C .D .9. (2分) (2019高二上·武汉期中) 设,过定点的动直线和过定点的动直线交于点,(点与点不重合),则的面积最大值是().A .B .C . 5D .10. (2分)为了得到函数的图象,只要将函数的图象()A . 向右平移个单位长度B . 向左平移个单位长度C . 向右平移个单位长度D . 向左平移个单位长度11. (2分)(2020·江门模拟) 在平面直角坐标系中,、是双曲线的焦点,以为直径的圆与双曲线右支交于、两点.若是正三角形,则双曲线的离心率为()A .B .C . 2D .12. (2分)已知有极大值和极小值,则a的取值范围为()A . -1<a<2B . -3<a<6C . a<-1或a>2D . a<-3或a>6二、填空题 (共4题;共4分)13. (1分)(2016·普兰店模拟) 的展开式中的常数项为a,则直线y=ax与曲线y=x2围成图形的面积为________.14. (1分) (2017高二上·大连期末) 阿基米德在《论球与圆柱》一书中推导球的体积公式时,得到一个等价的三角恒等式sin ,若在两边同乘以,并令n→+∞,则左边=.因此阿基米德实际上获得定积分的等价结果.则 =________.15. (1分)(2016·上海文) 如图,已知点O(0,0),A(1.0),B(0,−1),P是曲线上一个动点,则的取值范围是________.16. (1分) (2019高一下·镇赉期中) 在中,,,内切圆的面积是,则外接圆的半径是________.三、解答题 (共7题;共65分)17. (10分) (2019高三上·上高月考) 已知各项均为正数的数列的前项和为,, .(1)证明数列为等差数列,并求的通项公式;(2)设,数列的前项和记为 ,证明: .18. (10分) (2018高二上·鄞州期中) 已知四棱锥的底面为直角梯形, ,底面且是的中点.(1)求证:直线平面;(2)若,求二面角的余弦值.19. (10分) (2015高三上·太原期末) 某校高一年级开设A,B,C,D,E五门选修课,每位同学须彼此独立地选三门课程,其中甲同学必选A课程,不选B课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.(1)求甲同学选中C课程且乙同学未选中C课程的概率;(2)用X表示甲、乙、丙选中C课程的人数之和,求X的分布列和数学期望.20. (5分)已知椭圆 + =1(a>b>0)的离心率为,椭圆上任意一点到右焦点f的距离的最大值为.(I)求椭圆的方程;(II)已知点C(m,0)是线段OF上异于O、F的一个定点(O为坐标原点),是否存在过点F且与x轴不垂直的直线l与椭圆交于A、B两点,使得|AC|=|BC|,并说明理由.21. (15分) (2020高三上·潍坊期中) 2020年10月16日,是第40个世界粮食日.中国工程院院士袁隆平海水稻团队迎来了海水稻的测产收割,其中宁夏石嘴山海水稻示范种植基地YC-801测产,亩产超过648.5公斤,通过推广种植海水稻,实现亿亩荒滩变粮仓,大大提高了当地居民收入.某企业引进一条先进食品生产线,以海水稻为原料进行深加工,发明了一种新产品,若该产品的质量指标值为,其质量指标等级划分如下表:质量指标值质量指标等级良好优秀良好合格废品为了解该产品的经济效益并及时调整生产线,该企业先进行试生产.现从试生产的产品中随机抽取了1000件,将其质量指标值的数据作为样本,绘制如下频率分布直方图:(1)若将频率作为概率,从该产品中随机抽取3件产品,记“抽出的产品中至少有1件不是废品”为事件,求事件发生的概率;(2)若从质量指标值的样本中利用分层抽样的方法抽取7件产品,然后从这7件产品中任取3件产品,求质量指标值的件数的分布列及数学期望;(3)若每件产品的质量指标值与利润(单位:元)的关系如下表:质量指标值利润(元)试分析生产该产品能否盈利?若不能,请说明理由;若能,试确定为何值时,每件产品的平均利润达到最大(参考数值:,).22. (5分) (2018高二下·湛江期中) 平面直角坐标系中,直线的参数方程为(为参数),圆C的参数方程为(为参数),以坐标原点O为极点,轴的非负半轴为极轴建立极坐标系.(Ⅰ)求直线l和圆C的极坐标方程;(Ⅱ)设直线l和圆C相交于A,B两点,求弦AB与其所对劣弧所围成的图形面积.23. (10分)(2019·永州模拟) 选修4-5:不等式选讲已知函数 .(1)当时,求不等式的解集;(2)若,的最小值为,求的最小值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共65分)17-1、17-2、18-1、18-2、19-1、19-2、20-1、21-1、21-2、21-3、22-1、23-1、23-2、。
普通高等学校招生全国统一考试理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~23题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.考生必须按照题号在答题卡各题号相对应的答题区域内(黑色线框)作答,写在草稿纸上、超出答题区域或非题号对应的答题区域的答案一律无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数2(1)i i-=A .22i -+B .2C .2-D .22i -2.设集合2{|0}M x x x =->,1|1N x x ⎧⎫=<⎨⎬⎩⎭,则 A .φ=⋂N M B .φ=⋃N MC .M N =D .M N R =U3.已知1tan 2α=-,且(0,)απ∈,则sin 2α= A .45B .45-C .35 D .35-4.若两个单位向量a r ,b r 的夹角为120o,则2a b +=r rA .2B .3CD 5.从标有数字1、2、3、4、5的五张卡片中,依次抽出2张(取后不放回),则在第一次抽到卡片是奇数的情况下,第二次抽到卡片是偶数的概率为 A .14B .12C .13D .236.已知233a -=,432b -=,ln3c =,则A .a c b <<B .a b c <<C .b c a <<D .b a c <<7.中心在原点,焦点在y 轴上的双曲线的一条渐近线经过点()2,4-,则它的离心率为A 5B .2C 3D 58.三棱锥P-ABC 中,PA ⊥面ABC ,PA=2,AB=AC=3,∠BAC=60°,则该棱锥的外接球的表面积是A .π12B .π8C .π38D .π349.20世纪70年代,流行一种游戏——角谷猜想,规则如下:任意写出一个自然数n ,按照以下的规律进行变换:如果n 是个奇数,则下一步变成31n +;如果n 是个偶数,则下一步变成2n,这种游戏的魅力在于无论你写出一个多么庞大的数字,最后必然会落在谷底,更准确地说是落入底部的4-2-1循环,而永远也跳不出这个圈子,下列程序框图就是根据这个游戏而设 计的,如果输出的i 值为6,则输入的n 值为 A .5B .16C .5或32D .4或5或32 10.已知P 是△ABC 所在平面外的一点,M 、N 分别是AB 、PC 的中点,若MN =BC =4,PA =43, 则异面直线PA 与MN 所成角的大小是A .30°B .45°C .60°D .90° 11.若将函数f (x )=sin(2x +φ)+3cos(2x +φ)(0<φ<π)的图象向左平移π4个单位长度,平移后的图象关于点⎝⎛⎭⎫π2,0对称,则函数g (x )=cos(x +φ)在⎣⎡⎦⎤-π2,π6上的最小值是A .-12B .-32C .22D .1212.已知函数f (x )=(3x +1)e x +1+mx (m ≥-4e),若有且仅有两个整数使得f (x )≤0,则实数m 的取值范围是A .⎥⎦⎤⎝⎛2,5e B .⎪⎭⎫⎢⎣⎡--238,25e e C .⎪⎭⎫⎢⎣⎡--238,21e D .⎪⎭⎫⎢⎣⎡--ee 25,4第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答.1 2 3 4 5 6月份代码x市场占有率y(%)2016年10月2016年11月2016年12月2017年1月2017年2月2017年3月20 15 5 10 25 二、填空题:本大题共4小题,每小题5分.13.已知函数f (x )=log 21-x 1+x ,若f (a )=12,则f (-a )=________.14.设221(32)a x x dx =⎰-,则二项式261()ax x-展开式中的第6项的系数为__________. 15.若目标函数2z kx y =+在约束条件2122x y x y y x -≤⎧⎪+≥⎨⎪-≤⎩下当且仅当在点(1,1)处取得最小值,则实数k 的取值范围是__________.16.已知点A (0,1),抛物线C :y 2=ax (a >0)的焦点为F ,连接FA ,与抛物线C 相交于点M ,延长FA ,与抛物线C 的准线相交于点N ,若|FM |∶|MN |=1∶3,则实数a 的值为________. 三.解答题17.(本小题满分12分){a n }的前n 项和S n 满足:a n +S n =1 (1)求数列{a n }的通项公式; (2)若1+=n nn a a C ,数列{C n }的前n 项和为T n ,求证:T n <1. 18.(本小题满分12分)随着互联网的快速发展,基 于互联网的共享单车应运而生, 某市场研究人员为了了解共享单 车运营公司M 的经营状况,对 该公司最近六个月的市场占有 率进行了统计,并绘制了相应 的折线图:(1)由折线图可以看出, 可用线性回归模型拟合月度市场占 有率y 与月份代码x 之间的关系, 求y 关于x 的线性回归方程,并 预测M 公司2017年4月的市场占 有率;(2)为进一步扩大市场,公司拟再采购一批单车,现有采购成本分别为1000元/辆和 1200元/辆的A 、B 两款车型可供选择,按规定每辆单车最 多使用4年,但由于多种原因(如骑行频率等)会导致单车使 用寿命各不相同,考虑到公司运营的经济效益,该公司决定 先对这两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命的频数表如右表:经测算,平均每辆单车每年可以带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率,如果你是M 公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型? 参考公式:回归直线方程为$$y bxa =+$,其中2121121)())((ˆx n xyx n y xx xy y x xb n i ini i in i ii ni i--=---=∑∑∑∑====,$ay bx =-$. 19.(本小题满分12分)如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,∠BCD =135°,侧面PAB ⊥底面ABCD ,∠BAP =90°,AB =AC =PA =2,E 、F 分别为BC 、AD 的中点,点M 在线段PD 上.(1)求证:EF ⊥平面PAC ;(2)如果直线ME 与平面PBC 所成的角和直线ME 与平 面ABCD 所成的角相等,求PDPM的值. 20.(本小题满分12分)已知椭圆C 的中心在原点,焦点在x 轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为Q )(1)求椭圆C 的方程;(2)设点P 是直线x =-4与x 轴的交点,过点P 的直线l 与椭圆C 相交于M 、N 两点,当线段MN 的中点落在正方形Q 内(包括边界)时,求直线l 斜率的取值范围. 21.(本小题满分12分)已知函数()()()21,ln f x x ax g x x a a R =++=-∈.(1)当1a =时,求函数()()()h x f x g x =-的极值;(2)若存在与函数()(),f x g x 的图象都相切的直线,求实数a 的取值范围.请考生在第22-23题中任选一题作答,如果多做,则按所做的第一题计分. 22.【选修4-4:坐标系与参数方程】(本小题满分10分)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :2sin 2cos (0)a a ρθθ=>,过点(24)P --,的直线l 的参数方程为:22224x y ⎧=-⎪⎪⎨⎪=-⎪⎩ (t 为参数),直线l 与曲线C 分别交于M 、N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若|PM |,|MN |,|PN |成等比数列,求a 的值 23选修4-5:不等式选讲(本小题满分10分)已知函数|1|||)(--=x x x f .(1)若|1|)(-≥m x f 的解集非空,求实数m 的取值范围;(2)若正数y x ,满足M y x =+22,M 为(1)中m 可取到的最大值,求证:xy y x 2≥+.银川一中高三第二次模拟理科数学试题参考答案一、选择题:本大题共12小题,每小题5分. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CCBDBDABCADB二.填空题:13. —2114.—24; 15.24<<-k ; 16. 212.已知函数f (x )=(3x +1)e x +1+mx (m ≥-4e),若有且仅有两个整数使得f (x )≤0,则实数m 的取值范围是( )A.⎝⎛⎦⎤5e ,2B.⎣⎡⎭⎫-52e ,-83e 2C.⎣⎡⎭⎫-12,-83e 2D.⎣⎡⎭⎫-4e ,-52e 答案 B解析 由f (x )≤0,得(3x +1)·e x +1+mx ≤0,即 mx ≤-(3x +1)e x +1,设g(x )=mx ,h(x )=-(3x +1)e x +1,则h′(x )=-[3e x +1+(3x +1)e x +1]=-(3x +4)e x +1,由h′(x )>0,得-(3x +4)>0,即x <-43,由h′(x )<0, 得-(3x +4)<0,即x >-43,故当x =-43时,函数h(x ) 取得极大值.在同一平面直角坐标系中作出y =h(x ), y =g(x )的大致图象如图所示,当m ≥0时,满足 g(x )≤h(x )的整数解超过两个,不满足条件;当m <0时, 要使g(x )≤h(x )的整数解只有两个,则需满足()()()()⎩⎨⎧-<--≥-,33,22g h g h即⎩⎪⎨⎪⎧5e -1≥-2m ,8e -2<-3m ,即⎩⎨⎧m ≥-52e ,m <-83e 2,即-52e ≤m <-83e 2,即实数m 的取值范围是⎪⎭⎫⎢⎣⎡--238,25ee ,故选B.16已知点A (0,1),抛物线C :y 2=ax (a >0)的焦点为F ,连接FA ,与抛物线C 相交于点M ,延长FA ,与抛物线C 的准线相交于点N ,若|FM |∶|MN |=1∶3,则实数a 的值为________.答案2解析 依题意得焦点F 的坐标为⎝⎛⎭⎫a 4,0,设M 在抛物线的准线上的射影为K ,连接MK ,由抛物线的定义知|MF |=|MK |,因为|FM |∶|MN |=1∶3,所以|KN |∶|KM |=22∶1,又k FN =0-1a 4-0=-4a ,k FN =-|KN ||KM |=-22,所以4a =22,解得a = 2.三.解答题:17.解析:(1)由a n +S n =1得a n -1+S n -1=1(n ≥2) 两式相减可得:2a n =a n -1即211=-n n a a ,又211=a ∴{a n }为等比数列,∴a n =n )21( (2)n n n nn C 211211)21()21(<+=+= 故12112112112121212121321<-=-⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛<++++=n n nn n C C C C T ΛΛ18.解:(1)由题意: 3.5x =,16y =,()()6135i i i x x y y =--=∑,()62117.5i i x x=-=∑,35217.5b ==$,$162 3.59a y b x =-⋅=-⨯=$,∴$29y x =+, 7x =时,$27923y =⨯+=.即预测M 公司2017年4月份(即7x =时)的市场占有率为23%.(2)由频率估计概率,每辆A 款车可使用1年,2年,3年,4年的概率分别为0.2、0.35、0.35、0.1, ∴每辆A 款车的利润数学期望为()()()()50010000.2100010000.35150010000.35200010000.1175-⨯+-⨯+-⨯+-⨯=(元)每辆B 款车可使用1年,2年,3年,4年的概率分别为0.1,0.3,0.4,0.2, ∴每辆B 款车的利润数学利润为()()()()50012000.1100012000.3150012000.4200012000.2150-⨯+-⨯+-⨯+-⨯=(元)∵175150>, ∴应该采购A 款车. 19.(1)证明:在平行四边形中,因为,, 所以.由分别为的中点,得,所以.因为侧面底面,且,所以底面.又因为底面,所以.又因为,平面,平面,所以平面.(2)解:因为底面,,所以两两垂直,以分别为、、,建立空间直角坐标系,则,所以,,,设,则,所以,,易得平面的法向量.设平面的法向量为,由,,得令,得.因为直线与平面所成的角和此直线与平面所成的角相等, 所以,即,所以,解得,或(舍).综上所得:20.【解析】(1)依题意,设椭圆C 的方程为)0(12222>>=+b a by a x ,焦距为c 2。
(全国百强校首发) 宁夏银川第二中学、银川第九中学、育才中学2020年高三下学期第一次大联考数学(理)试题理科数学第一卷【一】选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项 是符合题目要求的.1.21()1i a R ai -∈+是纯虚数,那么a =〔 〕 A 、12 B 、12- C 、2 D 、-22.集合U R =,函数1y x =-的定义域为M ,集合{}2|0N x x x =-≤,那么以下结论正确的选项是〔 〕 A 、MN N = B 、()MC N ⋃=∅ C 、M N U =D 、()M C N ⋃⊆4.,a b R ∈,那么〝11a b ->-〞是〝log 1a b <〞的〔 〕A 、充分不必要条件B 、必要不充分条件C 、充分必要条件D 、既不充分也不必要条件 5.tan()24x π+=,那么sin 2x =〔 〕A 、110B 、15C 、35D 、9106.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,那么该几何体的体积为〔 〕A 、8π+B 、82π+C 、83π+D 、84π+7.执行如下图的程序框图,那么该程序运行后输出的i 值为〔 〕A 、8B 、9C 、10D 、118.ABC ∆是边长为1的等边三角形,那么(2)(34)AB BC BC CA -+=〔 〕A 、132-B 、112- C 、362--D 、362-+9.1()nx x-的展开式中第3项与第6项的二项式系数相等,那么展开式中系数最大的项为第〔 〕项. A 、5 B 、4 C 、4或5 D 、5或610.抛物线2:8C x y =,过点(0,)(0)M t t <可作抛物线C 的两条切线,切点分别为,A B ,假设直线AB 恰好过抛物线C 的焦点,那么MAB ∆的面积为〔 〕 A 、2 B 、3 C 、6 D 、1611.函数()3sin ln(1)f x x x =+的部分图象大致为〔 〕A 、B 、C 、D 、12.假设函数()f x 在定义域内满足:〔1〕对于任意不相等的12,x x ,有12211122()()()()x f x x f x x f x x f x +>+;〔2〕存在正数M ,使得()f x M ≤,那么称函数()f x 为〝单通道函数〞,给出以下4个函数: ①()sin()cos()44f x x x ππ=+++,(0,)x π∈;②()ln x g x x e =+,[]1,2x ∈;③[]32()3,1,2h x x x x =-∈;④122,10()log (1)1,01x x x x x ϕ⎧--≤<⎪=⎨+-<≤⎪⎩,其中,〝单通道函数〞有〔 〕A 、①③④B 、①②④C 、①③D 、②③第二卷【二】填空题:本大题共4小题,每题5分,总分值20分.13.直线:320l x y b +-=过双曲线2222:1(0,0)x y C a b a b-=>>的右焦点F ,那么双曲线的渐近线方程为________.14.实数,x y 满足不等式组24024000x y x y x y +-≤⎧⎪--≤⎪⎨≥⎪⎪≥⎩,那么92z x y =+的最大值为________.15.,,a b c 是ABC ∆的三边,假设满足222a b c +=,即22()()1a b c c+=,ABC ∆为直角三角形,类比此结论:假设满足(,3)nnna b c n N n +=∈≥时,ABC ∆的形状为________.〔填〝锐角三角形〞,〝直角三角形〞或〝钝角三角形〞〕.16.关于x 的方程320x x x m --+=,至少有两个不相等的实数根,那么m 的最小值为________.【三】解答题:解答应写出文字说明、证明过程或演算步骤.17.〔本小题总分值12分〕数列{}n a 满足:1112,92n n n a a a -+=+=⨯.〔1〕记132n n n b a -=-⨯,求证:数列{}n b 为等比数列;〔2〕求数列{}n na 的前n 项和n S . 18.〔本小题总分值12分〕自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得〝要不要再生一个〞〝生二孩能休多久产假〞等成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:产假安排〔单位:周〕 14 15 16 17 18有生育意愿家庭数 4 8 16 20 26〔1〕假设用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?〔2〕假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.①求两种安排方案休假周数和不低于32周的概率;②如果用ξ表示两种方案休假周数和.求随机变量ξ的分布及期望. 19.〔本小题总分值12分〕如图,空间几何体ABCDE 中,平面ABC ⊥平面BCD ,AE ⊥平面ABC . 〔1〕证明://AE 平面BCD ;〔2〕假设ABC ∆是边长为2的正三角形,//DE 平面ABC ,且AD 与BD ,CD 所成角的余弦值均为24,试问在CA 上是否存在一点P ,使得二面角P BE A --的余弦值为104.假设存在,请确定点P 的位置;假设不存在,请说明理由.20.〔本小题总分值12分〕抛物线2:2(0)E y px p =>,过点(1,1)M -作抛物线E 的两条切线,切点分别为,A B ,直线AB 的斜率为2.〔1〕求抛物线的标准方程;〔2〕与圆22(1)1x y -+=相切的直线l ,与抛物线交于,P Q 两点,假设在抛物线上存在点C ,使()(0)OC OP OQ λλ=+>,求λ的取值范围.21.〔本小题总分值12分〕函数2()ln (1)2a f x x x a x =+-+. 〔1〕假设曲线()y f x =在1x =处的切线方程为2y =-,求()f x 的单调区间; 〔2〕假设0x >时,()()2f x f x x '<恒成立,求实数a 的取值范围. 请考生在22、23、24三题中任选一题作答,如果多做,那么按所做的第一题计分.22.〔本小题总分值10分〕 如图,ABC ∆内接于O ,AB 为其直径,CH AB ⊥于H 延长后交O 于D ,连接DB 并延长交过C 点的直线于P ,且CB 平分DCP ∠.〔1〕求证:PC 是O 的切线;〔2〕假设4,3AC BC ==,求PCPB的值. 23.〔本小题总分值10分〕在直角坐标系xOy 中,曲线C 的参数方程为244x t y t ⎧=⎨=⎩〔其中t 为参数〕,以O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为(4cos 3sin )0m ρθθ+-=〔其中m 为常数〕. 〔1〕假设直线l 与曲线C 恰好有一个公共点,求实数m 的值; 〔2〕假设4m =,求直线l 被曲线C 截得的弦长. 24.〔本小题总分值10分〕定义在R 上的连续函数()f x 满足(0)(1)f f =. 〔1〕假设2()f x ax x =+,解不等式3()4f x ax <+; 〔2〕假设任意[]12,0,1x x ∈且12x x ≠时,有1212()()f x f x x x -<-,求证:121()()2f x f x -<. 参考答案1.A 2.A 3.C 4.A 5.C 6.B 7.A 8.B 9.A 10.D 11.B 12.A 13.30x y ±= 14.6 15.锐角三角形 16.527-所以132(1)n nn na n n -=⨯+⨯-,.....................................................6分 设01221122232(1)22n n n T n n --=⨯+⨯+⨯++-⨯+⨯,① 12312122232(1)22n n n T n n -=⨯+⨯+⨯++-⨯+⨯,② ① –②得012122222212n n n n n T n n --=++++-⨯=--⨯,所以1(1)2nn T n =+-⨯,...............................................................8分设123(1)nn Q n =-+-++-,即1,2,2n n n Q n n +⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数,...........................10分所以53(1)2,2363(1)2,2nn n n n n n n S T Q n n n -⎧-⨯-⎪⎪=+=⎨+⎪-⨯+⎪⎩为奇数为偶数, ..................................12分18.〔1〕由表中信息可知,当产假为14周时某家庭有生育意愿的概率为14120050P ==; 当产假为16周时某家庭有生育意愿的概率为216220025P ==..........................2分 〔2〕①设〝两种安排方案休假周数和不低于32周〞为事件A ,由从5种不同安排方案中,随机地抽取2种方案选 法共有2510C =〔种〕,其和不低于32周的选法有14、18、15、17、15、18、16、17、16、18、17、18,共6种, 由古典概型概率计算公式得63()105P A ==. ...................................6分 ②由题知随机变量ξ的可能取值为29,30,31,32,33,34,35.1(29)0.110P ξ===,12(30)0.1,(31)0.21010P P ξξ======, 2211(32)0.2,(33)0.2,(34)0.1,(35)0.110101010P P P P ξξξξ============,因而ξ的公布列为ξ 29 30 31 32 33 34 35 P 0.1 0.1 0.2 0.2 0.2 0.1 0.1所以()290.1300.1310.2320.2330.2340.1350.132E ξ=⨯+⨯+⨯+⨯+⨯+⨯+⨯=,.........12分 19.〔1〕证明:如图,过点D 作直线DO BC ⊥交BC 于点O ,连接DO . 因为平面ABC ⊥平面BCD ,DO ⊂平面BCD ,DO BC ⊥,且平面ABC 平面BCD BC =,所以DO ⊥平面ABC . ...............................................1分 因为直线AE ⊥平面ABC ,所以//AE DO ,....................................................2分 因为DO ⊂平面BCD ,AE ⊄平面BCD ,所以直线//AE 平面BCD . ........................................4分 〔2〕连接AO ,因为//DE 平面ABC , 所以AODE 是矩形,所以DE ⊥平面BCD . 因为直线AD 与直线,BD CD 所成角的余弦值均为24, 所以BD CD =,所以O 为BC 的中点,所以AO BC ⊥,且2cos 4ADC ∠=. 设DO a =,因为2BC =,所以1,3OB OC AO ===, 所以221,3CD a AD a =+=+. 在ACD ∆中,2AC =.所以2222cos AC AD CD AD CD ADC =+-∠, 即222224312314a a a a =+++-⨯+⨯+⨯, 即2221322a a a ++=.解得21,1a a ==. ...................................6分以O 为坐标原点,,,OA OB OD 所在直线分别为x 轴,y 轴,z 轴,建立如下图的空间直角坐标系.那么(0,1,0),(0,1,0),(3,0,0),(3,0,1)C B A E -.假设存在点P ,连接,EP BP ,设AP AC λ=,那么(33,,0)P λλ--. 设平面ABE 的法向量为{},,m x y z =,那么030m AE z m BA x y ⎧==⎪⎨=-=⎪⎩,取1x =,那么平面ABE 的一个法向量为(1,3,0)m =.设平面PBE 的法向量为{},,n x y z =,那么(33)(1)030n PB x y n BE x y z λλ⎧=-++=⎪⎨=-+=⎪⎩,取1x λ=+,那么平面PBE 的一个法向量为(1,33,23)n λλλ=+--,......................9分设二面角P BE A --的平面角的大小为θ,由图知θ为锐角, 那么22213310cos 42(1)3(1)12m n m nλλθλλλ++-===⨯++-+, 化简得2610λλ+-=,解得12λ=-〔舍去〕,.........................11分 所以在CA 上存在一点P ,使得二面角P BE A --的余弦值为104.其为线段AC 的三等分点(靠近点A ) ..............................................12分 20.〔1〕设{}1122,,(,)A x y B x y ,那么点A 处抛物线的切线为{}11y y p x x =+,过点(1,1)M -,因而11(1)y p x =-;同理,点B 处抛物线的切线为22()y y p x x =+,过点(1,1)M -,因而22(1)y p x =-. 两式结合,说明直线(1)y p x =-过,A B 两点,也就是直线AB 的方程为(1)y p x =-. 由直线AB 的斜率为2,知2p =,故所求抛物线的方程为24y x =................................................5分 〔2〕显然当直线l 的斜率不存在与斜率为0时不合题意.〔6分〕 故可设直线l 的方程为y kx m =+. 又直线l 与圆22(1)1x y -+=相切,所以211k mk+=+,即221(1)2m km m -=≠...........................................7分 与抛物线方程联立,即24y kx my x =+⎧⎨=⎩,化简消y 得2222(2)0k x km x m +-+=,22224(2)41616880km k m km m ∆=--=-=+>设3344(,),(,)P x y Q x y ,那么3422(2)km x x k -+=,......................................9分 34344()2y y k x x m k+=++=. 由()(0)OC OP OQ λλ=+>,那么22(2)4(,)km OC k kλλ-=,.................................10分又点C 在抛物线上,那么222168(2)km k k λλ-=.即2233244km m λ-+==>,由于0km ≠,因而1λ≠. 所以λ的取值范围为3|14λλλ⎧⎫>≠⎨⎬⎩⎭且,...........................12分 21.〔1〕 由得1()(1)f x ax a x'=+-+,那么(1)0f '=, 而(1)ln1(1)122a a f a =+-+=--,所以函数()f x 在1x =处的切线方程为12ay =--.那么122a--=-,解得2a =,..............................2分 那么21()ln 3,()23f x x x x f x x x'=+-=+-,由21231()230x x f x x x x -+'=+-=>,得102x <<或1x >, 因那么()f x 的单调递增区间为1(0,)2与(1,)+∞;...................................4分由1()230f x x x '=+-<,得112x <<, 因而()f x 的单调递减区间为1(,1)2....................................6分〔2〕假设()()2f x f x x '<,得ln 11(1)2222x a ax a x a x x ++-+<+-, 即ln 1122x a x x +-<在区间(0,)+∞上恒成立. ...................................8分 设ln 1()2x h x x x =-,那么2221ln 132ln ()22x xh x x x x --'=+=, 由()0h x '>,得120x e <<,因而()h x 在12(0,)e 上单调递增,由()0h x '<,得12x e >,因而()h x 在12(,)e +∞上单调递减 . .................10分所以()h x 的最大值为1122()h e e -=,因而1212a e -+>, 从而实数a 的取值范围为12|21a a e -⎧⎫>-⎨⎬⎩⎭..........................................12分22.〔1〕连接OC ,由AB 为O 的直径,CH AB ⊥,那么CAB DCB ∠=∠,且CAO ACO ∠=∠............................................2分又CB 平分,DCP DCB PCB ∠∠=∠,因而2PCB OCB ACO OCB π∠+∠=∠+∠=,即OC CP ⊥,所以PC 是O 的切线. ............................................5分〔2〕4,3AC BC ==,那么12245,,55AC BC AB CH CD AB ====,3BD BC ==,因为PC 是O 的切线,所以PCB PDC ∠=∠, 所以PCDPBC ∆∆,.................................................8分 所以85PC PD CD PB PC BC ===,..............................10分 23.〔1〕直线l 的极坐标方程可化为直线坐标方程:430x y m +-=,曲线C 的参数方程可化为普通方程:24y x =,由24304x y m y x +-=⎧⎨=⎩,可得230y y m +-=,...............................2分因为直线l 和曲线C 恰好有一个公共点,所以940m ∆=+=,所以94m =-. ............................................5分〔2〕当4m =时,直线:4340l x y +-=恰好过抛物线的焦点(1,0)F ,由243404x y y x +-=⎧⎨=⎩,可得241740x x -+=,..................................8分设直线l 与抛物线C 的两个交点分别为1122(,),(,)A x y B x y , 那么12174x x +=,故直线l 被抛物线C 所截得的弦长为1217252244AB x x =++=+=,.................................10分24.〔1〕(0)(1)f f =,即10a +=,得1a =-, 所以不等式化为234x x x -+≤-+.① 当0x <时,不等式化为234x x x -<-+,所以302x -<<;.......................2分② 当01x ≤≤时,不等式化为234x x x --<-+,所以102x ≤<;.....................3分③ 当1x >时,不等式化为234x x x -<-+,所以x ∈∅.........................4分 综上所述,不等式的解集为31|22x x ⎧⎫⎪⎪-<<⎨⎬⎪⎪⎩⎭,................................5分〔2〕由任意[]12,0,1x x ∈且12x x ≠,那么不妨设21x x >,那么当2112x x -≤时,12121()()2f x f x x x -<-≤,...................................7分 当2112x x ->时,那么112x <,且 2112x -<,..........................................8分 那么1212211()(0)(1)()011()2f x f f f x x x x x -+-<-+-=--<. ......................10分。
2020年宁夏第一次高考模拟考试理科数学试题与答案(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合2{|230},{|24}A x x x B x x =-->=<<,则集合B A ⋂=( )A .()4,1B .()4,2C .()3,2D .()4,32. 已知复数(为虚数单位),则( )A.B. 2C.D.3.已知随机变量X 服从正态分布()22N σ,且()40.88P X ≤=,则()04P X <<=( ) A .0.88B .0.76C .0.24D .0.124.等差数列{}n a 的前n 项和为n S ,若1938S =,则11122a a -= ( ) A .2 B .4 C .6 D .8 5. 函数f (x )=xe﹣|x|的图象可能是( )A. B. C. D.6. 正方体A 1C 中,E 、F 为AB 、B 1B 中点,则A 1E 、C 1F 所成的角的正弦值为( )A. B. C. D.7. 执行下边的程序框图,如果输出的值为1,则输入的值为()A. 0B.C. 0或D. 0或18. 某校有1000人参加某次模拟考试,其中数学考试成绩近似服从正态分布,试卷满分150分,统计结果显示数学成绩优秀(高于120分)的人数占总人数的,则此次数学考试成绩在90分到105分之间的人数约为()A. 150B. 200C. 300D. 4009. 已知变量满足约束条件,则目标函数的最大值是()A. -6B.C. -1D. 610. 等差数列的首项为1,公差不为0. 若成等比数列,则前6项的和为( )A. -24B. -3C. 3D. 811. 已知双曲线的右焦点为,虚轴的上端点为为左支上的一个动点,若周长的最小值等于实轴长的倍,则该双曲线的离心率为()A. B. C. D.12.已知函数若关于的方程无实根,则实数的取值范围为( )A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。
宁夏银川市2020年普通高中学科教学质量检测(理科)数学第I 卷一、选择题:本大题共12小题。每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合A= {0,1,2,3,4}, B= {x|(x-2)(x+1)>0},则A∩B= A.{0}B.{0,1}C.{3,4}D.{2,3,4}2.已知复数z 满足z(1+i)在复平面内对应的点为(1,-1),则|z|=1.2A2B C.1D 3.为了普及环保知识,增强环保意识,某中学随机抽取30名学生参加环保知识竞赛,得分(10分制)的频数分布表如下:设得分的中位数为e m 众数为0平均数为x,则0.e Am m x == 0.e B m m x =< 0.e C m m x << 0.e D m m x <<4.曲线E 是以原点为对称中心,坐标轴为对称轴的双曲线,已知E 的一条渐近线方程为x-2y=0,且过点1),2则双曲线E 的标准方程是22.14x A y −=22.14y B x −=22.161C x y −=22.182x y D −=5.已知a,b,c 是实数,且b<a<0,则下列命题正确的是11.A a b>22.B ac bc >.a b C b a>22.D b ab a >>6.设α,β是两个不同的平面,且α⊥β,α∩β=l,a ⊂α,b ⊂β,则a ⊥l 是a ⊥b 的A.充分不必要条件B. 必要不充分条件C.充分且必要条件D.既不充分也不必要条件7.若α∈(0,π),且1cos sin ,2αα+=−则cos2α =.A9B.4C −D8.△ABC 是边长为4的等边三角形,1,3AD DC =则BD BC ⋅= A.-2B.10C.12D.149.已知函数2()ln ||,f x x x =+设a=f(-2), b=f(1), c=f(20.3), 则 A.a> b>cB.a>c>bC.c>a> bD.c> b> a10.将函数2sin(2)3y x π=−的图象向左平移3π个单位,所得图象对应函数的单调递增区间为 5.[,],()1212A k k k Z ππππ−+∈7.[,],()1212B k k k Z ππππ++∈ .[,],()44C k k k Z ππππ−+∈3.[,],()44D k k k Z ππππ++∈ 11.已知圆锥的母线与底面所成的角等于60°,且该圆锥内接于球O,则球O 与圆锥的表面积之比等于 A.4:3B.3:4C.16:9D.9:1612.已知定义域为R 的函数f(x)满足:当x≤0时,(),x f x xe =x>0时,f(x)= f(x-1).若g(x)=k(x+1),且方程f(x)- g(x)=0有两个不同的实根,则实数k 的取值范围是11.(,)2A e e−−11.(,]2B e e−−1.(,)C e−∞−1.(,]D e−∞−第II 卷本卷包括必考题和选考题两部分。第13题~第21题为必考题,每个试题考生都必须做答。第22题~第23题为选考题,考生根据要求做答。二、填空题:本大题共4小题,每小题5分。13.某医疗小队中有2名男医生,3名女医生,现从中选择2名医生执行某项医疗任务,则选中的都是女医生的概率是___14.在△ABC 中,已知AC =∠ABC=60°, AB<BC,且△ABC 的面积为,2则BC 边上的高等于____ 15.设抛物线C:22(0)y px p =>的焦点为F,准线为l, A ∈C,已知以F 为圆心,为半径的圆交1于B,D 两点,若90,BFD ︒∠=△ABD 的面积为则y 轴被圆F 所截得的弦长等于____16.我国魏晋时期的科学家刘徽创立了“割圆术”,实施“以直代曲”的近似计算,用正n 边形进行“内外夹逼”的办法求出了圆周率π的精度较高的近似值,这是我国最优秀的传统科学文化之一-.借用“以直代曲”的近似计算方法,在切点附近,可以用函数图象的切线近似代替在切点附近的曲线来近似计算?设f(x)=ln(1+x),则曲线y= f(x)在点(0,0)处的切线方程为___, 用此结论计算1n 2020- ln2019≈_____三.解答题:解答应写出文字说明,证明过程或演算步骤.下图是2015年至2019年国内游客人次y (单位:亿)的散点图.为了预测2025年国内游客人次,根据2015年至2019年的数据建立了y 与时间变量t(时间变量t 的值依次为1,2,..,5)的3个回归模型:①0.10412ˆ36.17,0.996t ye R ==;2ˆ 5.1434.54,0.9987y t R =+=②;③2ˆ12.412ln 38.076,0.9408.yt R =+=其中2R 相关指数. (1)你认为用哪个模型得到的预测值更可靠?并说明理由。(2)根据(1)中你选择的模型预测2025年国内游客人次,结合已有数据说明数据反映出的社会现象并给国家相关部门提出应对此社会现象的合理化建议。18. (本小题满分12分)如图所示,已知四边形ABCD 是矩形,平面ABCD ⊥平面PAB,E,F 分别是CD,PA 的中点。(1)证明:EF// 平面PBC;(2)若AB=5,PA=4, PB= BC=3,求二面角C- AP- D 的大小。19. (本小题满分12 分)n S 为数列{}n a 的前n 项和.已知111,2 1.n n a S S +==+(1)证明{1}n s +是等比数列,并求数列{}n a 的通项公式; (2)数列{}n b 为等差数列,且1274,,b a b a ==求数列11{}n n b b +的前n 项和.n T已知函数2()ln ,f x ax x x =−−其中a ∈R.(1)若函数f(x)在(0,1)内单调递减,求实数a 的取值范围; (2)试讨论函数f(x)的零点个数.21. (本小题满分12分)平面直角坐标系xOy 中,已知椭圆C 2222:1(0)x y a b a b+=>>的离心率为,2且过点(1,2 (1)求椭圆C 的方程;(2)设椭圆E 2222:1,44x y a b+=P 为椭圆C 上一点,过点P 的直线y=kx+m 交椭圆E 于A, B 两点,射线PO交椭圆E 于点Q.(i)若P 为椭圆C 上任意一点,求||||OQ OP 的值; (ii)若P 点坐标为(0,1),求△ABQ 面积的最大值.请考生在第22- 23题中任选一题作答,如果多做,则按所做的第一题计分. 22. (本小题满分10分)选修4-4:坐标系与参数方程. 在平面直角坐标系xoy 中,曲线1C 的参数方程为22cos 2sin x y θθ=+⎧⎨=⎩(θ为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.曲线2C 的极坐标方程为ρ= 4sin θ .(1)写出1C 的极坐标方程;(2)设点M 的极坐标为(4,0),射线(0)4πθαα=<<分别交12,C C 于A,B 两点(异于极点),当4AMB π∠=时,求tanα.23. (本小题满分10分)选修4- -5;不等式选讲. 已知函数f 1()||||(1).x x m x m m=−++> (1)当m=2时,求不等式f(x)> 3的解集; (2)证明:1()3(1)f x m m +≥−.2020年银川市高三质量检测理科数学答案一、选择题答案123456789101112CCDADADBBACB二、填空题:.13103.143.1572.16x y =,20191.17参考答案:(1)我认为选择模型②所得预测值更可靠。
2020年宁夏银川二中高考数学一模试卷(理科)一、选择题(本大题共12小题,共60.0分)1. 设集合M ={x|0≤x ≤3},N ={x|x 2−3x −4<0},则M ∩N =( )A. [−1,3]B. (−1,3)C. [0,3]D. [−1,4]2. 在复平面内,复数z =11−i 对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 根据历年气象统计资料,某地四月份吹东风的概率为730,既吹东风又下雨的概率为110.则在吹东风的条件下下雨的概率为( )A. 311B. 37C. 711D. 1104. 若(x −1x )n 的展开式中只有第7项的二项式系数最大,则展开式中含x 2项的系数是( )A. −462B. 462C. 792D. −7925. 若函数f(x)=sinxcosx ,下列结论中正确的是( )A. 函数f(x)的图象关于原点对称B. 函数f(x)最小正周期为2πC. 函数f(x)为偶函数D. 函数f(x)的最大值为16. 已知−1,a 1,a 2,−4成等差数列,−1,b 1,b 2,b 3,−4成等比数列,则a 2−a 1b 2等于( )A. −12B. 14C. 12D. −12或127. 设a =(12)12,b =log 20142015,c =log 42,则( )A. a >b >cB. b >c >aC. b >a >cD. a >c >b8. 已知三棱锥A −BCD 内接于球O ,AB =BC =BD =4,∠CBD =60°,AB ⊥平面BCD ,则球O的表面积为( )A.28π3B.25π4C.112π3D. 60π9. 在边长为1的正方形ABCD 中,AB ⃗⃗⃗⃗⃗ ⋅AC⃗⃗⃗⃗⃗ 等于( ) A. 1 B. √2 C. √3D. 210. 已知等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则S4S 2=( )A. −11B. −8C. 5D. 1111.O为坐标原点,F为抛物线C:y2=4√2x的焦点,P为C上一点,若|PF|=4√2,则ΔPOF的面积为()A. 2B. 2√2C. 2√3D. 412.已知函数y1=2sin x1(x1∈[0,2π]),函数y2=x2+√3,则(x1−x2)2+(y1−y2)2的最小值为()A. (5π−6√3)218B. (5π+6√3)218C. π218D. π29二、填空题(本大题共4小题,共20.0分)13.若实数x,y满足约束条件{x+2y≥0x−y≤0x−2y+2≥0,则z=3x−y的最小值等于______.14.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”过去10日,A、B、C、D四地新增疑似病例数据信息如下:A地:中位数为2,极差为5;B地:总体平均数为2,众数为2;C地:总体平均数为1,总体方差大于0;D地:总体平均数为2,总体方差为3.则以上四地中,一定符合没有发生大规模群体感染标志的是_________(填A、B、C、D)15.已知双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,过F2的直线交C的右支于A、B两点,AF1⊥AB,4|AF1|=3|AB|,则C的离心率为______.16.已知一个圆柱的底面直径和母线长都等于球的直径,记圆柱的体积为V1,球的体积为V2,则V1V2=______.三、解答题(本大题共7小题,共82.0分)17.在△ABC中,角A,B,C所对的边分别为a,b,c,且a2+c2=b2−ac.(1)求B的大小;(2)设∠BAC的平分线AD交BC于D,AD=2√3,BD=1,求cos C的值.18.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(0,1000](1000,2000]大于2000支付金额(元)支付方式仅使用A18人9人3人仅使用B10人14人1人(1)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(2)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.19.在四棱锥P−ABCD中,底面ABCD为平行四边形,平面PAD⊥平面ABCD,△PAD是边长为4的等边三角形,BC⊥PB,E是AD的中点.(1)求证:BE⊥PD;(2)若直线AB与平面PAD所成角的正弦值为√154,求平面PAD与平面PBC所成的却二甲角的余弦值.20.已知椭圆C:x2a2+y2b2=1(a>b>0)的左右焦点分别为F1,F2,左顶点为A,离心率为√22,点B是椭圆上的动点,△ABF1的面积的最大值为√2−12.(Ⅰ)求椭圆C的方程;(Ⅱ)设经过点F1的直线l与椭圆C相交于不同的两点M,N,线段MN的中垂线为l′.若直线l′与直线l相交于点P,与直线x=2相交于点Q,求|PQ||MN|的最小值.21.已知函数f(x)=13x3−12ax2,a∈R.(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x−a)cos x−sin x,讨论g(x)的单调性并判断有无极值,有极值时求出极值.22.已知曲线C的极坐标方程为ρ2=364cosθ+9sinθ。
2020年宁夏银川二中高考数学一模试卷(理科)
一、选择题(本大题共12小题,每小题5分,共60分)
1.(5分)已知集合2{|(1)9}M x x =-<,{2N =-,0,1,2,4},则(M N =I ) A .{0,1,2}
B .{1-,0,1,2}
C .{1-,0,2,3}
D .{0,1,2,3}
2.(5分)若复数z 满足(1)12z i i +=+,则z 在复平面内对应的点位于( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限 3.(5分)根据历年气象统计资料,某地四月份吹东风的概率为7
30
,既吹东风又下雨的概率为1
10
.则在吹东风的条件下下雨的概率为( ) A .
311
B .
37
C .
711
D .
110
4.(5分)6(x
展开式中含3x 项的系数为( )
A .60-
B .60
C .120-
D .120
5.(5分)已知函数44()cos sin f x x x =-,下列结论错误的是( ) A .()cos2f x x =
B .函数()f x 的图象关于直线0x =对称
C .()f x 的最小正周期为π
D .()f x 的值域为[
6.(5分)若等差数列{}n a 和等比数列{}n b 满足113a b ==-,4424a b ==,则2
2
(a b = ) A .1-
B .1
C .4-
D .4
7.(5分)已知251()3a =,132()5b =,32
log 5
c =,则( )
A .c a b <<
B .c b a <<
C .b c a <<
D .a b c <<
8.(5分)在内接于球O 的四面体ABCD 中,有AB CD t ==,6AD BC ==,7AC BD ==,若球O 的最大截面的面积是554
π
,则t 的值为( ) A .5
B .6
C .7
D .8
9.(5分)如图,网格纸上小正方形的边长为1.从A ,B ,C ,D 四点中任取两个点作为
向量b r 的始点和终点,则a b r
r g
的最大值为( )
A .1
B 5
C .3
D 1010.(5分)设n S 是等比数列{}n a 的前n 项和,3S ,9S ,6S 成等差数列,且252m a a a +=,则m 等于( ) A .6
B .7
C .8
D .10
11.(5分)设抛物线2:2(0)C y px p =>的焦点为F ,抛物线C 与圆22:(3)3C x y '+=交于M ,N 两点,若||6MN =MNF ∆的面积为( )
A .
2
8 B .38
C .
328 D .32
4
12.(5分)已知实数a ,b ,c ,d 满足111
a e c
b d e
--==,则22()()a c b d -+-的最小值为(
)
A 21e +
B 2
1
e +C .221e e +
D .2
21
e e +
二、填空题(本大题共4小题,每小题5分,共20分)
13.(5分)若x ,y 满足约束条件211y x y x y ⎧⎪
+⎨⎪-⎩
„…„,则2z x y =-的最大值为 .
14.(5分)在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.过去10日,A 、B 、
C 、
D 四地新增疑似病例数据信息如下:
A 地:中位数为2,极差为5;
B 地:总体平均数为2,众数为2;
C 地:总体平均数为1,总体方差大于0;
D 地:总体平均数为2,总体方差为3.
则以上四地中,一定符合没有发生大规模群体感染标志的所有选项是 .(填A 、B 、C 、
)D
15.(5分)已知双曲线22221(0)x y a b a b
-=>>的左、右焦点分别为1F 、2F ,过点1F 作圆
222x y a +=的切线交双曲线右支于点M ,若124
F MF π
∠=,则双曲线的离心率为 .
16.(5分)已知球、母线和直径相等的圆柱、正方体,它们的体积依次为1V ,2V ,3V ,若它们的表面积相等,则222123::V V V = . 三、解答题(共70分)
17.(12分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足222a c b ac +=-. (Ⅰ)求角B 的大小;
(Ⅱ)若BAC ∠的平分线AD 交BC 于D ,23AD =,1BD =,求sin BAC ∠的值. 18.(12分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:
不大于2000元
大于2000元
仅使用A 27人 3人 仅使用B
24人
1人 (Ⅰ)估计该校学生中上个月A ,B 两种支付方式都使用的人数;
(Ⅱ)从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2000元的人数有变化?说明理由.
19.(12分)如图,四棱锥P ABCD -的底面是平行四边形,PD AB ⊥,O 是AD 的中点,
BO CO =.
(1)求证:AB ⊥平面PAD ;
(2)若24AD AB ==,PA PD =,点M 在侧棱PD 上,且3PD MD =,二面角P BC D --的大小为
4
π
,求直线BP 与平面MAC 所成角的正弦值.
20.(12分)已知椭圆22
22:1(0)x y W a b a b +=>>的焦距为2,过右焦点和短轴一个端点的直
线的斜率为1-,O 为坐标原点. (Ⅰ)求椭圆W 的方程.
(Ⅱ)设斜率为k 的直线l 与W 相交于A ,B 两点,记AOB ∆面积的最大值为k S ,证明:12S S =.
21.(12分)已知函数()(cos sin )x f x e x x =- (1)求曲线()y f x =在点(0,(0))f 处的切线方程;
(2)令2()()(22)(2cos )x g x f x e x a x x =+--+,讨论()g x 的单调性并判断有无极值,若有,求出极值.
请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分,答时用2B 铅笔在答题卡上把所选题目的题号涂黑.[选修4-4:极坐标与参数方程] 22.(10分)已知曲线C 的极坐标方程为2229
cos 9sin ρθθ
=
+,以极点为平面直角坐标系的
原点,极轴为x 轴的正半轴建立平面直角坐标系. (1)求曲线C 的普通方程;
(2)A 、B 为曲线C 上两个点,若OA OB ⊥,求22
11
||||OA OB +
的值. [选修4-5:不等式选讲]
23.若0a >,0b >,且()1a b ab +. (1)求
33
11
a b +
的最小值; (2)是否存在a ,b ,使得11
23a b
+6。