模拟电子技术-第十章-正弦波振荡器
- 格式:ppt
- 大小:5.85 MB
- 文档页数:69
正弦波振荡器电路的设计一.设计要求1.要求振荡器的工作频率在30MHZ附近。
2.频率的稳定度为1%—5%。
二.设计原理正弦波振荡器可分为两大类,一类是利用正反馈原理构成的反馈振荡器,它是目前应用最广的一类振荡器。
另一类是负阻振荡器,它是将负阻器件直接连接到谐振回路中,领用负阻器件的负电阻效应去抵消回路中的损耗,从而产生出等幅的自由振荡。
本次实验采用负反馈振荡器产生正弦波。
原理框图如下:1、平衡条件与起振条件(1)振荡的过程当接通电源时,回路内的各种电扰动信号经选频网络选频后,将其中某一频率的信号反馈到输入端,再经放大→反馈→放大→反馈的循环,该信号的幅度不断增大,振荡由小到大建立起来。
随着信号振幅的增大,放大器将进入非线性状态,增益下降,当反馈电压正好等于输入电压时,振荡幅度不再增大进入平衡状态。
(2)起振条件——为了振荡起来必需满足的条件由振荡的建立过程可知,为了使振荡器能够起振,起振之初反馈电压Uf 与输入电压Ui 在相位上应同相(即为正反馈);在幅值上应要求Uf >Ui ,即:起振条件:2T K F n ψψψπ=+=|()|1T jw KF => (3)平衡条件——为维持等幅振荡所需满足的条件振幅平衡条件:|()|1T jw KF == 相位平衡条件 :2T K F n ψψψπ=+=其中n=0,1,2,3…2、稳定条件振荡器工作时要处于稳定平衡状态,既要振幅稳定,而且相位要稳定。
振幅稳定条件:AF 与Ui 的变化方向相反。
相位稳定条件:相位与频率的变化方向相反三. 设计步骤 1.选定电路形式。
选择电容反馈式的改进型振荡器——克拉泼振荡器。
下图是克拉泼振荡器的交流等效电路。
它是用电感L 和电容C3的串联电路构成,且C3<<C1,C2。
C1C2L1C3.此回路的总电容C 只要由C3决定,因为C1,C2和并联对电路总电容的影响很小。
所以电路的振荡角频率为10311LC LC ωω≈== 反馈系数12C F C = 振荡器频率取32MHZ ,则C3电容取50PF ,电感L1取500nH 。
正弦波振荡器(LC 振荡器和晶体振荡器)实验一、实验目的1.掌握电容三点式LC 振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC 振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;通过实验进一步了解调幅的工作原理。
4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。
二、实验仪器1.100M 示波器 一台2.高频信号源 一台3.高频电子实验箱 一套三、实验电路原理1.基本原理振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定波形的交变振荡能量的装置。
正弦波振荡器在电子技术领域中有着广泛的应用。
在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去的。
在超外差式的各种接收机中,是由振荡器产生一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。
振荡器的种类很多。
从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。
此实验只讨论反馈式振荡器。
根据振荡器所产生的波形,又可以把振荡器分为正弦波振荡器与非正弦波振荡器。
此实验只介绍正弦波振荡器。
常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。
按照选频网络所采用元件的不同,正弦波振荡器可分为LC 振荡器、RC 振荡器和晶体振荡器等类型。
(1)反馈型正弦波自激振荡器基本工作原理以互感反馈振荡器为例,分析反馈型正弦波自激振荡器的基本原理,其原理电路如图2-1所示。
b V bE cE -1L 2L f V bV '+-图 2-1反馈型正弦波自激振荡器原理电路当开关K 接“1”时,信号源b V 加到晶体管输入端,构成一个调谐放大器电路,集电极回路得到了一个放大了的信号F V 。
当开关K 接“2”时,信号源b V 不加入晶体管,输入晶体管是F V 的一部分b V '。
RC桥式正弦波振荡器
一、电路及工作原理
电路:
工作原理:该电路由VT1、VT2组成两级阻容耦合共射极同相放大器,通过具有选频作用的RC串并联反馈网络,将输出信号反馈到VT1输入端,若RC串并联电路选频频率为f0,则只有频率为fo的电压反馈到输入端,RC选频网络对它的相移为零,才满足自激振荡的相位条件。
从幅度来看,此时得到的反馈电压最大。
只要放大器有合适的放大倍数(大于三倍),就能满足振幅条件而产生振荡。
为减小振荡波形的失真和提高电路稳定性,引入负反馈电阻Rp,构成电压串联负反馈放大器。
二、电路测试:
测试1:调节Rp,使电路起振,并使波形不失真,此时用示波器观察三极管VT1、VT2的集电极与地端间的波形,并估算其周期与频率。
测试2:振荡电路正常工作时,用万用表测量三极管VT1和VT2的基极与发射极电位。
测试3:用双踪示波器同时观察VT1和VT2的集电极波形,试分析两个波形的相位关系。
三、思考与分析:
1.分析RC桥式振荡电路中反馈电阻Rp的作用?
2.分析三极管VT1和VT2集电极波形的相位关系。
四、元件清单:
R1、R2:15K
Rb:1M
Rc1:10k
Re1:1K
Rb1:12K
Rb2:100K
Rc2:5.1K
Re2:100
Re3:470
Rp:10K
C1\C2:0.01uF
C3\C4\C5:33 uF
C6:47 uF
VT1\VT2:9013。
正弦波振荡器原理
正弦波振荡器是一种产生正弦波信号的电路或设备,它的工作原理基于反馈回路和谐振现象。
首先,正弦波振荡器通常由放大器和反馈网络组成。
放大器负责提供信号的放大,而反馈网络则将一部分输出信号返回输入端,从而使电路产生振荡。
具体来说,当正弦波振荡器开始工作时,放大器会放大输入信号。
将一部分放大后的信号通过反馈网络返回到放大器的输入端,与输入信号相叠加。
这就形成了一个反馈回路。
在反馈回路中,存在向前传输的放大路径和反馈传输的路径。
放大路径将输入信号进行放大,而反馈路径则将一部分输出信号返回输入端。
在理想情况下,放大路径和反馈路径的增益相等,从而使得回路保持稳定。
当反馈回路的增益满足特定的条件时,回路会产生谐振现象。
也就是说,输入信号和反馈信号在回路中互相加强,形成一个持续不衰减的振荡。
为了保持回路稳定,正弦波振荡器会引入一些稳定元件,如电容和电感。
这些元件能够提供适当的频率选择和谐振调节,以确保输出信号的频率稳定和准确。
总之,正弦波振荡器通过反馈回路和谐振现象来产生稳定的正弦波信号。
合适的放大器、反馈网络和稳定元件的组合能够实
现不同频率范围内的正弦波振荡器。
这在电子通信、信号处理、声音合成等许多应用领域中都有着广泛的应用。
5.3 LC正弦波振荡器定义:采用LC谐振回路作为选频网络的反馈型振荡电路称为LC振荡器,按其反馈方式,LC振荡器可分为互感耦合式振荡器、电感反馈式振荡器和电容反馈式振荡器三种类型,其中后两种通常称为三点式振荡器。
5.3.1 互感耦合振荡器互感耦合振荡器利用互感耦合实现反馈振荡。
根据LC谐振回路与三极管不同电极的连接方式分为集电极调谐型、发射极调谐型和基极调谐型。
图5 —17 三种互感耦合振荡电路集电极调谐型电路的高频输出方面比其它两种电路稳定,而且输出幅度大,谐波成分小。
基极调谐型电路的振荡频率可以在较宽的范围内变化,且能保持输出信号振荡幅度平稳。
我们只讨论集电极调谐型电路(用得最多)。
而集电极调谐型又分为共射和共基两种类型,均得到广泛应用。
两者相比,共基调集电路的功率增益较小,输入阻抗较低,所以难于起振,但电路的振荡频率比较高,并且共基电路内部反馈较小,工作比较稳定。
互感耦合电路,变压器同名端的位置必须满足振荡的相位条件,在此基础上适当调节反馈量M总是可以满足振荡的振幅条件。
振荡起振和平衡的相位条件?判断互感耦合振荡器是否可能振荡,通常是以能否满足相位平衡条件,即是否构成正反馈为判断准则。
判断方法采用“瞬时极性法”。
瞬时极性法:首先识别放大器的组态,即共射、共基、共集。
然后根据同名端的设置判断放大器是否满足正反馈。
放大器组态的判别方法:观察放大器中晶体管与输入端和输出回路相连的电极,余下的电极便是参考端。
(后面以实例说明)①输入端接基极端,输出端接集电极,发射极为参考点(接地点),是共射组态。
共射组态为反相放大器,输入、输出信号的瞬时极性相反,如图5 —18(a)所示。
②输入端接发射极,输出端接集电极,基极为参考点(接地点),是共基组态。
共基组态为同相放大器,输入、输出信号的瞬时极性相同,如图5 —18(b)所示。
③共集:输入端接基极端,输出端接发射极,集电极为参考点(接地点),是共集组态。
完整版)模拟电子技术基础-知识点总结共发射极、共基极、共集电极。
2.三极管的工作原理---基极输入信号控制发射结电流,从而控制集电极电流,实现信号放大。
3.三极管的放大倍数---共发射极放大倍数最大,共集电极放大倍数最小。
三.三极管的基本放大电路1.共发射极放大电路---具有电压放大和电流放大的作用。
2.共集电极放大电路---具有电压跟随和电流跟随的作用。
3.共基极放大电路---具有电压放大的作用,输入电阻较低。
4.三极管的偏置电路---通过对三极管的基极电压进行偏置,使其工作在放大区,保证放大电路的稳定性。
四.三极管的应用1.放大器---将弱信号放大为较强的信号。
2.开关---控制大电流的通断。
3.振荡器---产生高频信号。
4.稳压电源---利用三极管的负温度系数特性,实现稳定的输出电压。
模拟电子技术复资料总结第一章半导体二极管一.半导体的基础知识1.半导体是介于导体和绝缘体之间的物质,如硅Si、锗Ge。
2.半导体具有光敏、热敏和掺杂特性。
3.本征半导体是纯净的具有单晶体结构的半导体。
4.载流子是带有正、负电荷的可移动的空穴和电子,是半导体中的两种主要载流体。
5.杂质半导体是在本征半导体中掺入微量杂质形成的半导体。
根据掺杂元素的不同,可分为P型半导体和N型半导体。
6.杂质半导体的特性包括载流子的浓度、体电阻和转型等。
7.PN结是由P型半导体和N型半导体组成的结,具有单向导电性和接触电位差等特性。
8.PN结的伏安特性是指在不同电压下,PN结的电流和电压之间的关系。
二.半导体二极管半导体二极管是由PN结组成的单向导电器件。
1.半导体二极管具有单向导电性,即只有在正向电压作用下才能导通,反向电压下截止。
2.半导体二极管的伏安特性与PN结的伏安特性相似,具有正向导通压降和死区电压等特性。
3.分析半导体二极管的方法包括图解分析法和等效电路法等。
三.稳压二极管及其稳压电路稳压二极管是一种特殊的二极管,其正常工作状态是处于PN结的反向击穿区,具有稳压的作用。
[在此处键入] 河南理工大学课程设计报告书[在此处键入]摘要在社会化程度越来越高的背景下,通讯工具在我们的生活中扮演了越来越重要的角色。
高频信号发生器主要用来向各种电子设备和电路提供了高频能量或高频标准信号,以便测试各种电子设备和电路的电气特性。
高频信号发生器主要是产生高频正弦振荡波,故电路主要是高频振荡电路构成。
振荡器的功能是产生标准的信号源,广泛应用于各类电子设备中。
所以,振荡器是电子技术领域中最基本的电子线路,也是从事电子技术工作人员必须要掌握的基本电路。
本次课程设计主要制作LC正弦波振荡器,采用晶体三极管构成正弦波振荡器,达到本次课程设计的目的。
并介绍了设计步骤,比较了各种设计的优缺点,总结了不同振荡器的性能特性。
关键字:通信高频信号正弦波振荡器目录一.设计任务与要求 (2)二.设计方案 (2)三.各部分设计及原理分析 (5)3.1 LC电感三点式(哈特莱振荡器) (5)3.2 电容三点式振荡器(考毕兹振荡器) (8)3.3电容三点式振荡器的改进型电路——克拉泼振荡器 (12)四.结论 (17)五.心得体会 (18)六.参考文献 (18)一.设计任务与要求正弦波振荡器广泛应用于各种电子设备中。
如,无线发射机中的载波信号源、超外接收机中的本地振荡信号源、电子测量仪器中的正弦波信号源、数字系统中的时钟信号等等。
正弦波振荡器是指不需要输入信号控制就能自动地将直流电转换为特定频率和振幅的正弦交变电压(电流)的电路。
它是各类电子设备的基础,若想做出一个完美的电子器件,必须要将最基本的电路设计好,因此我们选择了LC正弦波振荡器的设计。
选题目的:1、进一步熟悉正弦波振荡器的组成原理;2、观察输出波形,分析影响振荡器起振、稳定的条件;3、掌握振荡回路 Q 值对频率稳定度的影响及振荡器反馈系数不同时,静态工作电流 IEQ对振荡器起振及振幅的影响;4、比较改进型正弦波振荡器与克拉泼振荡器的性能,分析电路结构及元件参数的变化对振荡器性能的影响。
模拟电子技术课程设计产生正弦波,方波,三角波,且占空比可调,频率可调,幅度可调模拟电子技术课程设计任务书一、设计题目:波形发生器的设计(二)方波/三角波/正弦波/锯齿波函数发生器二、设计目的1、研究正弦波等振荡电路的振荡条件。
2、学习波形产生、变换电路的应用及设计方法以及主要技术指标的测试方法。
三、设计要求及主要技术指标设计要求:设计并仿真能产生方波、三角波及正弦波等多种波形信号输出的波形发生器。
1、方案论证,确定总体电路原理方框图。
2、单元电路设计,元器件选择。
3、仿真调试及测量结果。
主要技术指标1、正弦波信号源:信号频率范围20Hz,20kHz 连续可调;频率稳定度较高。
信号幅度可以在一定范围内连续可调;2、各种输出波形幅值均连续可调,方波占空比可调;3、设计完成后可以利用示波器测量出其输出频率的上限和下限,还可以进一步测出其输出电压的范围。
四、仿真需要的主要电子元器件1、运算放大电路2、滑线变阻器3、电阻器、电容器等五、设计报告总结(要求自己独立完成,不允许抄袭)。
1、对所测结果(如:输出频率的上限和下限,输出电压的范围等)进行全面分析,总结振荡电路的振荡条件、波形稳定等的条件。
2、分析讨论仿真测试中出现的故障及其排除方法。
3、给出完整的电路仿真图。
4、体会与收获。
1(正弦波输出电路14R116V23kΩR13R212 VD1D28.2kΩ50%6.8kΩ11U1A1N40071N4007XSC1R90Key=A172ExtTrig10kΩ1+R8180_3BA275.1kΩ4__LM324AD++R5R75.1kΩ5.1kΩ192411U3AR62511U2AR4225.1kΩC215.1kΩ15C11223233420LM324 AD4.7nF4R10LM324AD4.7nFR112kΩR3262kΩ100kΩ50%R12Key=A2128 0100kΩ50%Key=A00V112 V如图所示为频率可调、幅度可调的正弦波振荡电路。