2014高考数学一轮复习课件2.8函数与方程
- 格式:ppt
- 大小:709.50 KB
- 文档页数:38
[第11讲 函数与方程](时间:35分钟 分值:80分)基础热身1.[教材改编试题] 函数f (x )=2x+3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)2.函数f (x )=-1x+log 2x 的一个零点落在下列哪个区间( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)3.[2013·东北名校二模] 若a >2,则函数f (x )=13x 3-ax 2+1在(0,2)内零点的个数为( )A .3B .2C .1D .04.已知函数f (x )=⎩⎪⎨⎪⎧log 2x (x >0),3x (x ≤0),且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的范围是( )A .(-∞,0)B .(0,1)C .(1,2)D .(1,+∞)能力提升5.[2013·海口一模] 函数f (x )=e x+x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2) 6.[2013·厦门模拟] 已知函数f (x )=1+x -x 22+x 33-x 44+…+x 2 0112 011,则下列结论正确的是( )A .f (x )在(-1,0)上恰有一个零点B .f (x )在(0,1)上恰有一个零点C .f (x )在(-1,0)上恰有两个零点D .f (x )在(0,1)上恰有两个零点7.定义在R 上的函数f (x )既是奇函数,又是周期函数,T 是它的一个正周期.若将方程f (x )=0在闭区间[-T ,T ]上的根的个数记为n ,则n 可能为( )A .0B .1C .3D .58.[2013·天津卷] 对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -x 2),x ∈R ,若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-∞,-2]∪⎝⎛⎭⎪⎫-1,32B .(-∞,-2]∪⎝⎛⎭⎪⎫-1,-34 C.⎝ ⎛⎭⎪⎫-1,14∪⎝ ⎛⎭⎪⎫14,+∞ D.⎝ ⎛⎭⎪⎫-1,-34∪⎣⎢⎡⎭⎪⎫14,+∞ 9.已知对于任意实数x ,函数f (x )满足f (-x )=-f (x ).若方程f (x )=0有2 013个实数解,则这2 013个实数解之和为________.10.在用二分法求方程x 3-2x -1=0的一个近似解时,已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为________.11.[2013·温州质检] 对于函数y =f (x ),若存在区间[a ,b ],当x ∈[a ,b ]时的值域为[ka ,kb ](k >0),则称y =f (x )为k 倍值函数.若f (x )=ln x +x 是k 倍值函数,则实数k 的取值范围是________.12.(13分)已知a 是实数,函数f (x )=2ax 2+2x -3-a ,如果函数y =f (x )在区间[-1,1]上有零点,求a 的取值范围.难点突破13.(1)(6分)已知二次函数f (x )=x 2-(m -1)x +2m 在[0,1]上有且只有一个零点,则实数m 的取值范围为( )A .(-2,0)B .(-1,0)C .[-2,0]D .(-2,-1)(2)(6分)设函数f (x )=4sin(2x +1)-x ,则在下列区间中函数f (x )不存在零点的是( )A .[-4,-2]B .[-2,0]C .[0,2]D .[2,4]课时作业(十一)【基础热身】1.B [解析] 因为f (-1)f (0)<0,所以区间(-1,0)是函数f (x )=2x+3x 的零点所在的一个区间,故选B.2.B [解析] 根据函数的零点存在定理得到f (1)f (2)=(-1)×12<0,故函数的一个零点在区间(1,2)内.3.C [解析] f ′(x )=x 2-2ax ,由a >2可知,f ′(x )在x ∈(0,2)恒为负,即f (x )在(0,2)内单调递减,又f (0)=1>0,f (2)=83-4a +1<0,∴f (x )在(0,2)内只有一个零点.故选C.4.D [解析] 在同一坐标系内分别作出y 1=f (x ),y 2=-x +a 的图象,其中a 表示直线在y 轴的截距,结合图形可知当a >1时,直线y 2=-x +a 与y 1=log 2x 只有一个交点,即a ∈(1,+∞).【能力提升】5.C [解析] ∵f (-1)=e -1-1-2<0,f (0)=1-2<0,f (1)=e +1-2>0,∴函数的零点所在区间为(0,1).6.A [解析] 因为f ′(x )=1-x +x 2-x 3+…+x 2 010>0,x ∈(-1,0),所以函数f (x )=1+x -x 22+x 33-x 44+…+x 2 0112 011在(-1,0)单调增,f (0)=1>0,f (-1)<0,选A.7.D [解析] 定义在R 上的函数f (x )是奇函数,f (0)=0,又是周期函数,T 是它的一个正周期,∴f (T )=f (-T )=0,f ⎝ ⎛⎭⎪⎫-T 2=-f ⎝ ⎛⎭⎪⎫T 2=f ⎝ ⎛⎭⎪⎫-T2+T =f ⎝ ⎛⎭⎪⎫T 2,∴f ⎝ ⎛⎭⎪⎫-T 2=f ⎝ ⎛⎭⎪⎫T 2=0,则n 可能为5.8.B [解析] f (x )=⎩⎨⎧x 2-2,x 2-2-()x -x 2≤1,x -x 2,x 2-2-()x -x 2>1=⎩⎪⎨⎪⎧x 2-2,-1≤x ≤32,x -x 2,x <-1,或x >32,则f ()x 的图象如图.∵y =f (x )-c 的图象与x 轴恰有两个公共点, ∴y =f (x )与y =c 的图象恰有两个公共点,由图象知c ≤-2,或-1<c <-34.9.0 [解析] 由奇函数的性质得f (0)=0,其余2 012个实数解互为相反数,则这2 013个实数解之和为0.10.⎝ ⎛⎭⎪⎫32,2 [解析] 计算函数f (x )=x 3-2x -1在x =1,32,2处的函数值,根据函数零点的存在定理进行判断.f (1)<0,f (2)>0,f ⎝ ⎛⎭⎪⎫32=278-3-1<0,f ⎝ ⎛⎭⎪⎫32f (2)<0,故下一步断定该根在区间⎝ ⎛⎭⎪⎫32,2内. 11.⎝ ⎛⎭⎪⎫1,1+1e [解析] 因为f (x )=ln x +x 是k 倍值函数,且f (x )在[a ,b ]上单调递增,所以⎩⎪⎨⎪⎧ln a +a =ka ,ln b +b =kb ,则g (x )=ln x +(1-k )x 在(0,+∞)上有两个零点,即y =ln x 与y=(k -1)x 相交于两点,所以k -1>0.当k =1+1e 时相切,所以1<k <1+1e.12.解:(1)若a =0,f (x )=2x -3,显然在[-1,1]上没有零点,所以a ≠0.(2)若a ≠0,①令Δ=4+8a (3+a )=8a 2+24a +4=0,解得a =-3±72.当a =-3-72时,y =f (x )恰有一个零点在[-1,1]上;②当f (-1)·f (1)=(a -1)(a -5)<0,即1<a <5时, y =f (x )在[-1,1]上也恰有一个零点.③当y =f (x )在[-1,1]上有两个零点时,则⎩⎪⎨⎪⎧Δ=8a 2+24a +4>0,-1≤-12a ≤1,af (1)≥0,af (-1)≥0.解得a ≥5或a <-3-72.综上,所求实数a 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a >1或a ≤-3-72. 【难点突破】13.(1)C (2)A [解析] (1)①当方程x 2-(m -1)x +2m =0在[0,1]上有两个相等实根时,Δ=(m -1)2-8m =0且0≤m -12≤1,此时无解.②当方程x 2-(m -1)x +2m =0有两个不相等的实根时,(i)有且只有一根在[0,1]上时,有f (0)f (1)<0,即2m (m +2)<0,解得-2<m <0;(ii)有两根在[0,1]上时有⎩⎪⎨⎪⎧Δ>0,0<m -12<1,f (0)>0,f (1)>0,此时无解; (iii)当f (0)=0时,m =0,方程可化为x 2+x =0,解得x 1=0,x 2=-1,符合题意;(iv)当f (1)=0时,m =-2,方程可化为x 2+3x -4=0,解得x 1=1,x 2=-4,符合题意.综上所述,实数m 的取值范围为[-2,0].(2)f (0)=4sin1>0,f (2)=4sin5-2,由于π<5<2π,所以sin5<0,故f (2)<0,故函数在[0,2]上存在零点;由于f (-1)=4sin(-1)+1,-π2<-1<-π6,所以sin(-1)<-12,故f (-1)<0,故函数在[-1,0]上存在零点,也在[-2,0]上存在零点;令x =5π-24∈[2,4],则f ⎝ ⎛⎭⎪⎫5π-24=4sin 5π2-5π-24=4-5π-24=18-5π4>0,而f (2)<0,所以函数在[2,4]上存在零点.排除法知函数在[-4,-2]上不存在零点.。
2010年高考数学一轮复习精品学案(人教版A 版)---函数与方程一.【课标要求】1.结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;2.根据具体函数的图像,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
二.【命题走向】函数与方程的理论是高中新课标教材中新增的知识点,特别是“二分法”求方程的近似解也一定会是高考的考点。
从近几年高考的形势来看,十分注重对三个“二次”(即一元二次函数、一元二次方程、一元二次不等式)的考察力度,同时也研究了它的许多重要的结论,并付诸应用。
高考试题中有近一半的试题与这三个“二次”问题有关预计2010年高考对本讲的要求是:以二分法为重点、以二次函数为载体、以考察函数与方程的关系为目标来考察学生的能力(1)题型可为选择、填空和解答;(2)高考试题中可能出现复合了函数性质与函数零点的综合题,同时考察函数方程的思想。
三.【要点精讲】1.方程的根与函数的零点(1)函数零点概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。
即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点。
二次函数)0(2≠++=a c bx ax y 的零点:1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点;2)△=0,方程02=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点;3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点。