第5章 外压圆筒设计分析
- 格式:ppt
- 大小:1.87 MB
- 文档页数:57
压力容器设计外压圆筒的设计计算压力容器是一种用于贮存和输送液体或气体的设备,它承受着高压环境下的压力。
外压圆筒是其中一种压力容器的设计方式,其承受的是外部环境对容器的压力作用。
在外压圆筒的设计过程中,需要考虑以下几个方面:1.材料的选择:选取适合承受高压的材料,例如碳钢、不锈钢等。
根据压力容器的使用环境和介质特性,选择合适的材料,以保证容器的安全性和可靠性。
2.外压力的计算:根据容器所在环境的压力情况,计算外压力的大小。
外压的计算包括静态外压和动态外压两种情况,其中静态外压是指容器承受的恒定外力,而动态外压则是指容器承受的变化外力。
3.壁厚的计算:根据外压力的大小和材料的强度特性,计算容器的壁厚。
壁厚的计算是为了保证容器在外压力作用下的强度和刚度,以防止容器发生破裂、变形等事故。
4.稳定性的计算:在设计容器的几何形状时,需要考虑外压力对容器的稳定性的影响。
通过计算容器的抗剪稳定系数和抗弯稳定系数,判断容器是否满足稳定的要求。
5.接头设计:容器的接头连接处是容器的弱点,容易发生泄漏和破裂等事故。
在外压圆筒的设计中,需要经过计算和分析,选择合适的接头类型和连接方式,以保证接头的强度和密封性能。
6.强度计算:容器在外压力作用下,需要具备足够的强度承受力。
通过计算容器的主应力和主应变,确定容器的强度和破坏情况。
7.辅助装置的设计:外压圆筒在使用过程中,需要配备相应的辅助装置,如止回阀、减压阀等,以确保容器内压力的稳定和安全。
在设计完成后,需要进行一系列试验和检验,以验证容器的设计是否满足安全和可靠的要求。
总之,外压圆筒的设计计算是一项复杂而重要的工作,需要充分考虑几个方面的因素,以确保容器在高压环境下的安全运行。
外压圆筒设计图算法与公式法本文旨在对比研究外压圆筒设计图算法和公式法,探讨两种方法的优缺点,并提出作者的设计方案。
我们将简要介绍外压圆筒设计图算法和公式法的背景和意义;接着,将详细阐述这两种方法的原理和应用;我们将对外压圆筒设计图算法和公式法进行比较分析,并提出作者的设计方案。
外压圆筒设计图算法是一种基于几何图形计算的设计方法。
它通过将圆筒形容器分解为多个圆柱体和圆锥体,并根据外压条件计算出各部分的直径、高度等参数,最终得到圆筒设计的详细尺寸。
此算法具有较高的精确性和可靠性,适用于各种复杂形状和尺寸的圆筒设计。
然而,它需要较高的计算成本和时间,对于一些大型或复杂项目来说可能不太适用。
公式法是一种基于经验公式的计算方法。
它根据已知的参数和经验公式,直接计算出圆筒设计的各项参数。
此方法具有较快的计算速度和较低的计算成本,适用于一些简单形状和尺寸的圆筒设计。
但是,由于公式法的原理基于经验数据,因此对于一些特殊或复杂形状的圆筒设计可能无法提供精确的计算结果。
外压圆筒设计图算法和公式法各有优缺点。
对于一些需要精确计算和复杂形状的圆筒设计,外压圆筒设计图算法是一种更为可靠的方法。
然而,对于一些简单形状和尺寸的圆筒设计,公式法则具有较快的计算速度和较低的计算成本。
在实际应用中,应根据项目需求和设计要求选择合适的方法。
基于对外压圆筒设计图算法和公式法的比较分析,作者提出以下设计方案:对于一些重要且复杂的圆筒设计项目,建议采用外压圆筒设计图算法,以保证计算结果的精确性和可靠性;对于一些简单且常规的圆筒设计项目,可以尝试使用公式法,以节省计算成本和时间;对于一些介于两者之间的圆筒设计项目,可以根据项目需求和设计要求进行选择。
例如,可以在保证计算结果较为精确的前提下,采用公式法进行快速估算。
本文对比研究了外压圆筒设计图算法和公式法,分析了两种方法的优缺点,并提出了作者的设计方案。
在实际应用中,应根据项目需求和设计要求选择合适的方法。
第五章外压圆筒与封头的设计一、名词解释1.临界压力2.临界长度3.计算长度4.弹性失稳二、判断是非题(对者画√,错者画X)1.假定外压长圆筒和短圆筒的材质绝对理想,制造的精度绝对保证,则在任何大的外压下也不会发生弹性失稳。
()2.18MnMoNbR钢板的屈服点比Q235-AR钢板的屈服点高108%,因此,用18MnMoNbR钢板制造的外压容器,要比用Q235-AR钢板制造的同一设计条件下的外压容器节省许多钢材。
()3.设计某一钢制外压短圆筒时,发现采用20g钢板算得的临界压力比设计要求低10%,后改用屈服点比20g高35%的16MnR钢板,即可满足设计要求。
()4.几何形状和尺寸完全相同的三个不同材料制造的外压圆筒,其临界失稳压力大小依次为:Pcr不锈钢> Pcr铝> Pcr铜。
()5.外压容器采用的加强圈愈多,壳壁所需厚度就愈薄,则容器的总重量就愈轻。
()三、填空题1、受外压的长圆筒,侧向失稳时波形数n=();短圆筒侧向失稳时波形数为n>()的整数。
2、直径与壁厚分别为D,S的薄壁圆筒壳,承受均匀侧向外压p作用时,其环向应力σθ=(),经向应力σm(),它们均是()应力,且与圆筒的长度L()关。
3、外压容器的焊接接头系数均取为Φ=();设计外压圆筒现行的稳定安全系数为m=()。
4、外压圆筒的加强圈,其作用是将()圆筒转化成为()圆筒,以提高临界失稳压力,减薄筒体壁厚。
加强圈的惯性矩应计及()和()两部分的惯性矩。
5、外压圆筒上设置加强圈后,对靠近加强圈的两侧部分长度的筒体也起到加强作用,该部分长度的范围为()。
四、 工程应用题1、图5-21中A ,B ,C 点表示三个受外压的钢制圆筒,材质为碳素钢, σs = 216MPa ,E = 206GPa 。
试回答:(1)A ,B ,C 三个圆筒各属于哪一类圆筒?它们失稳时的波形数n 等于(或大于)几?(2)如果将圆筒改为铝合金制造(σs =108MPa ,E=68.7GPa ),它的许用外压力有何变化?变化的幅度大概是多少?(用比值[P]铝/[P]铜=?表示)2、有一台聚乙烯聚合釜,其外径为D 0=1580mm ,计算长度L=7060mm ,有效厚度S e =11mm ,材质为0Cr18Ni9Ti ,试确定釜体的最大允许外压力。
第五章 外压圆筒与封头的设计本章重点:失稳和临界压力的概念;影响临界压力的因素;外压容器的图算法设计。
本章难点:图算法的原理。
建议学时:4学时首先复习我们前面曾经讲过的压力容器的分类,内压和外压,已在第四章介绍了内压的强度设计,今天开始学习外压容器的设计。
第一节 概述一、外压容器的失稳1、外压容器的定义壳体外部压力大于内部压力的容器。
例图搅拌反应釜。
2、外压薄壁容器的受力对于薄壁壳体来讲,内压薄壁圆筒受的是拉应力,即m σ=δ4PD ,θσ=δ2PD。
而外压薄壁圆筒所受的是压应力,这种压缩应力的数值与内压容器相同,只是改变了应力的方向,然而,正是由于方向的改变,使得外压容器失效形式与内压不同。
外压容器很少因为强度不足发生破坏,常常是因为刚度不足而发生失稳。
下面我们来看看失稳的定义。
3、失稳及其实质失稳:承受外压载荷的壳体,当外压载荷增大到某一数值时,壳体会突然失去原来的形状,被压扁或出现波纹,载荷卸除后,壳体不能恢复原状,这种现象称为外压壳体的失稳(Instability )二、容器失稳型式的分类1、 按受力方向分为侧向失稳与轴向失稳(容器由均匀侧向外压引起的失稳,叫侧向失稳,特点是失稳时,壳体横断面由原来的圆形变为波形,波数可以是两个、三个、四个……,如图所示)2、按压应力作用范围分为整体失稳与局部失稳第二节临界压力一、临界压力的概念壳体失稳时所承受的相应压力。
壳体在临界压力作用下,壳体内存在的压应力称为临界压应力。
二、影响临界压力的因素(一)筒体几何尺寸的影响(二)筒体材料性能的影响圆筒失稳时,在绝大多数情况下,筒壁内的压应力并没有达到材料的屈服点。
(是弹性失稳)故这种情况失稳与材料的屈服点无关,只与材料的弹性模数E和泊松比μ有关。
材料的弹性模数E和泊松比μ越大,其抵抗变形的能力就越强,因而其临界压力也就越高。
但是,由于各种钢材的E和μ值相差不大,所以选用高强度钢代替一般碳素钢制造外压容器,并不能提高筒体的临界压力。