D-S证据理论方法
- 格式:pptx
- 大小:540.73 KB
- 文档页数:27
D-S融合计算方法是一种基于证据理论的不确定性决策融合方法。
这种方法包括三个基本步骤:
1. 目标合成:将来自独立传感器的观测结果合成为一个总的输出结果(ID)。
2. 推断:获得传感器的观测结果并进行推断,将传感器观测结果扩展成目标报告。
这种推理的基础是:一定的传感器报告以某种可信度在逻辑上会产生可信的某些目标报告。
3. 更新:在推理和多传感器合成之前,要先组合(更新)传感器的观测数据。
各种传感器一般都存在随机误差,所以,在时间上充分独立地来自同一传感器的一组连续报告比任何单一报告可靠。
在D-S融合计算方法中,每个步骤都涉及特定的计算或推理方法,如基本概率赋值函数、信任函数和似然函数等。
这些方法可以有效地结合不同来源的信息,提高决策的准确性和可靠性。
中文摘要中文摘要近年来,由于对信息融合的要求越来越高,使得融合技术不仅在信息处理过程方面大大进步,也在军事领域、故障诊断和目标识别等众多领域得到了成功的研究与应用。
其中,D-S证据理论有着在无先验信息的状态下,可以很好的表示和处理不确定情况的优点,从而通过对问题进行建模,在融合过程中对数据进行更加优化的处理,提高了融合的准确性,使决策结果更加精确。
但若存在冲突证据,运用D-S证据理论进行证据融合就不能达到很好的效果甚至结果有悖常理,所以需要对证据理论进行改进。
当前研究的重点主要集中在修正证据源和修改组合规则,两种方法相对比发现,对证据源进行预处理不会破坏Dempster组合规则的优良性质,这比修改组合规则更有优势。
本文从证据源预处理和证据融合两方面入手,对冲突证据处理并合成,主要研究内容如下:首先,针对融合的不确定性问题进行分析,提出了在证据冲突且存在复合焦元的情况下降低不确定度的逆DP概率转换方法。
基于DP合成规则,通过势的划分,分层逐步降低不确定度,将基本概率分配函数经过转化为概率函数进行融合。
其次,针对冲突证据融合过程中可信度不高的问题,提出一种基于置信距离的加权融合算法。
利用置信距离测度对证据度量,将证据转换为距离矩阵形式,经过矩阵相关计算得到可信度,进而加权进行信度分配以修正证据源,最终进行基础的证据融合。
最后,针对证据冲突程度的衡量问题,提出了基于指数散度的冲突证据融合算法。
利用指数交叉熵进行冲突证据的衡量,并将证据间的冲突系数构建距离矩阵,利用加权融合的方式进行数据融合。
通过大量仿真对比研究,验证了所提算法的有效性与可靠性。
关键词:D-S证据理论;冲突证据;证据融合;概率转换;置信距离测度;指数散度黑龙江大学硕士学位论文AbstractIn recent years, with the increasing demand for information fusion, fusion technology has not only made great progress in information processing, but also been successfully studied and applied in many fields such as military field, fault diagnosis and target identification. Among them, D-S evidence theory has the advantage of expressing and dealing with uncertainties well without prior information, so it can model problems and process data more optimally in the process of fusion, which improves the accuracy of fusion and makes decision results more accurate. However, if there are conflict evidences, the evidence fusion using D-S evidence theory can not achieve good results or even the results are contrary to common sense, so we need to improve the evidence theory.The current research focuses on revising evidence sources and modifying combination rules. However, compared with two methods, it is found that pretreatment of evidence sources will not destroy the good quality of Dempster combination rules, which is more advantageous than revising combination rules. In this paper, the conflict evidences are processed and synthesized from two aspects of evidence source pretreatment and evidence fusion. The main research contents are as follows: Firstly, the uncertainty of fusion is analyzed, and an inverse DP probability conversion method is proposed to reduce the uncertainty in the case of evidence conflict and compound focal elements. Based on DP synthesis rule, the uncertainty is gradually reduced by dividing the potential, and the basic probability assignment function is transformed into probability function to fuse.Secondly, a weighted fusion algorithm based on confidence distance is proposed to solve the problem of low credibility in the process of conflict evidence fusion. Using confidence distance measure to measure evidence, the evidence are transformed into distance matrix form. The credibility is obtained by matrix correlation calculation, and then the reliability is allocated by being weighted to modify the evidence source. In the end, the basic evidence is fused.Finally, aiming at the measurement of evidence conflict degree, a method ofAbstractconflict evidence synthesis based on exponential divergence is proposed. The index cross-entropy is used to measure the conflict evidence, and the conflict coefficient between the evidences is constructed into a distance matrix, and the data fusion is carried out by weighted fusion.A large number of simulation and comparative studies verify the effectiveness and reliability of the proposed algorithm.Keywords: D-S evidence theory; conflict evidences; evidence fusion; probability conversion; confidence distance measure; exponential divergence黑龙江大学硕士学位论文目录中文摘要 (I)Abstract ............................................................................................................................. I I 第1章绪论 .. (1)1.1 课题的研究背景与意义 (1)1.2 证据理论融合算法的研究现状 (2)1.3 证据理论的优点与不足 (4)1.4 本文的主要研究内容 (5)第2章D-S证据理论概述 (7)2.1 D-S证据理论的基本概念 (7)2.1.1 识别框架 (7)2.1.2 基本概率赋值 (7)2.1.3 信任函数 (8)2.1.4 似然函数 (8)2.1.5 贝叶斯信任函数 (9)2.2 D-S证据理论合成规则 (10)2.2.1 两组证据的合成规则 (10)2.2.2 多组证据的合成规则 (10)2.3 D-S证据理论合成存在的冲突问题 (11)2.3.1 经典Zadeh悖论 (11)2.3.2 其他典型悖论问题 (12)2.4 本章小结 (13)第3章基于逆Dubois和Prade合成规则的概率转换方法 (14)3.1 引言 (14)3.2 逆DP转换方法介绍 (15)3.2.1 DP合成规则 (15)目 录3.2.2 逆DP转换方法 (16)3.2.3 不确定性度量指标 (18)3.3 逆DP概率转换方法中比率再分配因子ε的取值分析 (18)3.4 实例分析 (20)3.5 本章小结 (25)第4章基于置信距离的D-S冲突证据融合算法 (26)4.1 引言 (26)4.2 基于置信距离的D-S冲突证据融合算法 (26)4.2.1 置信距离测度 (26)4.2.2 证据方差的判定 (28)4.3 实例验证与对比分析 (31)4.4 本章小结 (38)第5章基于指数散度的D-S冲突证据融合算法 (39)5.1 引言 (39)5.2 熵的理论综述 (39)5.2.1 熵的基本概念 (39)5.2.2 熵的基本性质 (41)5.3 基于熵衡量冲突证据的现有方法 (42)5.4 基于指数散度的D-S冲突证据融合算法 (45)5.4.1 基于指数散度的冲突证据衡量方法 (45)5.4.2 新的证据融合算法及对比分析 (47)5.5 本章小结 (51)结论 (52)参考文献 (54)致谢 (61)攻读学位期间发表论文 (62)独创性声明 (63)黑龙江大学硕士学位论文第1章绪论第1章绪论1.1 课题的研究背景与意义信息融合最早出现在上世纪70年代,自信息融合技术诞生以来就广泛应用在军事与民用领域中[1,2]。
D-S证据理论,也称为Dempster-Shafer证据理论,是一种处理不确定信息的方法。
D-S证据理论的主要特点是满足比贝叶斯概率论更弱的条件,并具有直接表达“不确定”和“不知道”的能力。
在D-S证据理论中,由互不相容的基本命题(假定)组成的完备集合称为识别框架,表示对某一问题的所有可能答案。
该框架的子集称为命题,分配给各命题的信任程度称为基本概率分配(BPA,也称m函数),m(A)为基本可信数,反映着对A的信度大小。
信任函数Bel(A)表示对命题A的信任程度,似然函数Pl(A)表示对命题A非假的信任程度。
D-S方法的推理结构是自上而下的,分三级:第一级为目标合成,第二级为推断,第三级为更新。
第五章证据理论(Evidence Theory)方法在本章§1,我们将讨论一种被称之为登普斯特-谢弗(Dempster-Shafer)或谢弗-登普斯特(Shafer-Dempster)理论(简称D-S理论或证据理论)的不精确推理方法。
这一理论最初是以登普斯特(Dempster,1967年)的工作为基础的,登普斯特试图用一个概率区间而不是单一概率数值去建模不确定性. 1976年,谢弗(Shafer,1976年)在《证据的数学理论》一书中扩展和改进了登普斯特工作. D-S理论具有好的理论基础。
确定性因子能被证明是D-S 理论的一种特殊情形。
在§2我们将描述一种简化的证据理论模型MET1 . 在§3我们将给出支持有序命题类问题的具有凸函数性质的简化证据理论模型。
围绕证据理论的一些新的研究工作,将在第六章介绍。
§1D-S理论(Dempster-Shafer Theory)●辨别框架(Frames of Discernment)D-S理论假定有一个用大写希腊字母Θ表示的环境(environment),该环境是一个具有互斥和可穷举元素的集合:Θ = { θ1 , θ2 , ⋯, θn }术语环境在集合论中又被称之为论域(the universe of discourse)。
一些论域的例子可以是:Θ = { airliner , bomber , fighter }Θ = { red , green , blue , orange , yellow }Θ = { barn , grass , person , cow , car }注意,上述集合中的元素都是互斥的。
为了简化我们的讨论,假定Θ是一个有限集合。
其元素是诸如时间、距离、速度等连续变量的D-S 环境上的研究工作已经被做。
理解Θ的一种方式是先提出问题,然后进行回答。
假定Θ = { airliner , bomber , fighter }提问1:“这军用飞机是什么?”;答案1:是Θ的子集{ θ2 , θ3 } = { bomber , fighter }提问2:“这民用飞机是什么?”;答案2:是Θ的子集{ θ1} = { airliner },{ θ1} 是单元素集合。
《改进D-S证据理论的决策融合算法研究及应用》篇一一、引言随着现代科技的不断发展,决策融合算法在各个领域得到了广泛应用。
其中,Dempster-Shafer(D-S)证据理论作为决策融合的重要方法之一,已经得到了广泛关注。
然而,D-S证据理论在处理决策信息时仍存在一些局限性,如对冲突信息的处理不够完善、对证据的独立性和一致性要求过于严格等。
因此,本文旨在研究改进D-S证据理论的决策融合算法,以提高决策的准确性和可靠性。
二、D-S证据理论概述D-S证据理论是一种基于信任度的决策融合方法,通过对证据进行分配函数描述和合并过程来达到信息融合的目的。
然而,在应用过程中,D-S证据理论仍存在一些问题。
首先,当存在冲突信息时,传统的D-S证据理论往往无法有效地处理这些信息,导致决策的准确性下降。
其次,D-S证据理论对证据的独立性和一致性要求较高,这在实际情况中往往难以满足。
三、改进D-S证据理论的决策融合算法针对上述问题,本文提出了一种改进的D-S证据理论决策融合算法。
该算法通过引入权重因子来调整每个证据的信任度分配,从而降低冲突信息对决策结果的影响。
同时,该算法还采用了基于相似度的证据关联性分析,以提高证据之间的相互关系信息在合并过程中的作用。
此外,针对不同情况下的实际应用场景,我们提出了更加灵活的调整策略来应对各种不确定性因素。
四、算法实现及性能分析为了验证改进算法的有效性,本文在多个实际应用场景中进行了实验。
实验结果表明,改进后的D-S证据理论决策融合算法能够更好地处理冲突信息,提高了决策的准确性。
同时,该算法能够更灵活地应对不同场景下的不确定性因素,具有较强的实用性和通用性。
五、应用案例分析本文以某智能交通系统为例,详细介绍了改进D-S证据理论决策融合算法在交通流量预测中的应用。
通过将多种交通信息作为证据进行融合处理,该算法能够更准确地预测交通流量变化趋势。
同时,我们还探讨了该算法在医疗诊断、机器人智能决策等其他领域的应用潜力。
D -S 证据推理改进方法综述11.概述:D-S 证据理论是首先由Dempster [1]提出,并由Shafer [2]进一步发展起来的一种不确定推理理论,已广泛用于信息融合和不确定推理等领域,具有坚实的数学基础,能在不需要先验概率的情况下,以简单的推理形式,得出较好的融合结果,为不确定信息的表达和合成提供了自然而强有力的方法。
文献[9]中,介绍了D-S 证据理论的基本理论, 其中包括辨识框架(frame of discernment )、焦元(focal elenment )、基本概率分配函数BPA (basic probability assignment)、信任函数Bel (Belief function)、似然函数Pl (Plausibility function),证据组合(evidence combination) 等概念,并且详细推导了多个证据组合概率分配函数,通过一个空中目标识别的例子清晰易懂的分析了将D-S 证据组合理论用于数据融合的思路和处理算法。
任何融合算法都不具有绝对意义上的普遍性,只能在某些条件满足的情况下适用。
D-S 证据理论存在的问题是,当处理冲突证据时,因组合规则中的归一化过程会出现违背常理的结论。
下面例子说明了这一情况:例1.识框架为},,{C B A =Θ,有两个证据的基本概率分配为:99.0)(,01.0)(,0)(:0)(01.0)(,99.0)(:22221111======C m B m A m S C m B m A m S ,组合证据 .9900.0,1)(,0)()(====k B m C m A m 虽然21m m ,对命题B 的支持程度都很低,但融合结果仍然认为B 为真,这显然是有悖常理的。
k 是衡量用于融合的各个证据之间冲突程度的系数,当1→k ,即证据高度冲突时,归一化过程中,组合规则将矛盾信息完全忽略,在数学上引出不合常理问题。
为解决此问题,人们提出了许多不同的改进方法,通过修改证据及改进组合规则,优化融合结果。
DS证据理论_学习笔记D-S证据理论_学习笔记注意,笔者⽔平⼀般,主要内容来源于参考资料,如有错误请多多指教。
不定期更新。
由来D-S证据理论全称“Dempster-Shafer证据理论”,源于美国哈佛⼤学数学家A. P. Dempster在利⽤上、下限概率来解决多值映射问题⽅⾯的研究⼯作。
后来他的学⽣G. Shafer引⼊信任函数的概念,形成了⼀套基于“证据”和“组合”来处理不确定性推理问题的数学⽅法。
1976年出版的《证据的数学理论》(A Mathematical Theory of Evidence)标志着证据理论正式成为了⼀种处理不确定性问题的完整理论。
证据理论的核⼼是Dempster在研究统计问题提出的、随后被Shafer推⼴的Dempster合成规则。
证据理论的优点是:1. 在证据理论中需要的的先验数据容易获得。
2. Dempster合成公式可以综合不同专家或数据源的知识或数据,⽤途⼴泛。
证据理论的缺点是:1. 要求证据必须是独⽴的,有时这不易满⾜。
2. 证据合成规则没有⾮常坚固的理论⽀持,其合理性和有效性还存在较⼤的争议。
3. 计算上存在着潜在的指数爆炸问题。
质疑证据合成规则合理性的问题之⼀:“Zadeh悖论”,详见参考资料。
为此有很多完善D-S证据理论的⼯作,感兴趣的请⾃⾏查找相关资料。
基本概念和推理过程⼊门理解D-S证据理论可以看这篇⽂章,对照着参考资料看就能有个⼤概的理解了。
这⾥仅仅是摘录基本概念和合成规则,以及个⼈理解,详细过程不再赘述。
基本概念基本概念有4基本概率分配英⽂全称:Basic Probability Assignment,简称BPA。
在假设空间上,使⽤⼀个叫做mass函数的函数率。
明显,对于同⼀个mass函数⽽⾔,假设空间中每个元素的概率之和等于1。
也即满⾜:(Focal elements)。
我感觉,⼀般不同的专家或者证⼈就会有不同的看法,也即有不同函数信任函数Belief function BPA m的信任函数定义为:似然函数Plausibility function BPA m的似然函数定义为:信任区间信任区间⽤于表⽰对某个假设的确认程度,⽐如假设A我简单理解为A的嫌疑⾄少是其⼦集的概率之和,⾄多是其涉及集合的概率之和。