八年级数学下册2.1 不等关系导学案北师大版
- 格式:docx
- 大小:51.00 KB
- 文档页数:2
《不等关系》教学设计一、教学目标1.感受生活中存在着大量的不等关系,了解不等式的意义。
初步体会不等式是刻画量与量之间关系的一种重要模型。
2.经历由具体实例建立不等式模型的过程。
进一步发展符号意识。
会用不等号表示简单的不等关系。
3.能用实际生活背景和数学背景解释简单不等式的意义二、教学重点及难点重点:1.通过探寻实际问题中的不等式关系,认识不等式.2.根据实际问题建立合理的不等关系.难点:根据实际问题建立合理的不等关系.三、教学用具多媒体课件四、相关资源生活中的一些图片,微课,动画,教学图片五、教学过程【情境导入】师:我们学过等式,知道利用等式可以解决许多生活问题,同时,我们也知道现实生活中还存在许多不等关系,利用不等关系同样可以解决实际问题,本章我们就来了解不等式有关的内容.师:既然不等式关系在实际生活中并不少见,大家肯定能举出不少例子.生:可以,比如每天我都比他早到校5分钟.师:很好,还有其他例子吗?(同学们各抒己见).师:我这里也有一些例子,拿出给同学们参考一下.(展示投影片)师:你还记得小孩玩的翘翘板吗?你想过它的工作原理吗?其实,翘翘板就是靠不断改变两端的重量对比来工作的.师:那么,如何用式子来表示不等关系呢?(引出课题)设计意图:通过提问,学生举出了许多不等的例子,不仅能从数字上,还能从现象、感觉上去体会不等关系.通过这一系列活动学生体会不等关系如相等关系一样处处存在,学生在层层深入的思考中,亲身体会到不等关系在生活中的重要性,现在再思考该问题正好激发了学生探究的欲望.培养学生观察生活、乐于探究的品质.【探究新知】1.如下图,用两根长度均为l cm 的绳子,分别围成一个正方形和圆.师:(1)如果要使正方形的面积不大于25cm 2,那么绳长l 应满足怎样的关系式?(2)如果要使圆的面积不小于100cm 2,那么绳长l 应满足怎样的关系式?(3)当l =8时,正方形和圆的面积哪个大?l =12呢?(4)你能得到什么猜想?改变l 的取值再试一试.生:先独立探究,然后小组交流.师:本题中大家首先要弄明白两个问题,一个是正方形和圆的面积计算公式,你知道如何表示吗?生:正方形的面积等于边长的平方.圆的面积是πR 2,其中R 是圆的半径.师:另一个是了解“不大于”、“ 不小于”等词的含义吗?又如何表示呢?生:两数比较有大于、等于、小于三种情况,“不大于”就是等于或小于,通常用符号“≤”表示.“不小于”指的是“等于或大于”,通常用符号“≥”表示.师:下面请大家互相讨论,按照题中的要求进行解答.生:(1)因为绳长l 为正方形的周长,所以正方形的边长为4l ,得面积为(4l )2,要使正方形的面积不大于25 cm 2,就是(4l )2≤25. 即162l ≤25. (2)因为圆的周长为l ,所以圆的半径为R =2πl . 要使圆的面积不小于100 cm 2,就是π·(2πl )2≥100 即24πl ≥100. (3)当l =8时,正方形的面积为1682=4(cm 2). 圆的面积为284π≈5.1(cm 2). ∵4<5.1,∴此时圆的面积大.当l =12时,正方形的面积为16122=9(cm 2). 圆的面积为2124π≈11.5(cm 2). 此时还是圆的面积大.(4)我们可以猜想,用长度均为l cm 的两根绳子分别围成一个正方形和圆,无论l 取何值,圆的面积总大于正方形的面积,即24πl >162l . 因为分子都是l 2,相等,分母4π<16,根据分数的大小比较,分子相同的分数,分母大的反而小,因此不论l 取何值,都有24πl >162l . 设计意图:学生对大于、小于等关系容易理解,而对不大于等概念理解有一定难度,但讨论的气氛很热烈,从而感受到生活中没有数学解决不了的困难,激发学生主动解决问题的兴趣.2.做一做:通过测量一棵树的树围(树干的周长)可以计算出它的树龄,通常规定以树干离地面1.5cm 的地方作为测量部位.某树栽种时的树围为6cm,以后树围每年增加约3cm .设经过x 年后这棵树的树围才能超过30 cm ,请你列出x 满足的关系式.师:请大家互相讨论后列出关系式.生:小组间相互讨论、交流,然后选代表回答.生:设这棵树至少生长x 年其树围才能超过30 cm ,根据题意,得:3x +6>30.3.议一议:观察由上述问题得到的关系式,它们有什么共同特点?生:小组间相互讨论、交流,然后选代表回答.生:由162l ≤25,24πl >100,24πl >162l ,3x +6>30得,这些关系式都是用不等号连接的式子.由此可知:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式(inequality ). 注:用“≠”连接的式子也是不等式.设计意图:通过实际问题的解决,让学生体会现实生活中不等关系的多样性,学生能够用自己的语言总结出不等式的概念,从而培养学生总结归纳的能力.如果学生存在困难,可以让学生将所列出的不等式与等式进行对比,然后类比等式的概念,得出不等式的概念。
专题2.1 不等关系与不等式性质(知识讲解)【学习目标】1.理解不等式的意义,能用不等关系符号刻画现实世界中的数量关系.3. 掌握不等式的三条基本性质,并能简单应用.【要点梳理】要点一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.特别说明:(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.要点二、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c.不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c ).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).特别说明:不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变.【典型例题】类型一、不等式的概念1.用不等式表示:(1)a与2的和是正数.(2)x与y的差小于3.(3)x,y两数和的平方不小于4.(4)x的一半与y的2倍的和是非负数.【答案】(1)a+2>0 (2)x-y<3 (3)(x+y)2≥4 (4)12x+2y≥0【分析】结合不等式的定义以及题意列不等式即可.(1)因为正数都大于0,所以“a与2的和是正数”可表示为:a+2>0(2)“x与y的差小于3”可表示为:x-y<3(3)因为“不小于3”就是“大于或等于”,所以“x,y两数和的平方不小于4”可表示为:(x+y)2≥4(4)因为“非负数”就是“正数或0”,所以“x的一半与y的2倍的和是非负数”可表示为:12x+2y≥0【点拨】本题考查了列不等式,用符号“<”或“>”表示大小关系的式子,叫做不等式.如5x>,像3x≠这样用符号“≠”表示不等关系的式子也是不等式.注意①常见的符号有“>、<、≠、≥、≤”,分别读作“大于、小于、不等于、大于或等于、小于或等于”.其中“≥”又读作“不小于”,“≤”又读作“不大于”.①在不等式“a b>”或“a b<”中,a叫不等式的左边,b叫不等式的右边.①在列不等式时,一定要注意表示不等式关系的关键词,如:正数、非负数、不大于、至少等.举一反三:【变式1】有两种商品其单价总和超过100元,且甲商品的单价是乙商品单价的2倍少10元,设未知数,并用不等式表示出上述关系;【答案】设乙商品的价格为x元,x+2x-10>100【分析】设乙商品的价格为x元,表示出甲商品的价格,然后根据两商品的单价总和超过100元,列不等式即可.解:设乙商品的价格为x元,则甲商品的价格为(2x-10)元,由题意得,x+2x-10>100.即不等式为:x+2x-10>100.【点拨】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.【变式2】通过测量一棵树的树围(树干的周长)可以计算出它的树龄;通常规定以树干离地面1.5米的地方作为测量的部位,某棵树栽种时的树围为5cm,以后树围每年增加约3cm,这棵树至少生长多少年,其树围才能超过2.4m?根据题意,完成下面填空:(1)题目涉及的两个有关系的量,分别是:_____________________________;(2)设生长年份为x,则树围用x表示为:__________________;(3)用文字叙述生长年份与树围满足的不等关系是:______________________________;(4)用适当的不等号表示(3)中的不等关系:___________________________;【答案】(1)生长年份,树围;(2)5+3x;(3)这棵树生长x年,其树围才能超过2.4m;(4)5+3x>240【分析】(1)由题可知两个有关系的量分别是生长年份和树围;(2)栽种时的树围为5cm,以后树围每年增加约3cm,可知x年后,树围为(5+3x)m;(3)这棵树生长x年,其树围才能超过2.4m;(4)由题意可得5+3x>2.4×100.解:(1)由题可知两个有关系的量分别是生长年份和树围;故答案为生长年份,树围;(2)栽种时的树围为5cm,以后树围每年增加约3cm,可知x年后,树围为(5+3x)cm;故答案为5+3x;(3)用文字叙述生长年份与树围满足的不等关系是:这棵树生长x 年,其树围才能超过2.4m ;故答案为这棵树生长x 年,其树围才能超过2.4m ;(4)用适当的不等号表示(3)中的不等关系为:5+3x>2.4×100,故答案为5+3x>240【点拨】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.类型二、不等式的性质2.根据不等式的基本性质,把下列不等式化成x >a 或x <a 的形式. (1)15x -<; (2)413x -≥; (3)1142x -+≥; (4)410x -<-.【答案】(1)6x < (2)1≥x (3)6x ≤- (4)52x > 【分析】(1)根据不等式的性质1解答即可;(2)先根据不等式的性质1,再根据不等式的性质2解答; (3)先根据不等式的性质1,再根据不等式的性质3解答; (4)根据不等式的性质3解答即可;(1)解:15x -<,两边加上1得:1151x -+<+, 解得:6x <; (2)解:413x -≥,两边加上1得:41131x -+≥+,即44x , 两边除以4得:1≥x ; (3)解:1142x -+≥,两边减去1得:111412x -+-≥-,即132x -≥,两边除以12-得:6x ≤-;(4)解:410x -<-,两边除以4-得:52x >. 【点拨】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.举一反三:【变式1】已知x y >,下列不等式一定成立吗?(1)66x y -<-;(2)33x y <;(3)22x y -<-;(4)2121x y +>+. 【答案】(1)不成立;(2)不成立;(3)成立;(4)成立. 【分析】根据不等式的性质,对选项逐个判断即可. 解:(1)①x y >①66x y ->-,不等式两边同时加上或减去一个数,不等号方向不变; 不等式66x y -<-不成立; (2)①x y >①33x y >,不等式两边同时乘以一个大于零的数,不等号方向不变; 不等式33x y <不成立; (3)①x y >①22x y -<-,不等式两边同时乘以一个小于零的数,不等号方向改变; 不等式22x y -<-成立; (4)①x y >①22x y > ①2121x y +>+ 不等式2121x y +>+成立【点拨】此题考查了不等式的性质,熟练掌握不等式的有关性质是解题的关键. 【变式2】说明:(1)由314x -≤,得43x ≥-,是如何变形的?依据是什么?(2)由a b >,得ax bx >的条件是什么?为什么? (3)由a b >,得ax bx ≤的条件是什么?为什么?【答案】(1)不等式两边同时乘以43-,依据是不等式的两边同乘以一个负数,改变不等号的方向;(2)条件是0x >,理由是不等式的两边同乘以一个正数,不改变不等号的方向;(3)条件是0x ≤,当0x <时,理由是当0x <时,不等式的两边同乘以一个负数,改变不等号的方向;当0x =时,左边=右边0=.【分析】(1)根据不等式的性质:不等式的两边同乘以一个负数,改变不等号的方向即可得; (2)根据不等式的性质:不等式的两边同乘以一个正数,不改变不等号的方向即可得; (3)根据不等式的性质:不等式的两边同乘以一个负数,改变不等号的方向、以及等式的性质即可得.解:(1)不等式两边同时乘以43-,依据是不等式的两边同乘以一个负数,改变不等号的方向;(2)条件是0x >,理由是不等式的两边同乘以一个正数,不改变不等号的方向; (3)条件是0x ≤,理由如下:当0x <时,不等式的两边同乘以一个负数,改变不等号的方向;当0x =时, 左边=右边0=.【点拨】本题考查不等式的性质,熟记不等式的性质是解题关键.类型三、不等式性质的应用3.根据等式和不等式的基本性质,我们可以得到比较两数大小的方法:若0a b ->,则a b >;若0a b -=,则a b =;若0a b -<,则a b <.反之也成立.这种比较大小的方法称为“求差法比较大小”.请运用这种方法尝试解决下面的问题:(1)比较22432a b b +-+与2321a b -+的大小; (2)若223a b a b +>+,比较a 、b 的大小. 【答案】(1)222432321a b b a b +-+>-+;(2)a b < 【分析】(1)直接用22432a b b +-+减去2321a b -+得出的结果与0进行比较即可得到答案;(2)直接解不等式即可.解:(1)()222243232130a b b a b b +-+--+=+>,①222432321a b b a b +-+>-+;(2)①223a b a b +>+,①()()2230a b a b a b +-+=-+>, ①a b <.【点拨】本题主要考查了整式的减法运算,解不等式,不等式的性质等等,解题的关键在于能够熟练掌握相关知识进行求解.举一反三:【变式1】阅读材料:形如2213x <+<的不等式,我们就称之为双连不等式,求解双连不等式的方法一,转化为不等式组求解,如221213x x <+⎧⎨+<⎩;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得122x <<,然后同时除以2,得112x <<. 解决下列问题:(1)请你将双连不等式534x -≤-<转化为不等式组. (2)利用不等式的性质解双连不等式2235x ≥-+>-.【答案】(1)5334x x -≤-⎧⎨-<⎩;(2)142x ≤<【分析】(1)根据阅读材料中的方法将双连不等式化为不等式组即可; (2)利用不等式的基本性质求出所求即可.解:(1)534x -≤-<转化为不等式组为5334x x -≤-⎧⎨-<⎩.(2)2235x ≥-+>-,不等式的左、中、右同时减去3, 得128x -≥->-,同时除以2-,得142x ≤<【点拨】此题考查了解一元一次不等式组,以及不等式的定义,弄清阅读材料中的转化方法是解本题的关键.【变式2】在△ABC 中,AB =9,BC =2,AC =x . (1)求x 的取值范围;(2)若△ABC 的周长为偶数,则△ABC 的周长为多少? 【答案】(1)7<x <11;(2)20【分析】(1)根据三角形的三边关系列出不等式求解即可.(2)根据第三边取值范围和三角形周长表达式列式计算即可.解:(1)由题意知,9﹣2<x<9+2,即7<x<11;(2)①7<x<11,①x的值是8或9或10,①①ABC的周长为:当x=8时,9+2+8=19(舍去);当x=9时,9+2+9=20符合题意当x=10时,9+2+10=21(舍去);即该三角形的周长是20.【点拨】本题主要考查了三角形的三边关系,不等式的性质,利用三角形三边关系建立不等式是解题的关键.。
不等关系课题不等关系讲课教师学习 1、记着不等式的观点及不等号的分类。
目标2、能依据已知条件列出相应的不等式。
学习 学习要点:不等式的观点及不等号的分类。
重难点学习难点:依据已知条件列出相应的不等式。
学法 讲练联合法多媒体演示法研究法试试指导法指导学习过程学 案导 案一、 知识回首、导入新课① 某厂今年的产值是 a 元,估计明年年产值增加率高于 20%,假如明年的产值是 b 元,那么 b 和 a 知足的关系式是。
② 假如某等腰三角形的底边用a cm 表示,这边上的高为 4 cm ,如阅读课本第 37— 38 页:果这个三角形的面积不大于8 cm2,那么a 应当知足的关系式① 记着不等式的概 独念。
为。
② 记着“>、<、≤、 立≥、≠”表示不等关系的③ 铁路部门对游客随身携带的行李有以下规定:每件行李的长、 宽、 符号。
尝cm 、 b cm 、③类比列等式思虑列 高三边之和不得超出 160cm 。
设行李的长、宽、高分别为a 不等式。
试。
ccm , 请你列出行李的长、宽、高知足的关系式一般地,用符号“<” (或“≤” ),“>”(或“≥” )连结的式子 叫做不等式。
(特其他,不等号还包括“≠” )合作研究自我挑战堂清试题自我总结预留作业板书设计导学反省1、表达式①x2≥ 0;②2a+4b≠ 3;③5m+2n;④ x+y<0;⑤3x+2=9中小组为单位睁开议论,表示不等式的是。
看哪组做的又快、又好,2、801 班班长拿了 56 元钱去给班内20 名优异学生买奖品,奖5 元,笔录本每本展现的既正确又详尽。
品有两种:钢笔和笔录本。
已知钢笔每支 3 元,假如买 x 支钢笔,则列出对于x 的不等式是。
某厂今年的产值为100 万元,估计明后两年均匀每年增加率为看看自己学习的成效x%,假如按此速度发展,后年该厂产值将超出 a 万元,请用不等怎么样,迅速列出该不等式表示 a 与x的关系式。
式。
用适合的符号表示以下关系:① a是非负数;②直角三角形斜边c比它的两直角边 a 、b 都长;③ x 与17的和比它的5倍小;④两数的平方和不小于这两数积的2倍。
1.1不等关系(导学案)【学习目标】理解不等式的意义;能根据条件列出不等式。
【学习重点】通过探寻实际问题中的不等式关系,认识不等式。
【学习难点】实际问题中怎样建立量与量之间的不等关系。
【课前自学】 (方法提示: 带着以下问题——什么是不等式?列出不等式的关键是什么?自学P1-6,然后完成以下填空。
)1.已知正方形的边长为a ,则该正方形的面积为 。
2.已知圆的半径为r ,则该圆的面积为 。
3.已知正方形的周长为l ,则该正方形的边长为_______;面积为 。
4.已知圆的周长为l ,则该圆的半径为_______;面积为 。
【新课学习与探究】1.(先独立完成,再小组合作交流)如图,用两根长度均为l cm 的绳子,分别围成一个正方形和圆 ○1如果要使正方形的面积不大于252cm , 那么绳长l 应满足怎样的关系式? 解: 绳长l 是正方形的周长,∴正方形的边长为__________,∴面积为__________∴要使正方形的面积不大于252cm ,则有关系式__________________________。
○2如果要使圆的面积不小于100 2cm ,那么绳长l 应满足怎样的关系式? 解:则有关系式__________________________。
○4通过完成上表,你能得到什么猜想? 解:我猜想,用长度均为l cm 的两根绳子分别围成一个正方形和圆,则有圆正方形S S ___。
2.做一做:通过测量一棵树的树围(树干的周长)可以计算出它的树龄.通常规定以树干离地面1.5 m 的地方作为测量部位,某树栽种时的树围为5 cm ,以后树围每年增加约为 3 cm.,这棵树至少生长多少年其树围才能超过2.4 m ?解:设这棵树至少生长x 年其树围才能超过2.4 m ,则有关系式____________________。
☆3.观察以上所列的关系式有什么特点?一般地,用符号________________________________________连接的关系式叫做不等式。
2.1 不等关系学习目标:1.理解不等式的意义.2.能根据条件列出不等式.3.通过列不等式,训练学生的分析判断能力和逻辑推理能力.4.通过用不等式解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用.并以此激发学生学习数学的信心和兴趣.学习重点:用不等关系解决实际问题.学习难点:正确理解题意列出不等式.课前预习1.一般地,用符号“<”(或“≤”),“>”或(“≥”),“≠”连接两个代数式,表示关系的式子叫不等式.2.用适当的符号表示以下关系:大于小于最多至少不大于不小于不超过a是正数 a是非负数 a是非正数3.根据已知条件列不等式,就是用不等式表示代数式之间的不等关系,重点是抓住关键词理解.尝试练习1.下列式子中,是不等式的有 .(填序号)①2<3;②x2+2>0;③m-5 ④a(m+n)=am+an;⑤23≠x+4;⑥2a-3≥1-a.2.用不等式表示.(1)x 的3倍与8的和比x 的5倍大: ;x 2是非负数 .(2)3与y 的2倍的和为负数: ;m 与n 的差的32不小于5: . (3)a 、b 两数平方和不小于这两数积的2倍: .典例讲解【例】(基础过关)知识点一:不等式的定义例1.下列式子中,是不等式的有 .(填序号);<①02- ②3x+1; ③(a-1)2≥0; ④3>4;⑤322≠+x x ; ⑥s=vt ; ⑦x+3≤5.知识点二:根据数量关系列不等式例2.用不等式表示实际情境中的不等关系.①周长为C 的正方形面积不大于252cm : .②铁路托运的行李长(a cm )、宽(b cm )、高(c cm )之和不得超过160cm : . ③某树种植时树围6cm ,生长期内每年增加3cm ,经过x 年后树围超过30cm : .变式训练:1. 今年成都7月份最高气温为34℃,最低气温为18℃,则气温t 的变化范围是( )A. t >18℃B.t ≤34℃C. 18℃≤t ≤ 34℃D.18℃<t <34℃2.坐在行驶在公路上的汽车里会看到不同的交通标志图形,它们有着不同的意义,如图所示,如果设汽车的质量为x,速度为y,宽度为l,高度为h,用不等式表示图中的意义:(1);(2);(3);(4);3.用不等式表示.(1)x的40%比它的3倍小:;(2)x的7倍与2倍的和不足-11:;(3)a的3倍与5的差为非负数:;(4)X与8的差的一半不大于1:;(5)X不小于5且不大于8:;(6)2y-3的值至少比y-3大7: .4.用甲乙两种原料配制成某种饮料,已知这两种原料的维生素C的含量及购买这两种原料的价格如下表:原料甲种原料乙种原料维生素C含量(单位/千克)500 80原料价格(元/千克)16 4(1)现配制这种饮料9千克,要求至少含有4000单位的维生素C,试写出所需甲种原料的质量x(千克)应满足的不等式:;(2)如果还要求甲、乙两种原料的费用不超过70元,试写出(千克)应满足的另一个不等式: .知识点三:比较大小例3.在下列各题的空格处,填上适当的不等号.34- 43- ; ()21- ()25.0-; a - 0 ; 322+x 0; ()21--x 0 ; 542+-x x 0;随堂评测:1. 学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x 辆,租用30座客车辆y 辆,则不等式:“45x+30y ≥500”表示的实际意义是( )A. 两种客车总的载客量不少于500人B. 两种客车总的载客量不超过500人C. 两种客车总的载客量不足500人D. 两种客车总的载客量恰好等于500人2. 在数学式:-2<0,5a+3b >0,x=5,22y xy x -+,a ≠0,m+2≥n+3中,不等式有 个.3. 某品牌袋装奶粉,袋上标有“净含量400g ”“每百克中含有蛋白质≥18.9g ”,那么这样的一袋奶粉中蛋白质的含量不少于 克.4. 用不等号填空.(1)-π -3;(2)2a 0;(3)y x + y x +;(4)(-5)÷(-1) (-6)÷(-7);(5)当a 0时,a a -=.5. (1)小华拿24元购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,x 根火腿肠,请你列出关于x 的不等式: ;(2)八(1)班同学去春游花300元租客车,每人交7元,租车费还不够,每人交8元又有剩余,那么八(1)班人数x 应该满足的关系式为: .6.有理数m 、n 在数轴上的位置如图所示,用不等号填空:(1)m+n 0; (2)m-n 0; (3)n m 0; (4)2m n.7.用适当的符号表示下列不等关系(必要时请先设未知数):(1)x 的31与x 的2倍的和是非正数; (2)一枚炮弹的杀伤半径不小于300米;(3)三件上衣与四条长裤的总价钱不高于268元;(4)明天下雨的可能性不大于70%;(5)小明的身体不比小刚轻.。
一. 不等关系第一章一元一次不等式和一元一次不等式组1. 一般地,用符号“<”(或“ ≥”), “>”(或“ ≤”)连接的式子叫做不等式.2.区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。
3.准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数⇔ 非正数⇔ 大于等于0( ≥ 0) ⇔小于等于0( ≤ 0) ⇔0 和正数0 和负数⇔不小于0⇔不大于0二. 不等式的基本性质1.掌握不等式的基本性质,并会灵活运用:(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc, a >b .c c(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc, a <bc c2.比较大小:(a、b 分别表示两个实数或整式) 一般地:如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b;如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b;如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b;即:a>b ⇔ a-b>0 a=b ⇔ a-b=0 a<b ⇔ a-b<0(由此可见,要比较两个实数的大小,只要作差即可)例下列各式一定成立的是( )A.7a﹥4a B. a﹥-a C. a+1﹥a-1 D. a≤a2例若a﹥b,且a、b 同号,以下不等式中一定成立的有①a2﹥b2 ②a3<b3 ③1/a<1/b ④a/b﹥1A. 0B. 1C. 2D. 3三. 不等式的解集:1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心点,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2.解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题)4.一元一次不等式基本情形为ax>b(或ax<b)①当a>0 时,解为x >b;②当a=0 时,且b<0,则x 取一切实数;当a=0 时,且b≥0,则a无解;③当a<0 时, 解为x <b ;a5.不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式;④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意.例不等式mx﹥n(m≠0)的解集是( )A.x﹥n/m B.当m﹥0 时,x﹥n/m,当m<0 时,x<-n/mC.x<n/m D.当m﹥0 时,x﹥n/m,当m<0 时,x<n/m例如果不等式(a+1) x﹥(a+1)的解集为x<1,则a 必须满足的的条件是:A. a<0B. a≤-1C. a﹥-1D. a<-1例已知关于x 的不等式(2a-b)x+a-5b ﹥0 的解集为x<10/7,则ax+b﹥0 的解集为例若不等式组x﹥a 无解,则不等式组x﹥2-a 的解集是例水果店进了某中水果1t,进价是7 元/kg。
⼋年级数学下册(新版北师⼤版)精品导学案【第⼆章_⼀元⼀次不等式和⼀元⼀次不等式组】第⼆章⼀元⼀次不等式和⼀元⼀次不等式组第⼀节不等关系【学习⽬标】1.理解不等式的概念,感受⽣活中存在的不等关系。
2.能根据条件列出不等式,增强学⽣的符号感,发展其数学化的能⼒。
3.通过观察、分析、猜想、独⽴思考的过程感受不等式这个重要的过程,发展学⽣归纳、猜想能⼒。
【学习⽅法】⾃主探究与⼩组合作交流相结合.【学习重难点】重点:对不等式概念的理解。
难点:怎样建⽴量与量之间的不等关系。
【学习过程】模块⼀预习反馈⼀.学习准备1.⼀般地,⽤符号“<”(或“≤”),“>”(或“≥”)连成的式⼦叫做。
注意:⽤符号“≠”连接的式⼦也叫不等式。
2.列不等式:列不等式类似于列⽅程,列⽅程依据的是等量关系,列不等式依据的是不等关系,列不等式的关键是找不等关系。
⼤于⽤符号表⽰,⼩于⽤符号表⽰;不⼤于⽤符号表⽰,不⼩于⽤符号表⽰。
3.阅读教材:第⼀节不等关系⼆.教材精读4.例题:如图,⽤两根长度均为l cm的绳⼦,分别围成⼀个正⽅形和圆,(1)如果要使正⽅形的⾯积不⼤于25cm2,那么绳长l应满⾜怎样的关系式?(2)如果要使圆的⾯积不⼩于100 cm2,那么绳长l应满⾜怎样的关系式?(3)当l=8时,正⽅形和圆的⾯积哪个⼤?l=12呢?(4)你能得到什么猜想?改变l的取值再试⼀试?分析:正⽅形的⾯积等于边长的平⽅.圆的⾯积是πR2,其中R是圆的半径.两数⽐较有⼤于、等于、⼩于三种情况,“不⼤于”就是等于或⼩于. “不⼩于”就是⼤于或等于。
做⼀做:通过测量⼀棵树的树围(树⼲的周长),可以计算出它的树龄,通常规定以树⼲离地⾯1.5m的地⽅作为测量部位。
某树栽种时的树围为5㎝,以后树围每年增加约3㎝,这棵树⾄少⽣长多少年其树围才能超过2.4m?(只列关系式)归纳⼩结:⼀般地,⽤符号“〈”(或“≤”),“〉”(或“≥”)连接的式⼦叫做不等式。
实践练习:判断下列各式哪些是不等式,哪些既不是等式也不是不等式。
2022北师大版八年级数学下册全套教案目录第一章一元一次不等式和一元一次不等式组1不等关系2不等式的基本性质3不等式的解集4一元一次不等式5一元一次不等式与一次函数6一元一次不等式组第二章分解因式1分解因式2提公因式法3运用公式法第三章分式1分式2分式的乘除法3分式的加减法4分式方程第四章相似图形1线段的比2黄金分割3形状相同的图形4相似多边形5相似三角形6探索三角形相似的条件7测量旗杆的高度8相似多边形的性质9图形的放大与缩小第五章数据的收集与处理1每周干家务活的时间2数据的收集3频数与频率4数据的波动第六章证明(一)1你能肯定吗2定义与命题3为什么他们平行4如果两条直线平行5三角形内角和定理的证明6关注三角形的外角第一章一元一次不等式和一元一次不等式组1.1不等关系一、教学目标:理解实数范围内代数式的不等关系,并会进行表示。
能够根据具体的事例列出不等关系式。
二、教学过程:如图:用两根长度均为Lcm的绳子,各位成正方形和圆。
(1)如果要使正方形的面积不大于25㎝2,那么绳长L应该满足怎样的关系式?(2)如果要使原的面积大于100㎝2,那么绳长L应满足怎样的关系式?(3)当L=8时,正方形和圆的面积哪个大?L=12呢?(4)由(3)你能发现什么?改变L的取值再试一试。
在上面的问题中,所谓成的正方形的面积可以表示为(L/4)2,远的面积可以表示为π(L/2π)2(1)要是正方形的面积不大于25㎝2,就是(L/4)2≤25,即L2/16≤25。
(2)要使原的面积大于100㎝2,就是π(L/2π)2>100即L2/4π>100。
(3)当L=8时,正方形的面积为82/16=6,圆的面积为82/4π≈5.1,4<5.1此时圆的面积大。
当L=12时,正方形的面积为122/16=9,圆的面积为122/4π≈11.5,9<11.5,此时还是圆的面积大。
教师得出结论(4)由(3)可以发现,无论绳长L取何值,圆的面积总大于正方形的面积,即L2/4π>L2/16。
北师大版八年级下册数学《2.1 不等关系》教案一. 教材分析北师大版八年级下册数学《2.1 不等关系》这一节主要介绍不等式的概念和基本性质。
通过这一节的学习,使学生了解不等式的定义,理解不等式中的基本概念如解、解集等,掌握不等式的基本性质,为后续的不等式计算和应用打下基础。
二. 学情分析学生在学习这一节之前,已经学习了有理数、方程等基础知识,具备一定的逻辑思维能力和运算能力。
但他们对不等式的概念和性质可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。
三. 教学目标1.了解不等式的定义,理解不等式中的基本概念。
2.掌握不等式的基本性质,能运用不等式解决实际问题。
3.培养学生的逻辑思维能力和运算能力。
四. 教学重难点1.不等式的定义和基本性质。
2.如何运用不等式解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过实例和练习引导学生理解和掌握不等式的概念和性质,培养学生运用不等式解决实际问题的能力。
六. 教学准备1.准备相关的实例和练习题。
2.准备课件和教学素材。
七. 教学过程1.导入(5分钟)通过一个实际问题引入不等式的概念,如“小明比小红高,请问小明和小红的身高关系是什么?”引导学生思考和表达不等式。
2.呈现(10分钟)呈现不等式的定义和基本性质,通过课件和讲解使学生理解和掌握。
同时,给出相关的实例和练习题,让学生巩固所学知识。
3.操练(10分钟)让学生分组进行练习,解决实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)通过一些选择题和填空题,检验学生对不等式的理解和掌握程度。
5.拓展(5分钟)引导学生思考和探讨不等式在实际生活中的应用,如比较物品的价格、判断比赛的名次等。
6.小结(5分钟)对本节课的主要内容进行总结,强调不等式的定义和基本性质。
7.家庭作业(5分钟)布置一些相关的练习题,让学生课后巩固所学知识。
8.板书(5分钟)总结本节课的主要知识点,方便学生复习和记忆。
2024北师大版数学八年级下册2.1《不等关系》教学设计一. 教材分析《不等关系》是北师大版数学八年级下册第2.1节的内容,主要介绍不等式的概念和性质,以及不等关系的基本形式。
本节内容是在学生已经掌握了实数、函数等基础知识的基础上进行讲解的,为后续的不等式运算和不等式组的学习打下基础。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于实数和函数等基础知识有一定的掌握。
但是,对于不等式的概念和性质的理解还需要通过具体的例子和练习来进行巩固。
此外,学生对于实际问题中的不等关系还需要进一步的引导和培养。
三. 教学目标1.了解不等式的概念和性质,掌握不等关系的基本形式。
2.能够运用不等关系解决实际问题,提高解决实际问题的能力。
3.培养学生的逻辑思维能力和抽象思维能力,提高学生的数学素养。
四. 教学重难点1.不等式的概念和性质的理解。
2.不等关系在实际问题中的应用。
五. 教学方法采用问题驱动法和案例教学法,通过具体的例子和练习来引导学生理解和掌握不等式的概念和性质,以及如何运用不等关系解决实际问题。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备课件和教学素材。
七. 教学过程1.导入(5分钟)通过一个实际问题引入不等关系的概念,例如:小明比小红高,如何用数学表达式来表示这个关系?2.呈现(15分钟)通过具体的例子和练习,引导学生理解和掌握不等式的概念和性质。
例如,给出两个实数a和b,如何判断a是否大于b?如何表示a大于b?3.操练(15分钟)让学生通过练习来巩固对不等式的理解和掌握。
例如,给出一些不等式,让学生判断其真假,并解释原因。
4.巩固(10分钟)通过一些综合性的练习题,让学生应用不等关系来解决实际问题。
例如,给出一个实际问题,让学生用不等式来表示问题的条件,并求解。
5.拓展(10分钟)引导学生思考不等关系在实际问题中的应用,如何运用不等关系来解决实际问题。
例如,给出一个实际问题,让学生用不等式来表示问题的条件,并求解。
基于标准的教学设计北师大版八年级(下册)第二章一元一次不等式与一元一次不等式组《回顾与思考》第二章一元一次不等式与一元一次不等式组回顾与思考一、课标描述(摘要)及其解读2011版新课程标准要求:1.结合具体问题,了解不等式的意义,探索不等式的基本性质.2.能解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个元一次不等式组成的不等式组的解集.3.能根据具体问题中的数量关系,列出一元一次不等式,解决具体问题.课标对于“了解”的要求是:从具体实例中知道或举例说明对象的有关特征;根据对象的特征,从具体情境中辨认或者举例说明对象.课标对于“理解,会”的要求是:描述对象的特征和由来,阐述此对象与相关对象之间的区别和联系.课标对于“能”的要求是:在理解的基础之,把对象用于新的情境.课标对于“体会”的要求是:参与特定的数学活动,主动认识或验证对象的特征,获得一些经验.二、教材分析在小学数学教材中,已经呈现了一些关于不等关系的相关知识,学生知道生活大量存在着不等关系的量,了解“大于”、“小于”等符号的用法和意义,能比较两数的大小,并能用数学的语言表达;学生通过对本章内容的学习,掌握了不等式的性质、一元一次不等式(组)的解法,并通过解决一些简单的实际问题,体会不等式的模型思想及一元一次不等式、一次函数、一元一次方程之间的内在联系.三、学情分析学生的知识技能基础:学生通过对本章内容的学习,掌握了不等式的性质、一元一次不等式(组)的解法,并通过解决一些简单的实际问题,体会不等式的模型思想及一元一次不等式、一次函数、一元一次方程之间的内在联系.学生活动能力基础:经历探索、发现不等关系的过程学习解决一些简单的实际问题.四、学习目标学生通过整理本章学习的主要内容,建构本章知识联系图,体会知识之间的发展脉络与内在联系,增强应用数学知识研究和解决实际问题的能力. 本节课的具体学习目标是:1.通过梳理本章内容,进一步体会数形结合思想及类比的思想方法.2.通过基础过关题组的训练,进一步夯实基础,掌握不等式的基本性质,理解不等式(组)的解及解集的含义,会解简单的一元一次不等式(组),并能在数轴上表示其解集,并体会不等式函数、方程之间的联系.3.通过深度研讨环节,能够举一反三,灵活应用.4.通过实际应用,能够建立不等模型,能够用一元一次不等式解决一些简单的实际问题.五、学习重难点重点:梳理本章内容,掌握不等式的基本性质,理解不等式(组)的解及解集的含义,会解简单的一元一次不等式(组),并能在数轴上表示其解集,并体会不等式、函数、方程之间的联系.难点:进一步体会数形结合思想及类比的思想方法,能够建立不等模型,能够用一元一次不等式解决一些简单的实际问题.六、评价设计根据课标要求:评价的主要目的的为了全面了解学生数学学习的过程和结果,激励学生的学习和改进教师的教学. 所以,本节课的教学评价主要通过以下环节进行:1.通过小组讨论交流展示本章思维导图的过程,引领学生进行对话交流,在鼓励的基础上纠正偏差,并对其进行定性的评价;2.通过“基础过关”、“当堂检测”来检验教学效果,并在讲评中,肯定优点,指出不足;3.通过深度研讨环节,使学生能够在交流中,思想相互碰撞,思维得到提升;4.通过自我评价表和组长评价表,对本节课学习过程进行过程性评价;通过作业,反馈信息,再次对本节课做出评价,以便查缺补漏.七、学习过程依据“目标导引教学”的理念和“教、学、评一致性”的原则,具体流程如下:学习目标学习评价学习过程一、课前准备、交流复习目标1:通过梳理本章内容,进一步体会数形结合思想及类比的思想方法.1.通过小组分享,制作思考评价学生思路是否清楚,结构是否合理;2.通过提问,检测学生是否能快速的回答这些问题.1.学生通过课前准备,以小组为单位制作思维导图,并且分享制作思路,对本章内容进行梳理并且再一次画出本章的结构图.2.教师引导,总结本章的核心数学思想以及做题方法,并提出如下问题(1)不等式有哪些基本性质?它与等式的基本性质有什么异同?(2)接一元一次不等式与解一元一次方程有什么异同?(3)举例说明在数轴上如何表示一元一次不等式(组)的解集?(4)举例说明不等式、函数、方程之间的关系.设计意图学生通过对本章的知识进行整理,建构本章的知识体系. 通过画本章知识联系图培养学生归纳整理、对比分析的能力,学生可以互相进行比较、补充,养成交流与合作的习惯.二、基础过关、大展身手目标2:通过基础过关题组的训练,进一步夯实基础,掌握不等式的基通过独立完成、教师提问、自我评价的方式检测学生的基础过关题1.给出下面6个式子:①3>0;②x<-2;③4x+3y≠0;④x=3;⑤x-1;⑥x+2≤3. 其中不等式有()A.2个B.3个C.4个D.5个2.有下列四个命题:①若a>b,则a+1>b+1;②若a>b,则a-1>b-1;③若a>b,则-2a<-2b;本性质,理解不等式(组)的解及解集的含义,会解简单的一元次不等式(组),并能在数轴上表示其解集,并体会不等式、函数、方程之间的联系.组,进一步查漏补缺.④若a>b,则ma<mb. 其中正确的有()A.1个B.2个C.3个D.4个3.若x>y,且(a-3)x<(a-3)y,则a的值可能是()A.0B.3C.4D.5归纳总结:不等式的性质.4.下列不等式中,是一元一次不等式的有()①3x-7>0;②2x+y>3;③2x2-x>2x2-1;④x+1<7.A.1个B.2个C.3个D.4个5.解不等式113xx+-<.归纳总结:解一元一次不等式的步骤.6.解不等式组3(2)42113x xxx--≥-⎧⎪⎨+-<⎪⎩,并在数轴上表示不等式的解集.总结归纳:解一元一次不等式组的步骤以及在数轴上表示其解集.7.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是()A.x<0B.x>0C.x<2D.x>28.若关于x的不等式mx-1>0(m≠0)的解集是x>1,则直线y=mx-1与x轴的交点坐标是 .9.如图,直线y=3x和y=kx+2相交于点P(a,3),则不等式3x>kx+2的解集为 .总结归纳:一次函数与一元一次不等式的关系.设计意图要建高楼大夏必须先打好基础,通过这个环节的设计,对于不等式的基本性质、元一次不等式的解法以及用数轴表示其解集起到了很好的检测目的,然后让学生先独自完成上述各小题的解答,然后教师提问,让学生自己来作评判,找出存在的问题. 对于做得比较好的同学,教师给予鼓励,使学生对本章知识内容有进一步的理解和掌握.三、深度研讨、再度提高目标3:通过深度研讨环节,能够举反三,灵活应用.通过独立思考、小组探讨、小组分享的方式评价学生对较复杂的一元一次不等式(组)——含参的不等式的问题解决.问题四:含参数的不等式相关问题.10.已知不等式组+21x m nx m+⎧⎨-<⎩>的解集为-1<x<3,求(m+n)2018的值.11.若不等式x-2≤m的正整数解只有3个,则m的取值围为 .12.已知不等式组2xx a⎧⎨<⎩>.(1)如果此不等式组无解,则a的取值范围;(2)如果此不等式组有解,则a的取值范围.数学思想:.设计意图通过小组讨论,学生自己总结做题方法,更利于学生理解和掌握一元一次不等式(组)的与应用,同时也培养和提高了学生的总结归纳能力和抽象思维能力.也再次感受到数形结合的数学思想.四、建构模型、实际应用目标4:通过实际应用,能够建立不等模型,能够用一元次不等式解决一些简单的实际问题.通过独立思考,同学分享评价学生是否能够从实际问题中建立不等模型,模型建立后,能否找到符合实13.小丽去文具店买铅笔和橡皮,铅笔每支0.5元,橡皮每块0.4元,小丽带了2元钱,可以买几支铅笔几块橡皮?14.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超过300元时,超出部分按原价的8折付款;在乙超市累计购买商品超过250元时,超出部分按原价的85际情况的解. 折付款,设一顾客预计购物x(x>300)元. (1)分别写出该顾客在甲、乙两家超市购物所付的费用y甲(元),y乙(元)与x之间的函数关系式;(2)该顾客到哪家超市购物更优惠?设计意图本环节通过实际问题的设置,进一步体会不等式是来源于生活,又服务于生活,能够用不等式解决实际问题,并进一步渗透数学建模的思想. 让学生感受到生活当中处处有数学,激发学生对学习数学的兴趣和愿望.五、归纳总结、反馈评价培养归纳能力,养成反思习惯.并检测目标1、2、3、4的学习效果.通过学生能否完整清晰地说出本节课学习的收获和困惑,了解学生理解知识和情感态度方面的情况.通过“当堂检测”,评价学生的知识技能达标情况.总结归纳说说本节课又学习到了哪些数学知识?体会到了哪些数学思想与方法?还有什么困惑吗?当堂检测:1.下列各式是一元一次不等式的是()A.2x-4>5y+1B.3>-5C.4x+1>0D.4y+3<1y2.若a>b,则下列式子正确的是()A. 1122a b< B.-5a>-5bC. a-3>b-3D.4-a>4-b3.已知关于x的不等式组x ax⎧⎨⎩>>b,其中a、b在数轴上对应点如图所示,则这个不等式组的解集为()A.x>bB.x>aC.b<x<aD.无解4.不等式3x+12≥0的所有正整数解的和为 .5.如图,直线y=ax+b经过A(-2,-5)、B(3,0)两点,那么,不等式ax+b<0的解集是.6.小聪用100元钱去购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能购买多少支钢笔?通过归纳和总结,让学生学会提炼和阐述自己的认知,养成善于反思的习惯. 并通过反馈检测样题,评价知识技能的达成度,确保课堂实效性.在学习指导书的最后附一份个人评价表,对本节课学习过程进行过程性评价.1.必做:完成课本61页复习题第2、4、7、9、12题(AB组全做)2.选做:完成课本63页复习题第13、15题(B组做)八、板书设计第二章一元一次不等式与一元一次不等式组知识结构多媒体核心思想:类比思想数形结合数学建模1.本节课的重点在让每个学生建构本章知识体系. 教师让学生充分思考、练习和交流,同时充分暴露出存在的问题,达到有效复习的目的.2.华罗庚教授说:读书要从薄到厚,又从厚到薄. 复习重在从厚到薄.每一章的复习要把全章的知识分成块,整理成知识网络,形成知识系统,并加以综合运用,其中采用思维导图、知识结构图、习题组等措施复习是有效的,本节课在这方面做了一些尝试.3.一般复习课的容量比较大,一方面要让充分学生思考和交流,积极发挥其主体作用;另方面教师作为组织者和引导者,要主次分明,把握好教学的节奏,提高课堂效率.4.复习课不仅仅是知识的小结及运用,而且更重要的是学习方法、能力和习惯的培养,关注学生的可持续发展,这一点对于学生的终身学习是有益的.。
《不等关系》典型例题例题1 小林到水果摊上称了24橘子,摊主称了几只橘子说:“你看秤,高高的.”这个“高高的”,是什么意思?你能用不等式把它表示出来吗?例题2 用不等式表示:(1)a 是正数; (2)x 与5的和是负数;(3)m 的一半不大于10; (4)x 的21与1的差是非负数.例题3 判断下列式子哪些是不等式?哪些不是?为什么?①32>-, ②12-≤x ,③12-x ,④vt s =,⑤28m m <-⑥1235-=-x x ,⑦042≥+x ⑧222c b a ≠+例题4 用不等式表示:(1)a 的绝对值是非负数;(2) x 的3倍与2的差是负数;(3)m 与n 的平方和不小于m 与n 的积的2倍;(4) 老师的年龄比你的年龄的2倍还大.例题5 根据题意列不等式:(1)a 与34的和小于-2; (2)x 的相反数与1的差不小于2;(3)y 的一半比y 的2倍大;(4)a 与b 的和是负数.例题6 小明和小华都在看同本长篇小说,到今天为止,小明看到第28页,小华看到第83页,如果从现在起,小明每天看16页,小华每天看10页,问至少几天后小明看的比小华看的页数多?请你根据题意列出不等式,并用列表的方法找出不等式的解.同伴之间交流、讨论.例题7用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量如下表:原料甲种原料乙种原料维生素C(单位/千克)600 100现用这两种原料共10千克配制这种饮料,要求至少含有4200单位的维生素C,试写出所需甲种原料的质量x(千克)应满足的不等式.例题8设“●”、“▲”、“■”表示三种不同的物体,现用天平称了两次,情况如图所示,那么●、▲、■这三种物体按质量从大到小的顺序排列应为()A.■、●、▲ B.■、▲、● C.▲、●、■ D.▲、■、●参考答案例题1 解答 设水果的实际质量为x kg ,“高高的”意思是:2>x .说明 生活中有许多不等关系的例子,教学中可以根据学生的实际情况选取一些让学生用不等式来表达,但问题不易过难,只要能让学生感受不等式在生活中的存在性即可。
2.1不等关系1.了解不等式的概念;2.会用不等式表示简单问题的数量关系.(重点,难点)一、情境导入有一群猴子,一天结伴去摘桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每只猴子分5个,那么最后一只猴子分得的桃子不够5个.你知道有几只猴子,几个桃子吗?二、合作探究探究点一:不等式的概念以下各式中:①-3<0;②4x+3y>0;③x=3;④x2+xy+y2;⑤x≠5;⑥x+2>y +3.不等式的个数有()A.5个B.4个C.3个D.1个解析:③是等式;④是代数式,没有不等关系,所以不是不等式.不等式有①②⑤⑥,共4个.应选B.方法总结:此题考查不等式的判别,一般用不等号表示不等关系的式子是不等式.解答此类题的关键是要识别常见不等号:>,<,≤,≥,≠.如果式子中没有这些不等号,就不是不等式.探究点二:列不等式【类型一】用不等式表示数量关系根据以下数量关系,列出不等式:(1)x与2的和是负数;(2)m与1的相反数的和是非负数;(3)a与-2的差不大于它的3倍;(4)a,b两数的平方和不小于他们的积的两倍.解析:(1)负数即小于0;(2)非负数即大于或等于0;(3)不大于就是小于或等于;(4)不小于就是大于或等于.解:(1)x+2<0;(2)m-1≥0;(3)a+2≤3a;(4)a2+b2≥2ab.方法总结:在列不等式时要善于将文字与相应的数学符号相对应,如负数――→对应<0等,列出相应的不等式.【类型二】实际问题中的不等式亮亮准备用自己节省的零花钱买一台学生平板电脑.他现在已存有55元,方案从现在起以后每个月节省20元.假设此学生平板电脑至少需要350元,那么可以用于计算所需要的月数x的不等式是() A.20x-55≥350 B.20x+55≥350C.20x-55≤350 D.20x+55≤350解析:此题中的不等关系:现在已存有55元,方案从现在起以后每个月节省20元.假设此学生平板电脑至少需要350元.列出不等式20x+55≥B.方法总结:用不等式表示数量关系时,要找准题中表示不等关系的两个量,并用代数式表示;正确理解题中的关键词,如负数、非负数、正数、大于、不大于、小于、不小于、缺乏、不超过、至少、至多等的含义.三、板书设计1.不等式的概念2.列不等式(1)找准题目中不等关系的两个量,并且用代数式表示;(2)正确理解题目中的关键词语确实切含义;(3)用与题意符合的不等号将表示不等关系的两个量的代数式连接起来;(4)要正确理解常见不等式根本语言的含义.本节课通过实际问题引入不等式,并用不等式表示数量关系.要注意常用的关键词的含义:负数、非负数、正数、大于、不大于、小于、不小于、缺乏、不超过,这些关键词中如果含有“不〞“非〞等文字,一般应包括“=〞,这也是学生容易出错的地方.第2课时三角形的三边关系1.掌握三角形按边分类方法,能够判定三角形是否为特殊的三角形;2.探索并掌握三角形三边之间的关系,能够运用三角形的三边关系解决问题.(难点)一、情境导入数学来源于生活,生活中处处有数学.观察下面的图片,你发现了什么?问:你能不能给三角形下一个完整的定义?二、合作探究探究点一:三角形按边分类以下关于三角形按边分类的集合中,正确的选项是()解析:三角形根据边分类⎩⎪⎨⎪⎧不等边三角形等腰三角形⎩⎪⎨⎪⎧只有两边相等的三角形三边相等的三角形〔等边三角形〕应选D.方法总结:三角形按边分类,分成不等边三角形与等腰三角形,知道等边三角形是特殊的等腰三角形是解此题的关键.探究点二:三角形中三边之间的关系【类型一】判定三条线段能否组成三角形以以下各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cmC.1cm,1cm,3cm D.3cm,4cm,9cm解析:选项A中2+3=5,不能组成三角形,故此选项错误;选项B中5+6>10,能组成三角形,故此选项正确;选项C中1+1<3,不能组成三角形,故此选项错误;选项D中3+4<9,不能组成三角形,故此选项错误.应选B.方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.【类型二】判断三角形边的取值范围一个三角形的三边长分别为4,7,x,那么x的取值范围是()A.3<x<11 B.4<x<7C.-3<x<11 D.x>3解析:∵三角形的三边长分别为4,7,x,∴7-4<x<7+4,即3<x A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.【类型三】三角形三边关系与绝对值的综合假设a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a -b|=b+c-a+c+a-b+c+a-b=3c+a -b.方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.三、板书设计1.三角形按边分类:有两边相等的三角形叫做等腰三角形,三边都相等的三角形是等边三角形,三边互不相等的三角形是不等边三角形.2.三角形中三边之间的关系:三角形任意两边之和大于第三边,三角形任意两边之差小于第三边.本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形〞引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系〞.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既增加了学习兴趣,又增强了学生的动手能力。
第一章三角形的证明本章总体设计介绍本章是八年级上册第七章《平行线的证明》的继续,在“平等线的证明”一章中,我们给出了8 条基本事实,并从其中的几条基本事实出发证明了有关平行线的一些结论. 运用这些基本事实和已经学习过的定理,我们还可以证明有关三角形的一些结论.在这之前,学生已经对图形的性质及其相互关系进行了大量的探索,探索的同时也经历过一些简单的推理过程,已经具备了一定的推理能力,树立了初步的推理意识,从而为本章进一步严格证明三角形有关定理打下了基础.本章所证明的命题都和等腰三角形、直角三角形有关,主要包括:1.等腰三角形的性质和判定定理;2.直角三角形的性质定理和判定定理;3.线段的垂直平分线性质和判定定理;4.角平分线性质定理和判定定理。
本章教学建议对于已有命题的证明,教学过程中要注意引导学生回忆过去的探索、说理过程,从中获取严格证明的思路;对于新增命题,教学过程中要重视学生的探索、证明过程,关注该命题与其他已有命题之间的关系;对于整章的命题,注意关注将这些命题纳入一个命题系统,关注命题之间的关系,从而形成对相关图形整体的认识。
对于证明的方法,除了注重启发和回忆,还应注意关注证明方法的多样性,力图通过学生的自主探索,获得多样的证明方法,并在比较中选择适当的方法。
证明过程中注意揭示蕴含其中的数学思想方法,如转化、归纳、类比等。
作为初中阶段几何证明的最后阶段,教学中应要求学生掌握综合法和分析法证明命题的基本要求,掌握规范的证明表述过程,达成课程标准对证明表述的要求。
1. 等腰三角形(一)一、学生知识状况分析在八年级上册第七章《平行线的证明》,学生已经感受了证明的必要性,并通过平行线有关命题的证明过程,习得了一些基本的证明方法和基本规范,积累了一定的证明经验;在七年级下,学生也已经探索得到了有关三角形全等和等腰三角形的有关命题,这些都为证明本节有关命题做了很好的铺垫。
二、教学任务分析本节将进一步回顾和证明全等三角形的有关定理,并进一步利用这些定理、公理证明等腰三角形的有关定理,由于具备了上面所说的活动经验和认知基础,为此,本节可以让学生在回顾的基础上,自主地寻求命题的证明,为此,确定本节课的教学目标如下:1.知识目标:理解作为证明基础的几条公理的内容,应用这些公理证明等腰三角形的性质定理;在证明过程中,进一步感受证明过程,掌握推理证明的基本要求,明确条件和结论,能够借助数学符号语言利用综合法证明等腰三角形的性质定理和判定定理;熟悉证明的基本步骤和书写格式。
2.1 不等关系
本课时学习要点:不等关系
本课时学习目标: 【知识与技能】1.理解不等式的意义。
2.能根据条件列出不等式。
【过程与方法】能根据条件列出不等式,增强学生的符号感,发展其数学化的能力。
【情感、态度与价值观】通过观察、分析、猜想、独立思考的过程感受不等式这个重要的过程,发展学生归纳、猜想能力。
本课时学习安排:
课前复习:
一般地,用符号“<”(或“≤”)和“>(或“≥”)连接的式子叫作
常见的不等号有
常见表示不等关系的词语及所对应的不等号
少于、不足: ;多于、高出: ;不多于、不超过、至多:
不少于、不低于、至少: ;不相等:
常见不等式表示的基本语言意义
x 是正数: ;x 是负数: ;x 是非负数: ;x 是非正数: a 大于b: ;a 不大于b : ;a 不小于b : ;
ab>0,可以说明 ;a 、b 异号: ;
课中学习:
活动一:不等式的概念
情景:如图,用两根长度均为l cm 的绳子,分别围成一个正方形和圆,
(1)如果要使正方形的面积不大于25cm 2,那么绳长l 应满足怎样的关系式?
(2)如果要使圆的面积不小于100 cm 2,那么绳长l 应满足怎样的关系式?
(3)当l =8时,正方形和圆的面积哪个大?l =12呢?
(4)你能得到什么猜想?改变l 的取值再试一试?
归纳:一般地,用符号“ ”(或“ ”),“ ”(或“ ”)连接的式子叫做不等式。
例1、下列式子中,哪些是不等式 ;哪些不是
(1) –2 < 0 ; (2) 2a > 3-a ; (3)3x +5; (4)2
(-1)a ≥0;
(5) s = vt ; (6)223x x +≠; (7) 3 > 5; (8) 5x ≤4x -1.
活动二:根据条件列不等式
例2、 用不等式表示:
(1)x 小于-6 (2)x +1大于0 (3)x 大于或等于5
(4)x 小于或等于-8 (5)x 不大于6 (6)x 不小于-2
(7) x 与5的和大于2 (8)x 与a 的差小于2
(9)x 与y 的差是负数 (10)x 与y 的和是非负数
(11)x 的2倍与5的和是正数 (12)x 与3的差是负数 例3、某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,设她答对了n 道题,则根据题意可列不等式
变式练习:1、某自来水公司按如下规定收取费用:若每月用水不超过10立方米,则按每立方米1.5元收费;若每月用水超过10立方米,超过部分按每立方米2元收费,小红家某月水费不少于25元,则她家这个月的用水量x (立方米),请列出不等式:
2、某商品进价x 元,提高20%进行标价后按照8折出售,要使利润率不低于5%,请列出不等式:
3、某饮料厂开发了A 、B 两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示,现用甲原料和乙原料各2800克进行试生产,计划生产A 、B 两种饮料共100瓶,设生产A 种饮料x 瓶,请列出x 应满足的两个不等式: ,
课后巩固:
☆1、某种品牌的八宝粥,外包装标明:净含量为330±10g ,表明了这罐八宝粥的净含量x 的范围是( )
A.320<x <340
B.320≤x <340
C.320<x ≤340
D.320≤x ≤340
☆2、用不等式表示:
(1)a 与b 的和大于3: (2)x 的平方是非负数: ;
(3)a 不大于b : (4)x 的3倍与-2的差是负数: ;
(5)m 是大于-1且不大于2的数:______(6)x 的
21与y 的4倍的差的平方是一个正数; (7)a 的相反数是负数;____________(8)a 的5
2与4的和小于16;___________________ (9)y 的一半的绝对值大于2;________(10)a 与b 的和的平方大于a 与b 的平方和;______
(11)x 的20%与x 的和大于x 的3倍与2的和。
___________________
☆☆3、八二班班长拿了56元钱去给班内20名优秀学生买奖品,奖品有两种:钢笔和笔记本.已知钢笔每支5元,笔记本每本3元,如果买x 支钢笔,则列出关于x 的不等式是。