正比例函数的评课稿
- 格式:doc
- 大小:23.00 KB
- 文档页数:1
小学数学正比例评课稿培育学生用事物彼此联系和进展转变的观点来分析问题,使学生能够依照正比例的意义判定两种量是不是成正比例。
下面是小编为大伙儿整理的小学数学正比例评课稿,欢迎阅读。
小学数学正比例评课稿一张俊丽教师执教的数学课《正比例》教学思路清楚,教学成效良好。
依照教材和内容的特点,教师选择了师生互动,以教师的“引”为主导,学生为主体,让学生在互动交流中去明白得成正比例的量这一概念。
第一,让学生弄清什么叫“两种相关联”的量,教师引导学生从表格中去发觉时刻和路程两种量的转变情形。
第二,教师进一步引导学生考虑路程随着时刻的转变而转变,在这一转变进程中,有什么规律呢?学生看了表以后,发觉路程和时刻比的比值是一样的,都是90。
让学生明白得相对应的路程和时刻的比的比值都是90,从而冲破了正比例关系的第二个难点。
两种量中相对应的两个数的比会必然。
把学生对成正比例量的意义的明白得成一系统。
由于学生仍是第一次接触这一概念,以后的学习仍是让学生对照着例1来自己明白得数量和总价的正比例关系。
最后,在两个例题学习的基础上总结出成正比例量的意义,把这意义从局部的路程和时刻、数量和总价推行到其他数量之间的关系。
要紧优势有以下几点:一、新授前先寻觅生活中的量,为新课做了专门好的铺垫。
二、注重学生的体验,所有由于条件的限制没有让每一个学生都进行真实的实验,可是能精心制作课件,模拟实验,运用课件帮忙学生明白得“相关联的量”,冲破了教学的难点。
3、能做到以学生为主体,“规律”都是由学生得出,在学生完成有困难时及时的给予点拨。
4、教学时能紧密的练习生活实际,做到学以致用,符合新形势下的教学理念。
小学数学正比例评课稿二正比例的知识,是在学生已经学习了比和学会了分析大体数量关系的基础上进行学习的,是学生学习反比例知识和进一步研究数量关系的基础,内容抽象,学生难以同意。
1.联系生活,从生活中引入数学来源于生活,又效劳于生活。
新的《数学课程标准》明确要求“使学生感受数学与生活的紧密联系,从学生已有的生活体会动身,让学生亲历数学的进程”。
数学评课稿-《正比例函数性质》数学评课稿-《正比例函数性质》「篇一」《导数的几何意义》教学反思听了应老师的《导数的几何意义》,下面我谈谈自己在这节课中一点想法:1、设计贴切学案的设计符合新课标的要求,设计中体现了教师对教材的理解和处理,牢牢地抓住了以教材为“生长点”,问题的设置很好地放在了引导学生如何学上,充分体现了授课教师力求做到:启发与发现的结合;动手与动脑的结合;智力与非智力因素的结合。
2、实施大胆30多分钟时间大胆得让学生自主探究,充分体现了学生的主体地位,使每位学生都能参与到课堂中来,快者快学,慢者慢学,每位同学都能在这堂中有所收获,同时有利于学生自主能力的培养。
3、适时点拨在学案实施过程中,教师是巡视,观察,对自学比较薄弱的同学进行个辅导,而辅导形式采用“点而不破”,另对发现自学过程中多数学生难以解决的一个或几个带共性的问题,能够适时地给学生指出如何寻找解决问题恰当得认识条件和方法。
4、技术娴熟能熟练地应用几何画板,让学生形象直观地发现割线逼近的方法得到切线,突破当时,对割线变化趋势的研究。
数学评课稿-《正比例函数性质》「篇二」4月15日听了王老师讲的《小数与单位换算》,王老师以学生为主体,调动学生的学习积极性,让学生明确单位换算过程,教学效果良好。
优点:一、创设情境,让学生体会数学的趣味性和实用性教师采用现实生活中的例子导入新课,激发学生学习兴趣。
开课伊始,王老师用现在迎接学校运动会排练的方阵,帮助体育老师解决排队的问题,让学生感受到数学是为生活服务,在乐于帮助张老师的情境中,投入到学习中。
二、教学中,教师注重学生为主体。
教师在教学中,以学生为主体,让学生尝试解答,让学生在小组内交流换算方法,在做完题以后的方法交流,都引导学生积极参与到学习当中,教师对学生的活动进行补充,精讲,老师起到了组织、引导的作用,教学效果良好。
三、教师注重学生思维能力的培养。
单位换算不仅要用到小数点位置移动引起小数大小的变化,还用到单位的进率,教学中,教师适当的进行铺垫,回忆单位进率,明确高级单位和低级单位,然后进行新课教学,老师对学生的换算进行指导,低级单位到高级单位除以进率,要想进率,移动小数点,这一系列的教学注重了学生思维能力的培养。
《正比例函数》评课稿八年级上册的《正比例函数》,分别由刘老师和吴英老师主讲,风格各异,两节示范课下来,我的收获良多。
首先是刘老师的课,刘老师能根据本课的重点与难点精心设计教学内容,从学生的实际水平出发合理安排教学活动。
情境引入是学生身边熟悉的事物买桔子入手,学生根据表格的内容很容易就得出桔子价格y与购买斤数x的函数关系式。
从而得出正比例函数的定义。
在引导学生画正比例函数的图象过程中,根据学生的'实际动手操作,把他们的作品投影出来,对存在问题的画法,如画图时没有超出两个端点的位置,画完图形后忘记把函数式写在图象旁边等,这都是学生稍微不注意就会犯的错误,在课堂教学加以评讲,能及时引起学生的注意,避免以后犯同样的错误。
再通过观察,得到正比例函数的图象的性质。
整节课讲练结合,节奏流畅,学生通过老师的引导,发现问题,解决问题,师生关系融洽。
本节课还有一个亮点,就是利用了超级画板进行教学。
我在暑假期间也参加了市组织的超级画板的培训,这是一个很好用的工具,特别是在几何图形的教学中,它操作简便,使用灵活,学生能直观地看到图象在不同的象限,点是怎样运动的,它对应的坐标又是怎样变化的。
吴老师毕竟是从教多年,经验丰富的老师,从她的引入我就深深被吸引住了,一段燕鸥迁徙视频,形神具备,有声有色,引入课文恰到好处。
吴老师语言幽默,她特别会使用鼓励性的语言来调动学生学习的积极性,她采取小组合作学习的方法,充分发挥小组的力量,用加分奖励的方法,使各个小组间形成你追我赶的架势,学习气氛一下子就上来了。
我当时坐在后面看同学们上课时回答的情况,开始只有几个同学在积极回答,到后来,看到别的小组加分都很多了,一个问题出来同学们争着举手,有几个同学生把手举得很高,但都没机会被老师点到,同学们都希望为自己的小组加分啊。
我特别喜欢吴老师的两点法画图,这是我这堂课的又一大收获,两点法,而且只是知道一点而已,就能够把正比例函数的图象画出来,这里非常精彩,我想我上这节课的时候,肯定会把这些好的作图方法介绍给我的学生,从而减少学生学习的负担。
北师大版小学六年级数学下册《正比例》(第一课时)评课稿周老师上的这节课是北师大版小学六年级数学下册《正比例》第一课时的内容,她采用我校的生本课堂教学模式,结合“正方形的周长与边长,正方形的面积与边长,路程、时间与速度”等情境,经历正比例意义的建构过程,从变化中看到“不变”,认识正比例的意义。
整个课堂过程流畅、目标明确、和谐有效,是一堂高效的课。
具体表现为:1、如花微笑,温暖学生。
这节课上,周老师从开始到结束,脸上都洋溢着迷人的微笑。
微笑让学生感到温暖,身心放松,创造了和谐的教学课堂。
不管是引导学生发言,讲授新知识,还是针对练习,周老师始终保持微笑,这很难得。
2、与生本课堂教学模式接轨。
生本课堂模式是我校一直倡导的教学模式,周老师从前置性作业入手,通过学生汇报在前置性作业中的收获和疑问,引出本节课的内容,注重学生的生成。
3、用任务驱动引领学生,突出学生的主体地位。
整节课周老师用了两个任务驱动,第一个是四人小组合作交流:正方形的周长与边长、面积与边长,它们之间是怎样变化的?正方形的周长与边长、面积与边长之间的变化规律完全相同吗?第二个任务驱动是二人小组合作交流:说一说路程与时间的变化关系,写出路程和时间的比,求出比值,你有什么发现?让学生通过小组合作,深刻理解正比例的意义,从而达到突出重点,突破难点的目的,也充分体现了学生的主体地位,大大地提高了课堂效率。
4、在思考中前行。
小学生学习数学是一个思考的过程,“思考”是孩子们学习数学的一种重要的途径,可以说,没有思考就没有真正的数学学习。
本节课中,周老师注意把思考贯穿教学的全过程,特别在引出正比例的意义之后,周老师没有马上让学生去练习,而是反过来让学生思考,正方形的周长与边长、面积与边长是否成正比例,让孩子们通过观察两个相关联的量,判断两个量是否成正比例,一个正例,一个反例,让学生在思考中得到了巩固和提高。
5、练习设计具有阶梯性。
练习中,周老师首先出示填空题让学生理解正比例的意义,然后让学生观察两个相关联的量,出示文字叙述题让学生进行判断;最后出示解决问题让学生通过计算判断出两个量是否成正比例。
《正比例》这节课的教学,立足于数学知识本位,关注了学生的发展。
董老师在教学中特别注重利用引导的方法,引而不发,把需要探究的内容留给学生自己。
使教师的教和学生的学完美结合,达到了良好的教学效果。
一. 结合生活实际在引入时,首先,从青蛙的数量与青蛙的腿数让学生弄清什么叫“两种相关联”的量,之后董老师引导学生观察表格,工作总量与工作时间两种量的变化情况。
通过表格列举出两种变化的数量在一定的情况下变化的数据,引导学生进行探究,从而自己发现两种相关联的量,一种量扩大到原来的多少倍,另一种量也相应地扩大到相同的倍数,而且这两种量对应的数的比例始终不变。
从而理解正比例概念的本质特征。
接下来直接进入正比例的学习,显示出董老师对于课堂效率的要求。
二. 突出学生的主体地位董老师教态自然,语言幽默,轻松自如,具有大师风范。
在教学过程中,以工作总量、工作时间、工作效率(一定)及路程、时间、速度(一定)的关系为例,贴近学生生活实际,激发了学生思维,解决了正比例的核心就是:两种相关联的量,比例一定。
培养了学生归纳、推理、概括的能力,建立了模型思想。
并且把正比例关系用图像表示出来,向学生渗透了函数思想,把图像与生活中的一些事例联系起来,解决了生活中的数学问题,函数思想的渗透也为学生今后的学习奠定了好的基础。
在本节课的教学时,董老师给学生留有足够的思考和交流的时间,课堂气氛活跃,学生在不断的探究中学习,通过实践得出结论,给学生一个清晰并且记忆深刻的知识掌握过程。
在小组活动过程中,董老师仔细的查看每个小组学生的学习情况,对于发现的问题及时的进行讲解指导,帮学生解除困惑,扫除学生在探究过程中的障碍,不足之处在于对于典型的问题没有向全班进行展示讲解。
三. 练习设计具有阶梯性董老师自从引出正比例定义后,让学生判断这两个量是否成正比例关系。
首先出示表格让学生观察数量变化进行判断;其次出示文字叙述题进行判断;最后利用带有字母的等式进行判断。
《正比例》评课稿赵喜梅老师执教的是北师大版六年级下册《正比例》第19页——21页的内容。
赵老师教学思路清晰,课堂上,让学生自己观察,自己比较分析,自己归纳,来发现正比例量的特征,并常试抽象概括正比例的意义,提高学生分析,判断、概括、推理能力。
突破了难点,基本上达到了教学目标。
下面,谈一下我对这节课的个人看法:一、注重数学和生活的联系,课堂灵活开放。
老师从生活中的例子“买了一些苹果,已经吃了一部分,你想知道什么?”入手,引出数学的关联的量上,然后让学生从生活中找出相关联的量,让学生明白数学和生活密切相关。
从“人的体重与门的高度”还有“我们班的总人数,满意的人数和不满意的人数是否成正比例?为什么?”,无不体现了数学知识运用与生活的特点,课堂设计灵活开放,锻炼了学生的分散思维。
二、如花微笑,温暖学生。
这节课上,赵老师从开始到结束,脸上都洋溢着迷人的微笑。
微笑让学生感到温暖,身心放松,创造了和谐的教学课堂。
我想在课堂微笑很容易做到,但难的是微笑一节课,不管是引导学生发言,讲授新知识,还是针对练习……我想赵老师是达到了教学思想的很高境界。
三、用问题引领学生,突出学生的主体地位。
“如果已知正方形的边长,你能想到什么?”“你能用具体的数字说明它们之间的关系吗?”“请同学们挑选其中的一个表格认真观察,说说你发现了什么?”“如果把5个表格进行分类,你该怎么办?”每到关键的部分,老师并不着急告诉学生答案,而是用思考性的问题引着学生积极思考,最后由学生自己一点一点总结出来,让学生深刻理解知识点,从而达到突破重难点的目的。
《正比例》评课稿评价一节课如何,就是看构成课堂教学三要素的表现如何。
三要素即教师(教)、学生(学)、学习效果。
教研室设计的评课评价表很好。
虽说现在学生是主体,但这个主体地位能否真正落实,关键还看教师这个组织者、引导者和合作者的教学设计,所以我从以下几方面对本节课的教学进行点评:一、评教师的教从本节课来看,教师的教学有两大亮点:亮点一:认真落实县教育局的相关要求。
正比例函数评课稿教师在评课时一定要围绕已确定的目的进行,做到既有理论阐发,又有具体的教学建议,有说服力和可信度。
接下来小编搜集了正比例函数评课稿,欢迎查看,希望帮助到大家。
正比例函数评课稿一八年级数学“一课两讲”,课题为《正比例函数》。
每次听这样的公开课,各上课老师都有自己独特的授课风格,每次都会有不同的收获,听完两节课收获如下:一、关于课程设计本节课是在学习了函数的有关概念,和画函数图象后的内容。
由学生已经熟识的简单问题列出函数式———得出正比例函数的图象———归纳画图象的方法———归纳图象的性质———性质的应用。
整节课的内容刘俏敏老师和吴慧英老师都能清楚地在堂上呈现,符合教材内容的程序,而且在课件上或学案设计上都很有针对性地进行编排教学内容。
我更加欣赏刘俏敏老师体现直线动态的环节,它更直接地让学习者明确函数y随自变量x的变化情况。
当然,同样的教材,同样的学生,同样的45分钟,不同的老师,由于教学设计思路不同,课堂教学效果却有不相同。
刘老师设计的内容过渡相对较快,对比吴老师的教学方式就有些不同:吴老师会抓住本节的重心内容:多画图———正比例的性质———性质的应用。
吴老师在这个环节里把画图的操作环节设计得更为充实,学生只有在真正自己画出的图象中归纳性质,才能真正对正比例函数性质的理解和运用。
二、关于教学手段教学中,根据教学内容灵活地运用多媒体这一手段,对于激发学生学习兴趣,突破学习难点,提高课堂教学效率都很有好处的。
正如本节课在对此正比例函数的图象时,两位老师的课件均运用了超级画板教学,借助这样的动态的演示,学生头脑中会出现直线变动的规律景象。
因为整个演示的过程学生看得清楚,所以教学效果较好。
再有,利用多媒体教学,能较好地根据课程的内容合理处理一些问题,来吸引学生的注意力,提升学习的兴趣度,例如吴慧英老师的课前引入,那一段轻松愉悦的音乐,就给本节课做了一个很好的开头,我们也看到全班同学的关注度是很集中的。
用正比例解决问题评课稿一、引言正比例是数学中的一个重要概念,它在实际生活中也有广泛应用。
如何用正比例解决问题?本文将以评课稿为例,介绍如何用正比例方法评估课堂教学效果。
二、评估指标的确定1. 教学目标完成度教学目标是教学活动的核心,完成度是评估教学效果的重要指标之一。
我们可以通过考试成绩、作业质量等方式来衡量。
2. 学生参与度学生参与度是评估课堂氛围和教师授课能力的重要指标之一。
可以通过记录课堂互动情况、听课笔记等方式来衡量。
3. 教师授课能力教师授课能力是评估教师专业水平和教学质量的重要指标之一。
可以通过观察教师授课方式、听取同行评价等方式来衡量。
三、数据采集和处理1. 整理数据收集各项数据后,需要进行整理和分类。
将同一类别的数据归为一组,便于后续计算和分析。
2. 计算比例根据所采集到的数据,计算出各项指标的比例。
如教学目标完成度可以通过考试成绩和总分的比例来计算,学生参与度可以通过记录课堂互动情况和总课时的比例来计算,教师授课能力可以通过听取同行评价后得出的得分和总分的比例来计算。
3. 统计结果将各项指标的比例进行统计,得出整体评估结果。
根据评估结果,可以对教学活动进行改进和优化。
四、实际应用1. 评估过程中需要注意什么?在采集数据和处理数据时需要注意数据的准确性和客观性。
同时还需要注意评估过程中不要受到主观因素影响,保持客观公正态度。
2. 如何进行改进?根据评估结果,可以对教学活动进行改进和优化。
如发现教学目标完成度较低,可以针对性地加强知识点讲解、提高作业难度等方式来提高学生水平;发现学生参与度较低,可以采取更多互动方式、引导学生积极参与等方式来提高课堂氛围;发现教师授课能力较低,则需要加强自身专业知识和教学技巧的提升。
五、总结正比例方法是一种科学有效的评估方法,可以帮助我们客观地评估教学效果,发现问题并进行改进。
在实际应用中需要注意数据的准确性和客观性,同时根据评估结果进行合理改进和优化。
《正比例函数的概念》评课稿
授课人
评课人
《正比例函数的概念》评课稿
聆听了周老师的课。
下面就周老师执教的《正比例函数的概念》这一课谈谈自己的看法。
周老师这堂课紧凑有序,以常见的实际问题为情景引入课题,让学生既有亲切感又有好胜的欲望。
比如总价等于单价乘以数量学生从小学就开始接触,学生已经达到了条件反射的境界,再比如质量等于密度乘以体积这个知识点在物理上刚刚出现,学生有一定的掌握但是不是那么的熟练。
纵观本节课,我们能够看到每一处的问题都是学生熟知的或者应该知道的。
教师板书到位,学生随即模仿练习,符合讲练结合的教学模式。
着重讲解耗油问题,不光因为这是大家的易错点,同时也是本章研究实际问题的大情境。
学生很快进入学习状态,把主要精力放在问题解决上,而非问题审查上。
正因为教师课前掌握学情,备课时做了充分准备,过渡语衔接有序,激励语言收放自如,学生在课堂中肯学,乐学。
教学思路清晰,结构较严谨,环环相扣,过渡自然。
当然,数学是一门逻辑性较强的科目,任何好的理念和设计在实际的教学过程中总会留下一些遗憾:在实际问题中,自变量的取值范围没有讲明白,是本节的一个缺憾。
西南师大版六年级数学下册《正比例》评课稿一、引言本文是对西南师大版六年级数学下册教材中《正比例》这一单元的评课稿。
本单元主要介绍了正比例的概念、性质和应用。
通过课堂教学的方式引导学生了解正比例的基本概念,掌握解决正比例问题的方法,并能灵活运用于实际问题中。
本评课稿将从教学目标、教学内容、教学过程和教学效果四个方面进行详细阐述。
二、教学目标本单元的教学目标主要包括以下几个方面: 1. 了解正比例的基本概念,能够正确运用比例的定义和性质进行解题; 2. 掌握解决正比例问题的方法,包括比例式的建立、比例式的变形和比例式的应用; 3. 培养学生的逻辑思维和问题解决能力,能够独立分析问题、提取关键信息,并运用数学知识进行解答;4. 培养学生的团队合作意识和实践操作能力,能够与同学共同探讨问题、交流解题方法并合作完成实际问题的解答。
三、教学内容本单元的教学内容主要包括以下几个方面: 1. 正比例的概念:引导学生了解正比例的含义,即两个量之间的比例关系是恒定的; 2. 正比例的性质:介绍正比例的基本性质,包括比例关系的传递性、反比例关系的特殊情况等; 3. 解决正比例问题的方法:引导学生学会利用比例式解决正比例问题,包括比例的建立、比例的变形和比例的应用; 4. 实际问题的应用:引导学生将所学的知识运用到实际生活中,解决与正比例相关的实际问题。
四、教学过程1. 导入与激发问题通过提出与正比例相关的问题激发学生的学习兴趣,例如:“一辆自行车以固定的速度匀速行驶,行驶时间与行驶距离的关系是怎样的?”或者“你认为在生活中还有哪些与正比例相关的例子?”等。
2. 概念讲解与例题演示通过课堂讲解和例题演示,引导学生了解正比例的定义与性质,例如:比例的定义是什么?正比例与反比例有何区别?等。
同时,通过具体的例子和图表,让学生感受正比例的规律与特点。
3. 拓展巩固与练习训练在学生理解了正比例的概念和性质后,进行一些拓展巩固和练习训练,例如:给出一些实际问题,要求学生利用所学的知识解答,或者让学生自己设计一些正比例的问题,与同学一起进行交流解答。
《正比例函数的图像与性质》评课实验中学八年级备课组通过本次教研活动受益匪浅,在两位老师身上学到了很多。
1.两位教师的导学案设计很优秀。
学习目标明确、具体符合要求,结构安排合理。
2.注重学生能力的培养,充分发挥现代教育技术解决机械的画图,缩短了内容的呈现。
3.学生的参与度高,小组分工合作默契,能综合运用所学的知识和方法解决问题。
学生能理解和应用当堂的知识。
4.教师的亲切的语言表达,能熟练地使用电教手段。
5.整个教学过程分为四部分:基本知识、知识应用、扩展部分、总结部分。
前后紧密相连,由易而难,步步推进;建议:1.华侨中学的老师,若可以在‘学习活动一’中能将第一的函数关系式中的系数改成整数的话,在这部分中可以缩少时间,在后部分的时间中,就不会显得那么紧。
就没有前松后紧的情况出现。
2.大鹏中学老师的麦克风声音问题,没办法听的很清楚,但在巩固部分有点偏难过繁,拔的太高。
有部分学生适应不到,导致整个教学过程有点阻滞。
小楼中学八年级备组听了两位老师的《正比例函数的图象和性质》这节课,受益颇多。
他们都对教材研究透彻,通过整合教材,让知识易懂,易学。
两节课的教学设计路线都是通过学生画正比例函数图象——感悟图象的性质——归纳图象性质——利用图象性质解题。
让学生在知识形成的过程中,亲身去体验函数图像是一条直线,感悟正比例函数图象的性质,体会数形结合的思想,再辅以多媒体手段来说明。
充分体现了学生是学习的主体思想。
徐老师的课:从课堂教学的现场情况看,本节课有三个环节蕴含着观察、分析、比较、归纳、概括等数学思维的活动。
下面分别加以分析:第一个环节是初步感悟正比例函数图象的画法,再让学生感悟总结归纳出正比例函数图象最简方法—两点法。
体现教师的教育思想是以学生为主体的,充分信任学生,让学生学习起来很有成功感。
第二环节徐老师只是向学生提供了观察的素材---函数图象,正比例函数图像的特点是都是通过原点的一条直线。
完全由学生自己观察、分析、归纳概括得到的,因此,这些思维能力在上述过程中得到了发展。
人教版正比例函数概念的教学设计与点评一、教学目标(1)理解正比例函数的意义,能根据实际问题抽象出正比例函数并确定其表达式,能辨别一个函数是否是正比例函数,能根据已知条件求出正比例函数的表达式.(2)经历从实际问题中抽象出正比例函数模型的过程,体会正比例函数来源于实际,体验函数是描述变量间对应关系的重要数学模型.(3)从不同角度思考数学概念,全面理解概念的内涵与外延,获得今后研究特殊函数的基本思路与方法.(4)在概念形成阶段,培养学生与他人合作交流的意识和严谨的学习态度;在概念的理解辨析过程中,让学生学会能从不同角度思考问题的思维方法;在运用概念的过程中,培养学生善于思考的良好习惯和创新精神.二、教学重点和难点重点:如何合理展示正比例函数的概念生成的逻辑顺序.难点:从不同角度全面认识正比例函数的意义.三、教学准备多媒体课件.四、我们的思考正比例函数是学生第一次比较系统学习一类特殊函数的相关知识,其涉及的研究函数的方法对初中阶段以后学习一次函数、反比例函数、二次函数都有引领作用.本课将按照从问题情境出发,通过建模生成概念,挖掘概念的内涵,运用概念解决有关问题进行教学,其中有三个方面至关重要,要引起高度重视.1.把握好正比例函数的学习基础,为正比例函数的抽象做好铺垫学习正比例函数是在变量和常量以及函数概念的基础上,对函数表达式“格式化”,因此重点要从以下几方面分析:(1)在自主探索教材第86页的问题1后,应关注(2)中变量是什么,常量是什么?它们是否成函数关系,自变量是谁,函数是谁.(2)自变量和常量是运用什么运算符号连接起来的?问题(1)—(3)之间有何关联?(3)教材第86页的思考(1)—(4)中,在学生通过充分思考建立了函数关系式后,要注意引导学生对函数和自变量的辨别,进一步强化自变量与常量之间的连接符号,同时要注意(4)中2k =-,这有助于纠正学生对正比例函数y kx =中正比例系数0k >的错误认识,为准确下定义做好准备.2.把握好学生的认知规律,高度重视概念的生成过程在充分体验正比例函数的问题情境后,要注意抽象的逻辑顺序——即先用语言描述,再把常量规定为k ,再让学生尝试写出数学表达式,在此基础上思考常量k 满足的条件,最后才给出定义.3.把握好挖掘概念的多种角度,全面认识正比例函数的意义在理解正比例函数的意义时,一般情况下,正比例函数的表达式从形式上看等号右边是单项式,并可以从系数不为0和次数为1上去认识,但在特定条件下正比例函数自变量的取值范围或表达式都可能有所不同;从本质上讲这个概念是一个结果定义,即要求最后的表达式应化为形如y kx =(k 为常数,0k ≠)的形式,因此要认清正比例函数的概念的实质.五、教学设计活动1:创设情境PPT 展示教材第86页的问题1中的(1)—(3).问题探究提问1:(2)中变量和常量分别是什么?其对应关系是函数关系吗?谁是自变量,谁是函数?提问2:(2)中自变量与常量按什么运算符号连接起来的?提问3:(1)与(2)之间有何关系?(2)与(3)呢?师生行为行为1:先由学生独立完成问题1中(1)—(3).教师要解释提问1:尽管有小的出入,但这个函数基本上反映了列车的行程与运行时间的对应关系.行为2:教师:(1)说明了(2)中的函数关系的自变量的取值范围,(2)为(3)提供解决问题的模型.设计意图:此处的提问1以前面学习的变量和常量、函数为基础引入本课,提问2则由此引入新课,转换研究视角,这样教学环节就比较自然、流畅.活动2:问题再现PPT 展示教材第86页的思考(1)—(4).问题探究提问1:分别写出(1)—(4)的关系式,它们都是函数关系吗?其变量和常量分别是什么?谁是自变量,谁是函数?提问2:自变量和常量是用什么运算符号连接起来的?这些常量可以取哪些值?提问3:这4个函数表达式与问题1的函数表达式有何共同特征?请你用语言进行描述. 师生行为行为1:先由学生独立完成教材第86页的思考(1)—(4).行为2:提问3中,教师重点关注:(1)学生是否很快找出问题中两个变量的函数关系;(2)学生能否准确地用语言表述;(3)学生是否有与他人交流、合作的意识.设计意图:提问2帮助学生认识正比例系数既可以为正,也可以为负,消除在小学形成的正比例系数0k >的错误认识,有助于形成正确的概念.活动3:形成概念提问1:如果我们把这个常数记为k ,你们能用数学式子表达吗?提问2:对这个常数k 有何要求呢?为什么?提问3:请你们尝试对这类特殊函数给出定义.提问4:这个函数表达式在形式上是一个单项式还是多项式?你们能指出它的系数是什么吗?次数为多少?提问5:正比例函数y kx =(常数0k ≠)的自变量x 的取值范围是什么?这与教材第86页的问题1和教材第86页的思考(1)—(4)中的函数自变量的取值范围有何不同?提问6:如何理解y 与x 成正比例函数?反之,y kx =(常数0k ≠)表示什么意义? 提问7:在正比例函数y kx =(常数0k ≠)中,关键是确定哪个量?比例系数k 一经确定,正比例函数就确定了吗?怎样确定k 呢?师生行为行为1:教师应允许学生充分发表意见,学生相互合作、相互交流,尝试给出正比例函数的定义.行为2:提问5中,一般情况下正比例函数自变量的取值范围为一切实数,但在特殊情况下自变量取值范围会有所不同.行为3:提问6中,要让学生明白:y 与x 成正比例函数⇔y kx =(k 为常数,0k ≠). 行为4:提问7中,要让学生从函数关系去认识:关键是比例系数k ,比例系数k 一确定,正比例函数就确定了;必须知道两个变量x 、y 的一对对应值即可确定k .从方程角度看,如果三个量x 、y 、k 中已知其中两个量,则一定可以求出第三个量.设计意图:从不同角度去认知概念,有助于学生理解概念的内涵,为概念运用打下坚实的基础.活动4:辨析概念问题1:教材第87页练习第1题:下列式子,哪些表示y 是x 的正比例函数?如果是,请你指出比例系数k 的值.补充:(5)43y x =-+;(6)222()2y x x x =-+.问题2:教材第87页练习2.师生行为行为1:教师既要关注学生对正比例函数形式的理解,也要关注对变量次数以及比例系数的理解.行为2:对(6)应看学生能否化简后认识正比例函数,说明正比例函数的定义是一个结果定义,并非形式定义,这是识别正比例函数的方法.设计意图:补充问题(5)对后面学习一次函数有一定的指导作用,(6)可以帮助学生意识到正比例函数的定义是一个结果定义,为识别概念提供方法. 活动5:判定正误下列说法正确的打“√”,错误的打“×”.(1)若y kx =,则y 是x 的正比例函数.( )(2)若22y x =,则y 是x 的正比例函数.( )(3)若2(1)2y x =-+,则y 关于x 成正比例函数.( )(4)若2(1)y x =-,则y 关于1x -成正比例函数.( )参考答案:(1)×;(2)×;(3)√;(4)√.师生行为教师要充分暴露学生的问题,追问错误的原因,同时进一步丰富概念的内涵和外延. 行为1:一般情况下,正比例函数的形式为y kx =(k 为常数,0k ≠),即自变量次数为1,且常数0k ≠.行为2:在特定条件下自变量可能不单独为x 了,要注意自变量的变化.设计意图:进一步巩固正比例函数的概念,丰富概念的内涵和外延,达到对概念的深刻理解、灵活掌握.活动6:理解概念问题1:如果(1)y k x =-是y 关于x 的正比例函数,则k 满足__________.问题2:如果1k y kx -=是y 关于x 的正比例函数,则k =_________.问题3:如果34y x k =+-是y 关于x 的正比例函数,则k =_________.参考答案:问题1:1k ≠;问题2:2;问题3:4.师生行为行为:教师要围绕概念询问结果的由来,暴露学生的思维过程.设计意图:运用概念,扩大思维量,提高学生辨析概念的能力.活动7:运用概念问题1:已知正比例函数y kx =,当3x =时,15y =-,求出k 的值.问题2:若y 关于x 成正比例函数,当4x =时,2y =-.(1)求出y 与x 的关系式;(2)当6x =时,求出对应的函数值y .参考答案:问题1:5k =-;问题2:(1)12y x =-,(2)3y =-. 师生行为行为:教师要以问题1为基础,引导学生理解问题2中“y 关于x 成正比例函数”的意义,同时求“y 与x 的关系式”的关键就是求出比例系数k 的值.设计意图:达到对概念的活学活用,为以后学习待定系数法做好铺垫.活动8:课堂小结与作业布置课堂小结:你们如何理解正比例函数?能从哪几个方面去认识正比例函数?作业布置:1.下列函数是正比例函数的是( )A.21y x =+B.82(4)y x =+-C.22y x =D.12y x =-2.下列问题中的y 与x 成正比例函数关系的是( )A.圆的半径为x ,面积为yB.某地手机月租为10元,通话收费标准为0.1元/min ,若某月通话时间为x min ,该月通话费用为y 元C.把10本书全部随意放入两个抽屉内,第一个抽屉放入x 本,第二个抽屉放入y 本D.长方形的一边长为4,另一边长为x ,面积为y3.关于32x y +=-说法正确的是( ) A.是y 关于x 的正比例函数,正比例系数为2-B.是y 关于x 的正比例函数,正比例系数为21- C.是y 关于3x +的正比例函数,正比例系数为2-D.是y 关于3x +的正比例函数,正比例系数为21- 4.若23y kx k =+-是y 关于x 的正比例函数,则k =________.5.若(2)y k x =-是y 关于x 的正比例函数,则k 满足的条件是________.6.已知y 关于x 成正比例函数,当3x =时,9y =-,则y 与x 的关系式为_____ __.7.若||2(3)k y k x -=+是y 关于x 的正比例函数,试求k 的值,并指出比例系数.8.若y 关于2x -成正比例函数,当3x =时,4y =-.试求出y 与x 的函数关系式. 参考答案:1.B ;2.D ;3.D ;4.32;5.2k ≠;6.3y x =-;7.3k =,比例系数为6;8.4(2)y x =--.师生行为行为1:引导学生总结.(1)正比例函数的语言描述和形式特征;(2)特殊情况下,自变量的范围和表达式会有所不同,要认真体会正比例函数的意义;(3)可以从语言描述、外形特征、结果形式、函数关系和方程角度等方面去认识正比例函数.行为2:作业针对正比例函数的概念,在教材“复习巩固”中没有相应习题,故补充这些习题作为作业.设计意图:通过课堂小结达到学会梳理知识,进一步明确概念的意义,掌握求正比例函数的思想方法,使本课学习内容得到进一步发展;通过补充的作业巩固所学知识,使知识和技能都得到落实和内化. 六、本课点评正比例函数的意义正如笔者提到的:“是学生第一次比较系统学习函数相关知识,其涉及的研究函数的方法对初中阶段以后学习一次函数、反比例函数、二次函数等都有引领作用”,本课时的核心是正比例函数的概念,是以后研究此函数的性质及其图象的基础.本课教学就只有一个中心——正比例函数的概念,教学中紧紧围绕这个中心,从概念生成、概念理解、概念辨析和概念运用等都对概念教学提供了很好的范例.具体讲有如下几个特点.1.问题设计精巧,逻辑清晰首先在概念的准备阶段,不惜用大量的问题串引导学生逼近概念,如“它们都是函数关系吗?其变量和常量分别是什么?谁是自变量,谁是函数?自变量和常量运用什么运算符号连接起来的?这些常量可以取哪些值?”,这些问题自上而下,从函数这个大前提逐步向特殊函数——正比例函数过渡,为正比例函数的概念的生成提供了充分的保证;其次在概念的生成阶段,先用语言描述共同特征,再规定常数为k ,“你能用数学式子表达吗?对这个常数k 有何要求呢?请你尝试对正比例函数给出定义”,这些问题自下而上合理演绎了认知过程,这样定义的形成就水到渠成了.试想:如果没有“先用语言描述”、“规定常数为k ”和对“常数k 的要求”,哪来正比例函数的概念呢?2.概念辨析充分,认识深刻在理解正比例函数的意义时,除了从形式上分析——是单项式,并从系数和次数上做出了辨析外,还对“如何理解y 与x 成正比例函数?反之y kx =(常数0k ≠)表示什么意义?”进行了辨析,为基础练习4做好了充分的准备,并在此基础上通过基础练习1(6)222()2y x x x =-+挖掘出正比例函数的定义是一个结果定义,也为确定正比例函数提供了一个判定方法,接着再从基础练习2(4)若2(1)y x =-,得出y 是关于1x -成正比例函数的,丰富了概念的内涵.又如“在正比例函数y kx =(常数0k ≠)中关键是确定哪个量?比例系数k 一经确定,正比例函数就确定了吗?怎样确定k 呢?”,这些问题可以帮助学生深刻认识确定正比例函数关系的关键以及要把函数与方程联系起来理解正比例函数,也为后面活动7与活动8中的问题的解决奠定了坚实的基础.以上这些具体问题为全面认识正比例函数提供了不同的视角,从而促使学生正确把握概念的内涵与外延.3.教学活动丰富,渐进展开在活动1和活动2概念准备阶段,采用了学生主体与教师指导相结合的教学原则,通过学生的充分活动获得基本的活动经验后,教师再对所得结果进行引导;在活动3概念的形成与辨析中,采用教师主导为主的教学策略,通过设置问题串的方式,引导学生最终形成定义并对概念进行深入辨析;在活动4至活动8概念的运用与理解中,采用了学生自主和教师引导的教学方式,通过学生先“悟”,教师再点评开展教学,让学生在做的过程中深刻理解正比例函数的概念的内涵与外延.4.渗透思想方法,形成能力本课设计充分让学生经历由具体到抽象再到具体的探索思路历程,不但形成了理性认识――正比例函数的概念,而且获得了今后研究特殊函数的基本思路与方法,从概念的剖析中还获得了判定一个函数是否为正比例函数的方法,同时也获得了如何确定正比例函数关系的方法――待定系数法,以及要善于把函数与方程联系起来解决问题的意识,这些都有利于提高学生的思维能力.总之,本课设计的整个教学活动中,教学方式灵活多样,学生活动充分,注重能力培养.。
一、活动背景为了提高数学教师的教学水平,促进教师之间的交流与合作,我校数学教研组于近日开展了一次正比例教研活动。
本次活动邀请了校内外的优秀教师进行示范课展示,并组织全体数学教师进行评课活动。
以下是本次教研活动的评课记录。
二、活动过程1. 示范课展示本次教研活动邀请了三位优秀教师分别展示了正比例教学的不同风格和特点。
以下是三位教师的示范课情况:(1)教师A的示范课教师A以“正比例的意义”为主题,通过创设情境、引导学生自主探究、合作交流等方式,让学生在轻松愉快的氛围中理解正比例的概念。
教师A注重培养学生的数学思维能力,引导学生从实际生活中发现正比例现象,并通过观察、比较、归纳等方法总结出正比例的意义。
(2)教师B的示范课教师B以“正比例的性质”为主题,通过设计一系列具有挑战性的问题,引导学生主动探究正比例的性质。
教师B注重培养学生的逻辑思维能力,引导学生从正比例的意义出发,通过类比、归纳等方法总结出正比例的性质,并让学生运用这些性质解决实际问题。
(3)教师C的示范课教师C以“正比例的应用”为主题,通过创设生活情境,让学生在解决实际问题的过程中掌握正比例的应用方法。
教师C注重培养学生的应用能力,引导学生将所学知识应用于实际生活,提高学生的数学素养。
2. 评课活动在三位教师的示范课后,全体数学教师进行了评课活动。
以下是评课内容:(1)优点1. 教师A的示范课:教学设计合理,教学方法灵活,注重培养学生的数学思维能力,让学生在轻松愉快的氛围中学习正比例的意义。
2. 教师B的示范课:问题设计具有挑战性,引导学生主动探究正比例的性质,培养学生的逻辑思维能力。
3. 教师C的示范课:教学设计贴近生活,让学生在解决实际问题的过程中掌握正比例的应用方法,提高学生的数学素养。
(2)不足1. 教师A的示范课:部分环节时间分配不合理,导致课堂节奏较慢。
2. 教师B的示范课:问题设计过于复杂,部分学生难以理解。
3. 教师C的示范课:教学过程中,部分学生对正比例的应用方法掌握不够牢固。
《正比例》听课评课◆您现在正在阅读的《正比例》听课评课文章内容由收集!本站将为您提供更多的精品教学资源!《正比例》听课评课两数成正比例的学习是后续正比例函数的基础铺垫,渗透的比例思想为:两种相关联的量,一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的比值(也就是商)一定。
像这样的两种量我们就把它们叫做成正比例的量,它们的关系叫做正比例关系。
在教学过程中学生很自然的就形成这样的概念:一个量增加另一个量也增加就是正比例,一个量增加另一个量减少就是反比例。
在小学阶段似乎这么理解正比例和反比例比较直观形象,但单纯的把正比例反比例建构成变化关系是否恰当呢?当学生进入七年级学习涉及到负数时,当量A与B的比值一定为负数,即A/B=k(k0)A随B的增加而减少。
特别是进入高中学习到正比例函数时,比例系数K即存在大于零和小于零的情况。
(1)当k0时,y随x的增大而增大“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。
《说文解字》中有注曰:“师教人以道者之称也”。
“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。
“老师”的原意并非由“老”而形容“师”。
“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。
“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。
慢慢“老师”之说也不再有年龄的限制,老少皆可适用。
只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。
今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。
(2)当k0时,y随x的增大而减小宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
至元明清之县学一律循之不变。
明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。
《正比例函数的图象与性质》评课稿
授课人
评课人
《正比例函数的图象与性质》评课稿
聆听了周老师的课。
下面就周老师执教的《正比例函数的图象与性质》这一课谈谈自己的看法。
周老师一开始先复习正比例函数的概念,为画图象和探究性质做好准备,使用练习题中确定的正比例解析式列表画图,减少读题时间,提高上课效率。
列表时不忘用统筹考虑整个数域,及时总结出正比例函数过原点这一特征。
在探究正比例函数的性质时,列出k值正负、图象经过象限、图象走势一览表,学生对于三者的关系灵活掌握。
对比k值的正负,观察图象经过的象限变化,根据图象的增减性判断k值的正负性,整堂课渗透了对比方法和互逆思想。
总体来讲,学生在课堂中肯学,乐学。
教学思路清晰,结构较严谨,环环相扣,过渡自然。
当然,数学是一门逻辑性较强的科目,任何好的理念和设计在实际的教学过程中总会留下一些遗憾:函数图象的走势未从反向去探究,例如假设当k大于零时,那么函数值随着自变量的变小会如何变化呢?
但瑕不掩玉,周老师这节课仍是一堂体现新课程理念的成功案例,具有一定的借鉴意义。
[集合]正比例的意义评课稿5篇作为一名无私奉献的老师,通常会被要求编写评课稿,所谓评课,顾名思义,即评价课堂教学,是在听课活动结束之后的教学延伸。
评课稿要怎么写呢?下面是小编为大家整理的正比例的意义评课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。
正比例的意义评课稿1我将从教材分析、学況分析、教学目标、教学重难点、教法学法、教学准备、教学过程、效果预测几个方面对本课进行介绍。
一、教材分析1、教学内容:人教版六年级下册P39正比例的意义。
2、教材的地位和作用:这部分内容是在学生学习了比和比例的基础上进行教学的,着重使学生理解正比例的意义。
正比例关系是比较重要的一种数量关系,学生理解并掌握这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的实际问题。
同时通过三、教法遵循教师为主导,学生为主体,训练为主线的指导思想,通过游戏引入、自主探究、合作学习等方式进行教学,让学生在自主、合作、探究的过程中归纳正比例的特征。
四、学法引导学生在观察比较的基础上,独立思考、小组合作交流。
具体表现在学会思考,学会观察,学会表达,并对学生进行激励性的评价,让学生乐于说,善于说。
五、教学过程本节课我安排了六个教学环节第一个环节:游戏导入,激发兴趣用游戏的方法将学生带入轻松愉快的学习氛围,激发学生的学习兴趣,活跃课堂气氛,同时也为后面教学做好了铺垫,使学生很快进入学习状态。
第二环节:引导观察,启发思考教学中让学生自己计算游戏得分,并引导学生进行观察,从而得出:得分随着赢的次数的变化而变化,他们是两种相关联的量,初步渗透正比例的概念。
第三环节:创设情景,观察实验用多媒体呈现数据的获取过程,让学生直观地感受到水的体积和高度是两个相关联的量以及二者之间的变化规律。
第四环节:探究成正比例的量学生在反复观察、思考,讨论、交流的`过程中自己建立概念,深刻的体验使学生感受到获得新知的乐趣。
第五环节:巩固练习,拓展提高第六环节:全课小结六、效果预测在教学的始终,我一直引导学生主动探索正比例的意义,加上课件的辅助教学和课堂练习,学生在理解掌握并且运用新知上,一定会轻松自如。
评课稿
刘毅
11月18号,我听了袁传鑫老师主讲的数学课:《正比例函数》深有感触他的教学过程是这样的:
第一环节是课前每个小组把本组要处理的知识或题目提前写在各自黑板上,先由四个小组处理本课的基本知识,然后由一个小组陈述课题,两个小组成员通过描点、连线、画图,画出两个不同类型的正比例函数的图像,最后由一个小组根据前面的图像得出了结论-------正比例函数的图像及性质。
第二环节是由两个小组应用所得结论,处理课本上的两个练习题
第三环节是由三个小组分别用三个题目进行了知识的扩展,使学生对知识掌握与运用有了进一步提高。
第四环节是对本节课的内容进行小结,最后进行知识检测。
我认为他的优点是:
1、学习过程逻辑清晰,小组分工明确,学生主体地位体现充分,学生配合好,课堂气氛活跃;
2、学生有讲有问,讲评非常到位,学生回答积极配合;
3、教师穿插点评、补充、总结、讲解,少好精;
4、教学过程分为四个环节:基本知识归纳、知识应用、扩展与总结部分、知识检测环节。
前后紧密相连,由易而难,步步推进;
5、杜郎口模式的10+35原则得以充分体现。
学生的主体地位、分工协作、合作交流、学知用知得以充分体现。
这是本节课的成功之处。
本节课我的建议是:
1、第5组在提出如何用简单的办法画函数图像是,老师不应代为回答,动员其他学生回答,并把结论板书在黑板上;
2、第四组有同学在讲解不清楚,老师不应代为讲解,应动员其他学生来讲;
3、扩展的题目有点偏难,拔的太高。
多数学生跟进缓慢。
4、不同组分领不同类型的题目。
各小组应穿插进行。