2013年全国各地高考文科数学试题分类汇编10:平面解析几何
- 格式:doc
- 大小:346.00 KB
- 文档页数:4
. AE D CBO第15题图2013年全国各地高考数学试题及解答分类汇编大全(18选修4:几何证明选讲、坐标系与参数方程、不等式选讲、矩阵与变换)一、几何证明选讲:选修4—1;几何证明选讲1. (2013北京理)如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于D ,若PA =3,PD ∶DB =9∶16,则PD =________,AB =________.答案 954解析 由PD ∶DB =9∶16.设PD =9a ,DB =16a ,由切割线定理,PA 2=PD·PB ,即9= 9a ×25a ,∴a =15,所以PD =95.在Rt △PAB 中,PB =25a =5,∴AB =PB 2-PA 2=52-32=4.2.(2013广东文) 如图3,在矩形ABCD中,AB =3BC =,BE AC ⊥,垂足为E ,则ED = .【解析】本题对数值要敏感,由AB =3BC =,可知60BAC ∠=从而30AE CAD =∠=,21DE ==【品味填空题】选做题还是难了点,比理科还难些.3. (2013广东理) 如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E .若6AB=,2ED =,则BC =_________.【解析】ABC CDE ∆∆,所以AB BCCD DE =,又 BC CD =,所以212BC AB DE =⋅=,从而BC =.4、(2013湖北理) 如图,圆O 上一点C 在直线AB 上的射影为D ,点D 在半径OC 上的射影为E 。
若3AB AD =,则CEEO的值为 。
【解析与答案】由射影定理知()()2222812AD AB AD CE CD AD BDEO OD OA AD AB AD -====-⎛⎫- ⎪⎝⎭【相关知识点】射影定理,圆幂定理图3OD EBA第15题图C5. (2013湖南理) 如图2的O 中,弦,,2,AB CD P PA PB ==相交于点 1PD O =,则圆心到弦CD 的距离为 .【答案】23 【解析】 ,由相交弦定理得5,4==⇒⋅=⋅DC PC PC DP PB AP23)2(22=-=PC r d CD 的距离圆心到6. (2013陕西文) 如图, AB 与CD 相交于点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知A C ∠=∠, PD = 2DA = 2, 则PE = . B 【答案】.6 【解析】 ..//BAD PED BAD BCD PED BCD PE BC ∠=∠⇒∠=∠∠=∠∴且在圆中.6.623∽2==⋅=⋅=⇒=⇒∆∆⇒PE PD PA PE PEPDPA PE APE EPD 所以 7.(2013陕西理) 如图, 弦AB 与CD 相交于O 内一点E , 过E 作BC的延长线相交于点P . 已知PD =2DA =2, 则 .【解析】.//BAD BCD PED BCD PE BC ⇒∠=∠∠=∠∴且在圆中.6.623∽2==⋅=⋅=⇒=⇒∆∆⇒PE PD PA PE PEPDPA PE APE EPD 所以 8. (2013天津文) 如图, 在圆内接梯形ABCD 中, AB //DC , 过点A 作圆的切线与CB 的延长线交于点E . 若AB = AD = 5, BE = 4, 则弦BD 的长为 . 【答案】152【解析】连结AC,则EAB ACB ADB ABD DCA ∠=∠=∠=∠=∠,所以梯形ABCD 为等腰梯形,所以5BC AD ==,所以24936AE BE CE =⋅=⨯=,所以6AE =,所以2222226543cos 22654AE AB BE EAB AE AB ++-===⋅⨯⨯.又2222cos AB AD BD AD BD ADB =+-⋅,即222355254BD BD =+-⨯⋅⨯,整理得21502BD BD -=,解得152BD =。
2013年全国各省市文科数学—几何证明选讲1、2013广东文T15.(几何证明选讲选做题) 如图3,在矩形ABCD中,AB =3BC =,BE AC ⊥,垂足为E ,则ED = .2、2013陕西文B . (几何证明选做题) 如图, AB 与CD 相交于点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知A C ∠=∠, PD = 2DA = 2, 则PE = .3、2013辽宁文22.(本小题满分10分)选修4-1:几何证明选讲如图,.AB O CD O E AD CD D 为直径,直线与相切于垂直于于,BC 垂直于 ,.CD C EF F AE BE 于,垂直于,连接证明:(I );FEB CEB ∠=∠ (II )2.EF AD BC =图 3P4、2013新课标1文T22.(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠的角平分线BE交圆于点E,DB垂直BE交圆于点ABCD。
=;(Ⅰ)证明:DB DC∆外接圆的半径。
(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求BCF5、2013新课标Ⅱ文(22)(本小题满分10分)选修4-1几何证明选讲∆外接圆的切线,AB的延长线交直线CD于点如图,CD为ABCD,E、F分别为弦AB与弦AC上的点,且⋅=⋅,B、E、F、C四点共圆。
BC AE DC AF∆外接圆的直径;(Ⅰ)证明:CA是ABC==,求过B、E、F、C四点的圆的面积(Ⅱ)若DB BE EA∆外接圆面积的比值。
与ABC参考答案:1、【解析】本题对数值要敏感,由AB =3BC =,可知60BAC ∠=从而30AE CAD =∠= ,DE =2、【解析】..//BAD PED BAD BCD PED BCD PE BC ∠=∠⇒∠=∠∠=∠∴且在圆中.6.623∽2==⋅=⋅=⇒=⇒∆∆⇒PE PD PA PE PEPDPA PE APE EPD 所以 3、解析(I )由直线CD 与圆O 相切,得∠CEB=∠EAB 由AB 为圆O 的直径,得AE ⊥EB,从而∠EAB+∠EBF=,又EF ⊥AB ,得∠FEB+∠EBF=,从而∠EAB=∠FEB ,故∠FEB=∠CEB (II )由BC ⊥CE,EF ⊥AB, ∠FEB=∠CEB,BE 是公共边,得Rt ⊿BCE ≅ Rt ⊿AFE,得AD=AF,又在Rt ⊿AEB 中,EF ⊥AB,故,所以4、。
2013年普通高等学校招生全国统一考试文科数学注意事项:1. 本试卷分为两部分, 第一部分为选择题,第二部分为非选择题.。
2. 考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息.。
3. 所有解答必须填写在答题卡上指定区域内。
考试结束后,将本试卷和答题卡一并交回。
第一部分(共50分)1. 第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)1. 设全集为R , 函数()f x =M , 则C M R 为(A) (-∞,1)(B) (1, + ∞)(C) (,1]-∞(D) [1,)+∞【答案】B【解析】),1(],1,(.1,0-1∞=-∞=≤∴≥MR C M x x 即 ,所以选B2. 已知向量 (1,),(,2)a m b m ==, 若a //b , 则实数m 等于(A) (B)(C) (D) 02. 【答案】C【解析】.221,//),2,(),,1(±=⇒⋅=⋅∴==m m m b m m 且 ,所以选C 3. 设a , b , c 均为不等于1的正实数, 则下列等式中恒成立的是 (A) ·log log log a c c b a b = (B) ·log lo log g a a a b a b = (C) ()log ?l g o lo g a a a b c bc = (D) ()log g og o l l a a a b b c c +=+3. 【答案】B【解析】a, b,c ≠1. 考察对数2个公式: abb y x xyc c a a a a log log log ,log log log =+= 对选项A: bab a b bc c a c c a log log log log log log =⇒=⋅,显然与第二个公式不符,所以为假。
2013年全国各地高考文科数学试题分类汇编8:平面解析几何一、选择题1 .(2013年高考重庆卷(文))设P 是圆22(3)(1)4x y -++=上的动点,Q 是直线3x =-上的动点,则PQ 的最小值为 ( )A .6B .4C .3D .2 【答案】B 2 .(2013年高考江西卷(文))如图.已知l 1⊥l 2,圆心在l 1上、半径为1m 的圆O 在t=0时与l 2相切于点A,圆O 沿l 1以1m/s 的速度匀速向上移动,圆被直线l 2所截上方圆弧长记为x,令y=cosx,则y 与时间t(0≤x≤1,单位:s)的函数y=f(t)的图像大致为【答案】B3 .(2013年高考天津卷(文))已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与直线10ax y -+=垂直, 则a = ( )A .12-B .1C .2D .12【答案】C4 .(2013年高考陕西卷(文))已知点M (a ,b )在圆221:O x y +=外, 则直线ax + by = 1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定【答案】B5 .(2013年高考广东卷(文))垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是( )A .0x y +-=B .10x y ++=C .10x y +-=D .0x y +=【答案】A 二、填空题6 .(2013年高考湖北卷(文))已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则k =________.【答案】47 .(2013年高考四川卷(文))在平面直角坐标系内,到点(1,2)A ,(1,5)B ,(3,6)C ,(7,1)D -的距离之和最小的点的坐标是_________【答案】(2,4) 8 .(2013年高考江西卷(文))若圆C 经过坐标原点和点(4,0),且与直线y=1相切,则圆C 的方程是_________.【答案】22325(2)()24x y -++=9 .(2013年高考湖北卷(文))在平面直角坐标系中,若点(,)P x y 的坐标x ,y 均为整数,则称点P 为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中△ABC 是格点三角形,对应的1S =,0N =,4L =. (Ⅰ)图中格点四边形DEFG 对应的,,S N L 分别是__________;(Ⅱ)已知格点多边形的面积可表示为S aN bL c =++,其中a ,b ,c 为常数. 若某格点多边形对应的71N =,18L =, 则S =__________(用数值作答).【答案】(Ⅰ)3, 1, 6 (Ⅱ)7910.(2013年高考浙江卷(文))直线y=2x+3被圆x 2+y 2-6x-8y=0所截得的弦长等于__________.[【答案】11.(2013年高考山东卷(文))过点(3,1)作圆22(2)(2)4x y -+-=的弦,其中最短的弦长为__________【答案】三、解答题12.(2013年高考四川卷(文))已知圆C 的方程为22(4)4x y +-=,点O 是坐标原点.直线:l y kx =与圆C 交于,M N 两点. (Ⅰ)求k 的取值范围;(Ⅱ)设(,)Q m n 是线段MN 上的点,且222211||||||OQ OM ON =+.请将n 表示为m 的函数.【答案】解:(Ⅰ)将x k y =代入22(4)4x y +-=得 则 0128)1(22=+-+x k x k ,(* 由012)1(4)8(22>⨯+--=∆k k 得 32>k . 所以k 的取值范围是),3()3,(+∞--∞(Ⅱ)因为M 、N 在直线l 上,可设点M 、N 的坐标分别为),(11kx x ,),(22kx x ,则2122)1(x k OM +=,2222)1(x k ON +=,又22222)1(m k n m OQ +=+=,由222112ONOMOQ+=得,22221222)1(1)1(1)1(2x k x k m k +++=+,所以222121221222122)(112x x x x x x x x m -+=+=由(*)知 22118k k x x +=+,221112k x x +=, 所以 353622-=k m , 因为点Q 在直线l 上,所以m nk =,代入353622-=k m 可得363522=-m n , 由353622-=k m 及32>k 得 302<<m ,即 )3,0()0,3( -∈m . 依题意,点Q 在圆C 内,则0>n ,所以 518015533622+=+=m m n , 于是,n 与m 的函数关系为 5180152+=m n ()3,0()0,3( -∈m )。
2013年高考数学各地名校文科立体几何试题解析汇编D的外接球表面积,选B.7 【山东省兖州市2013届高三9月入学诊断检测文】设是直线,a,β是两个不同的平面A. 若∥a,∥β,则a∥β B. 若∥a,⊥β,则a⊥βC. 若a⊥β,⊥a,则⊥βD. 若a ⊥β, ∥a,则⊥β【答案】B【解析】根据线面垂直的判定和性质定理可知,选项B正确。
8 【山东省兖州市2013届高三9月入学诊断检测文】某几何体的三视图如下图所示,它的体积为( )A. B. C.D.【答案】C【解析】由三视图可知该组合体是半个球体和一个倒立圆锥体的组合体,球的半径为3,圆锥的底面半径为3,高为4,那么根据体积公式可得组合体的体积为,选C.9 【云南省昆明一中2013届高三新课程第一次摸底测试文】某几何体的三视图如图所示,则该几何体的表面积为A.B.C.D.32【答案】B【解析】根据三视图可知,这是一个四棱台,,,所以表面积为,选B.10 【云南省昆明一中2013届高三新课程第一次摸底测试文】如图,在长方体ABCD—A1B1C1D1中,对角线B1D与平面A1BC1相交于点E,则点E为△A1BC1的A.垂心B.内心C.外心D.重心【答案】D【解析】如图,,所以,且为的中点,选D.11 【山东省烟台市莱州一中20l3届高三第二次质量检测(文)】对于直线m,n和平面,有如下四个命题:(1)若(2)若(3)若(4)若其中真命题的个数是A.1B.2C.3D.4【答案】A【解析】(1)错误。
(2)当时,则不成立。
(3)不正确。
当有,又所以有,所以只有(4)正确。
选A.12 【云南师大附中2013届高三高考适应性月考卷(三)文】一个几何体的三视图如图1所示,其中正视图是一个正三角形,则该几何体的体积为A.1 B.C.D.【答案】B【解析】由三视图可知,此几何体为三棱锥,如图,其中正视图为,是边长为2的正三角形,,且,底面为等腰直角三角形,,所以体积为,故选B.13 【天津市新华中学2012届高三上学期第二次月考文】如图,是一个几何体的正视图、侧视图、俯视图,则该几何体的体积是A. 24B. 12C. 8D. 4【答案】B【解析】由三视图可知,该几何体是有两个相同的直三棱柱构成,三棱柱的高为4,三棱柱的底面三角形为直角三角形,两直角边分别为,所以三角形的底面积为,所以三棱柱的体积为,所以该几何体的体积为,选B.14 【山东省临沂市2013届高三上学期期中考试数学文】某几何体的正视图和侧视图均如右图,则该几何体的俯视图不可能有是【答案】D【解析】因为该几何体的正视图和侧视图是相同的,而选项D的正视图和和侧视图不同。
绝密★启用前2013年普通高等学校招生全国统一考试数学(文科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{}{}1,2,3,4,5,1,2,u U A A ===集合则ð(A ){}1,2 (B ){}3,4,5 (C ){}1,2,3,4,5 (D )∅(2)已知a 是第二象限角,5sin ,cos 13a a ==则 (A )1213- (B )513- (C )513 (D )1213(3)已知向量()()()()1,1,2,2,,=m n m n m n λλλ=+=++⊥-若则(A )4- (B )3- (C )-2 (D )-1(4)不等式222x -<的解集是(A )()-1,1 (B )()-2,2 (C )()()-1,00,1U (D )()()-2,00,2U(5)()862x x +的展开式中的系数是(A )28 (B )56 (C )112 (D )224(6)函数()()()-121log 10=f x x f x x ⎛⎫=+> ⎪⎝⎭的反函数 (A )()1021x x >- (B )()1021xx ≠- (C )()21x x R -∈ (D )()210xx ->(7)已知数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于(A )()-10-61-3 (B )()-1011-39(C )()-1031-3 (D )()-1031+3(8)已知()()1221,0,1,0,F F C F x -是椭圆的两个焦点过且垂直于轴的直线交于 A B 、两点,且3AB =,则C 的方程为(A )2212x y += (B )22132x y += (C )22143x y += (D )22154x y +=(9)若函数()()sin 0=y x ωϕωω=+>的部分图像如图,则 (A )5 (B )4 (C )3 (D )2(10)已知曲线()421-128=y x ax a a =+++在点,处切线的斜率为,(A )9 (B )6 (C )-9 (D )-6(11)已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于(A )23 (B )33 (C )23 (D )13(12)已知抛物线()2:82,2,C C y x M k C =-与点过的焦点,且斜率为的直线与交于,0,A B MA MB k ==u u u r u u u rg 两点,若则(A )12(B )22 (C 2 (D )2二、填空题:本大题共4小题,每小题5分.(13)设()[)()21,3=f x x f x ∈是以为周期的函数,且当时, .(14)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有 种.(用数字作答)(15)若x y 、满足约束条件0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩则z x y =-+的最小值为.(16)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K =o ,且圆与圆所在的平面所成角为,则球O 的表面积等于 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)等差数列{}n a 中,71994,2,a a a ==(I )求{}n a 的通项公式;(II )设{}1,.n n n nb b n S na =求数列的前项和18.(本小题满分12分)设()(),,,,,.ABC A B C a b c a b c a b c ac ∆++-+=的内角的对边分别为(I )求;B(II )若31sin sin , C.4A C -=求19.(本小题满分12分)如图,四棱锥902,P ABCD ABC BAD BC AD PAB PAD -∠=∠==∆∆o中,,与都是边长为2的等边三角形.(I )证明:;PB CD ⊥(II )求点.A PCD 到平面的距离20.(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I)求第4局甲当裁判的概率;(II)求前4局中乙恰好当1次裁判概率.21.(本小题满分12分)已知函数()32=33 1.f x x ax x +++(I )求()2f ;a x =时,讨论的单调性;(II )若[)()2,0,.x f x a ∈+∞≥时,求的取值范围22.(本小题满分12分) 已知双曲线()221222:10,0x y C a b F F a b-=>>的左、右焦点分别为,,离心率为3,直线2 6.y C =与的两个交点间的距离为(I )求,;a b ;(II )2F l C A B 设过的直线与的左、右两支分别相交于、两点,且 11,AF BF -证明:22.AF AB BF 、、成等比数列。
2013年普通高等学校招生统一考试(上海卷)数学(文科)考生注意:1.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.2.本试卷共有23道试题,满分150分,考试时间120分钟.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.不等式12-x x <0的解为 )21,0( . 【答案】 )21,0(【解析】)21,0(0)12(∈⇒<-x x x2.在等差数列{}n a 中,若a 1+ a 2+ a 3+ a 4=30,则a 2+ a 3= 15 . 【答案】 15【解析】 1530)(232324321=+⇒=+=+++a a a a a a a a3.设m ∈R,m 2+m-2+( m 2-1)i 是纯虚数,其中i 是虚数单位,则m= . 【答案】 -2【解析】 20102)1(22222-=⇒⎪⎩⎪⎨⎧≠-=-+⇒-+-+m m m m i m m m 是纯虚数4.已知1x 12=0,1x 1y=1,则y= 1 .【答案】 1 【解析】111 2021 12 =-==⇒=-=y x yx x x x ,又已知,1,2==y x 联立上式,解得5. 已知∆ABC 的内角A 、B 、C 所对的边分别是a 、b 、c.若a 2+ab+b 2-c 2=0,则角C 的大小是π32. 【答案】 π32【解析】π32212- cos 0- 222222=⇒-=+=⇒=++C ab c b a C c b ab a6. 某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别是75、80,则这次考试该年级学生平均分数为 78 . 【答案】 78【解析】 7880100607510040=⋅+⋅=平均成绩7. 设常数a ∈R.若52x ⎪⎭⎫ ⎝⎛+x a 的二项展开式中x 7项的系数为-10,则a= -2 .【答案】 -2 【解析】10,110)()()(15752552-==⇒-=⇒+-a C r x xa x C x a x r r r 2,105-=-=⇒a a 8. 方程x 31139x=+-的实数解为 4log 3 . 【答案】 4log 3 【解析】⇒>+±=⇒±=-⇒-=-⇒=+-01333131313931139x x x xxx 4log 433=⇒=x x9. 若cosxcosy+sinxsiny=31,则cos(2x-2y)= 97- . 【答案】 97- 【解析】971)(cos 2)(2cos 31)cos(sin sin cos cos 2-=--=-⇒=-=+y x y x y x y x y x10. 已知圆柱Ω的母线长为l ,底面半径为r,O 是上底面圆心,A 、B 是下底面圆周上的两个不同的点,BC 是母线,如图,若直线OA 与BC 所成角的大小为6π,则r l3 .【答案】3【解析】 3336tan =⇒==rll r π由题知,11. 盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是75(结果用最简分数表示).【答案】75 【解析】考查排列组合;概率计算策略:正难则反。
2013年全国各地高考文科数学试题分类汇编:平面向量一、选择题1 .(2013年高考辽宁卷(文))已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为( ) A .3455⎛⎫ ⎪⎝⎭,- B .4355⎛⎫ ⎪⎝⎭,- C .3455⎛⎫- ⎪⎝⎭, D .4355⎛⎫- ⎪⎝⎭, 【答案】A2 .(2013年高考湖北卷(文))已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为( )A .322B .3152C .322-D .3152- 【答案】A 3 .(2013年高考大纲卷(文))已知向量()()()()1,1,2,2,,=m n m n m n λλλ=+=++⊥-若则( ) A .4-B .3-C .-2D .-1[来源:学#科#网Z#X#X#K] 【答案】B 4 .(2013年高考湖南(文))已知a,b 是单位向量,a·b=0.若向量c 满足|c-a-b|=1,则|c|的最大值为( )A .21-B .2C .21+D .22+【答案】C 5 .(2013年高考广东卷(文))设a 是已知的平面向量且≠0a ,关于向量a 的分解,有如下四个命题: ①给定向量b ,总存在向量c ,使=+a b c ;②给定向量b 和c ,总存在实数λ和μ,使λμ=+a b c ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使λμ=+a b c ;④给定正数λ和μ,总存在单位向量b 和单位向量c ,使λμ=+a b c ;上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是( )A .1B .2C .3D .4(一)必做题(11~13题)【答案】B6 .(2013年高考陕西卷(文))已知向量 (1,),(,2)a m b m ==, 若a //b , 则实数m 等于( )A .2B 2C .2-2D .0 【答案】C7 .(2013年高考辽宁卷(文))已知点()()()30,0,0,,,.ABC ,O A b B a a ∆若为直角三角形则必有( )A .3b a =B .31b a a =+C .()3310b a b a a ⎛⎫---= ⎪⎝⎭D .3310b a b a a-+--= 【答案】C8 .(2013年高考福建卷(文))在四边形ABCD 中,)2,4(),2,1(-==BD AC ,则该四边形的面积为( )A .5B .52C .5D .10 【答案】C二、填空题9 .(2013年高考四川卷(文))如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=,则λ=_____________.【答案】210.(2013年高考天津卷(文))在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AC BE =, 则AB 的长为______.【答案】1211.(2013年高考重庆卷(文))OA 为边,OB 为对角线的矩形中,(3,1)OA =-,(2,)OB k =-,则实数k =____________.【答案】412.(2013年高考山东卷(文))在平面直角坐标系xOy 中,已知(1,)OA t =-,(2,2)OB =,若90o ABO ∠=,则实数t 的值为______【答案】513.(2013年高考浙江卷(文))设e 1.e 2为单位向量,非零向量b=xe 1+ye 2,x.y ∈R..若e 1.e 2的夹角为6π,则|x||b|的最大值等于_______.【答案】214.(2013年高考安徽(文))若非零向量,a b 满足32a b a b ==+,则,a b 夹角的余弦值为_______. 【答案】13- 15.(2013年上海高考数学试题(文科))已知正方形ABCD 的边长为1.记以A 为起点,其余顶点为终点的向量分别为1a 、2a 、3a ;以C 为起点,其余顶点为终点的向量分别为1c 、2c 、3c .若{},,,1,2,3i j k l ∈且,i j k l ≠≠,则()()i j k l a a c c +⋅+的最小值是________.【答案】5-16.(2013年高考课标Ⅱ卷(文))已知正方形ABCD 的边长为2,E 为CD 的 中点,则AE BD ⋅=________.【答案】 217.(2013年高考课标Ⅰ卷(文))已知两个单位向量a ,b 的夹角为60,(1)=+-c ta t b ,若0⋅=b c ,则t =_____.【答案】2;18.(2013年高考北京卷(文))已知点(1,1)A -,(3,0)B ,(2,1)C .若平面区域D 由所有满足AP AB AC λμ=+10λμ≤≤≤≤(2,1)的点P 组成,则D 的面积为__________. 【答案】3。
2013年普通高等学校招生全国统一考试数学(文科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}1,2,3,4,5,1,2,U U A A ===集合则ð ( )A.{}1,2B.{}3,4,5C.{}1,2,3,4,5D.∅ 【测量目标】集合的补集.【考查方式】直接给出集合,用列举法求集合补集. 【参考答案】B【试题解析】依据补集的定义计算. {}1,2,3,4,5U =,{}1,2A =,∴ U A =ð{3,4,5}. 2.已知α是第二象限角,5sin ,cos 13αα==则 ( ) A.1213- B.513- C.513 D.1213【测量目标】同角三角函数基本关系.【考查方式】直接给出角的象限和正弦值,求余弦值. 【参考答案】A【试题解析】利用同角三角函数基本关系式中的平方关系计算.因为α为第二象限角,所以12cos .13α==-3.已知向量()()()()1,1,2,2,,=λλλ=+=++⊥-若则m n m n m n ( )A.-4B.-3C.-2D.1- 【测量目标】平面向量的坐标运算与两向量垂直的坐标公式等.【考查方式】给出两向量的坐标表示,两向量坐标运算的垂直关系,求未知数.λ 【参考答案】B【试题解析】利用坐标运算得出+-与m n m n 的坐标,再由两向量垂直的坐标公式求λ, 因为()()23,3,1,1,λ+=+-=--m n m n 由()(),+⊥-m n m n 可得()()()()23,31,1260,λλ+-=+--=--= m n m n (步骤1)解得 3.λ=- (步骤2)4.不等式222x -<的解集是 ( )A.()1,1-B.()2,2-C.()()1,00,1-D.()()2,00,2- 【测量目标】含绝对值的一元二次不等式的解.【考查方式】给出绝对值不等式,求出满足不等式的解集. 【参考答案】D【试题解析】将绝对值不等式转化为一元二次不等式求解.由222,x -<得2222,x -<-<即204,x <<(步骤1)所以20x -<<或02,x <<故解集为()()2,00,2.- (步骤2)5.()862x x +的展开式中的系数是 ( )A.28B.56C.112D.224 【测量目标】二项式定理.【考查方式】由二项式展开式,求满足条件的项的系数. 【参考答案】C【试题解析】写出二项展开式的通项,从而确定6x 的系数.该二项展开式的通项为88188C 22C ,r r r r r r r T x x --+==(步骤1)令2,r =得2266382C 112,T x x ==所以6x 的系数是112. (步骤2)6.函数()()21log 10f x x x ⎛⎫=+> ⎪⎝⎭的反函数1()f x -= ( ) A.()1021x x >- B.()1021xx ≠- C.()21x x -∈R D.()210x x -> 【测量目标】反函数的求解方法,函数的值域求法. 【考查方式】给出函数的解析式,求它的反函数.. 【参考答案】A【试题解析】由已知函数解出,x 并由x 的范围确定原函数的值域,按照习惯把,x y 互换,得出反函数. 由21log 1y x ⎛⎫=+⎪⎝⎭得112,yx ⎛⎫+= ⎪⎝⎭故1.21yx =-(步骤1)把x 和y 互换,即得()11.21x f x -=-(步骤2) 由0,x >得111,x+>可得0.y > 故所求反函数为()11(0).21xf x x -=>-(步骤3) 7.已知数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于 ( )A.()10613---B.()101139-- C.()10313-- D.()1031+3-【测量目标】等比数列的定义及等比数列前n 项和.【考查方式】给出一个数列{n a }、它的前后项的关系,判断是否为特殊数列,从而求出它的前n 项和. 【参考答案】C【试题解析】先根据等比数列的定义判断数列{}n a 是等比数列,得到首项与公比,再代入等比数列前n 项和公式计算. 由130,n n a a ++=得11,3n n a a +=-故数列{}n a 是公比13q =-的等比数列. (步骤1)又24,3a =-可得1 4.a =(步骤2)所以()1010101413313.113S -⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦==-⎛⎫-- ⎪⎝⎭(步骤3)8.()()1221,0,1,0,F F C F x -已知是椭圆的两个焦点过且垂直于轴的直线交于A B 、两点,且3AB =,则C 的方程为 ( )A.2212x y += B.22132x y += C.22143x y += D.22154x y += 【测量目标】椭圆的标准方程及简单几何性质.【考查方式】给出椭圆焦点,由椭圆与直线的位置关系,利用待定系数法求椭圆的标准方程. 【参考答案】C【试题解析】设出椭圆的方程,依据题目条件用待定系数法求参数.由题意知椭圆焦点在x 轴上,且1,c =可设C 的方程为()22221,1x y a a a +>-(步骤1)由过2F 且垂直于x 轴的直线被C 截得的弦长3,AB =知点21,3⎛⎫ ⎪⎝⎭必在椭圆上,(步骤2)代入椭圆方程化简得4241740,a a -+=所以24a =或214a =(舍去). (步骤3) 故椭圆C 的方程为221.43x y +=(步骤4) 9.若函数()()sin 0=y x ωϕωω=+>的部分图像如图,则 ( ) A.5 B.4 C.3 D.2第9题图【测量目标】根据函数的部分图象确定函数解析式.【考查方式】给出正弦函数的未知解析式及正弦函数的部分图象.根据图象求出T ,确定ω的值.【参考答案】B【试题解析】根据图象确定函数的最小正周期,再利用2πT ω=求.ω设函数的最小正周期为T ,由函数图象可知0ππ=,244T x x ⎛⎫+-= ⎪⎝⎭所以π.2T =(步骤1)又因为2π,T ω=可解得 4.ω=(步骤2)10.已知曲线()421128=y x ax a a =++-+在点,处切线的斜率为, ( )A.9B.6C.9-D.6- 【测量目标】导数的几何意义及求导公式等知识.【考查方式】已知曲线在未知点处的切线斜率,利用导数的几何意义求未知数a . 【参考答案】D【试题解析】先对函数求导,利用导数的几何意义得出点()1,2a -+处的切线斜率,解方程所得.342,y x ax '=+由导数的几何意义知在点(1,2)a -+处的切线斜率1|428,x k y a =-'==--=解得 6.a =-11.已知正四棱柱1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 ( )A.23 D.13 【测量目标】直线与平面所成角和线面垂直的判定.【考查方式】已知正四棱柱,利用其性质和几何体中的垂直关系求线面角的正弦值. 【参考答案】A【试题解析】利用正四棱柱的性质,通过几何体中的垂直关系,判断点C 在平面1BDC 上的射影位置,确定线平面角,并划归到直角三角形中求解.如图,连接AC ,交BD 于点O ,由正四棱柱的性质,有.AC BD ⊥ 因为1CC ⊥平面ABCD ,所以 BD ⊥(步骤1)又1,CC AC C = 所以BD ⊥平面 O (步骤2) 在平面1CC O 内作1,CH C O ⊥垂足为H ,则.BD CH ⊥又1,BD C O O = 所以CH ⊥平面1,BDC (步骤3) 第11题图 连接DH ,则DH 为CD 在平面1BDC 上的射影,所以CDH ∠为CD 与1BDC 所成的角.(步骤4)设12 2.AA AB ==在1Rt COC △中,由等面积变换易求得2,3CH =在Rt CDH △中,2sin .3CH CDH CD ∠==(步骤5) 12.已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k = ( )A .12 D.2 【测量目标】直线与抛物线的位置关系,平面向量的坐标运算等知识.【考查方式】已知抛物线标准方程,利用抛物线性质及直线与抛物线的位置关系求解过焦点的直线的斜率. 【参考答案】D【试题解析】联立直线与抛物线的方程,消元得一元二次方程并得两根之间的关系,由0MA MB =进行坐标运算解未知量k .抛物线C 的焦点为()2,0,F 则直线方程为()2,y k x =-与抛物线方程联立,消去y 化简得()22224840.k x k x k -++=(步骤1)设点()()1122,,,,A x y B x y 则1212284, 4.x x x x k +=+=所以()121284,y y k x x k k+=+-=()21212122416.y y k x x x x =-++=-⎡⎤⎣⎦(步骤2) ()()()()()()112212122,22,22222MA MB x y x y x x y y =+-+-=+++--()()121212122280,x x x x y y y y =+++-++=(步骤3)将上面各个量代入,化简得2440,k k -+=所以 2.k =(步骤4)二、填空题:本大题共4小题,每小题5分.13.设()[)()21,3=f x x f x ∈是以为周期的函数,且当时, . 【测量目标】函数周期的应用及根据函数解析式求值.【考查方式】给出函数()f x 的周期及取值范围,代入解析式求函数值.【参考答案】1-【试题解析】利用周期将自变量转化到已知解析式中x 的范围内,代入解析式计算 . 由于()f x 的周期为2,且当[)1,3x ∈时,()2,f x x =-(步骤1)()2,f x x =-()()()112112 1.f f f -=-+==-=-(步骤2)14.从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有 种.(用数字作答)【测量目标】简单的排列组合知识的应用. 【考查方式】直接利用排列组合知识列式求解. 【参考答案】60【试题解析】利用排列组合知识列式求解. 由题意知,所有可能的决赛结果有12365354C C C 61602⨯=⨯⨯=(种).15.若x y 、满足约束条件0,34,34,x x y x y ⎧⎪+⎨⎪+⎩………则z x y =-+的最小值为 .【测量目标】二元线性规划求目标函数最值.【考查方式】直接给出函数的约束条件,利用线性规划性质及借助数形结合思想求z 的最小值.【参考答案】0【试题解析】作出定义域,借助数形结合寻找最优解.由不等式组作出可行域,如图阴影部分所示()包括边界,且()()41,1040,.3A B C ⎛⎫⎪⎝⎭,,,,由数形结合知,直线y x z =+过点()1,1A 时,min 110.z =-+= 16.已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K = ,且圆与圆所在的平面所成角为,则球O 的表面积等于 .【测量目标】球的大圆、小圆及球的截面性质,二面角的平面角,球的表面积公式等知识. 【考查方式】已知二面角的平面角,根据球的截面性质,直角三角形的性质,求出球的半径,并由球的表面积公式求球的表面积. 【参考答案】16π 【试题解析】根据球的截面性质以及二面角的平面角的定义确定平面角,把球的半径转化到三角形中计算,进而求得球的表面积.如图所示,公共弦为AB ,设球的半径为R ,则,AB R =取AB 为中点M ,连接OM 、,KM由圆的性质知,,OM AB KM AB ⊥⊥ 所以KMO ∠为圆O 与圆K 所在平面所成的一个二面角的平面角,则60.KOM ∠=(步骤1)Rt KOM △中,3,2OK =所以sin 60OK OM == (步骤2) 在Rt OMA △中,因为222,OA OM AM =+所以2213,4R R =+解得24,R =(步骤3)所以球O 的表面积为24π16π.R =(步骤4)三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)等差数列{}n a 中,71994,2,a a a ==(I )求{}n a 的通项公式; (II )设{}1,.n n n nb b n S na =求数列的前项和 【测量目标】等差数列的通项公式、裂项相消法求数列的前n 项和.【考查方式】(1)根据等差数列的通项公式求出首项和公差,进而求出等差数列的通项公式.(2)已知通项公式,利用裂项相消法求和.【试题解析】(1)设等差数列{}n a 的公差为d ,则()11.n a a n d =+-因为71994,2,a a a =⎧⎨=⎩所以()11164,1828.a d a d a d +=⎧⎨+=+⎩(步骤1)解得11,1.2a d =⎧⎪⎨=⎪⎩所以{}n a 的通项公式为1.2n n a +=(步骤2) (2)因为()222,11n b n n n n ==-++所以2222222.122311n n S n n n ⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-=⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭(步骤3) 18.(本小题满分12分)设ABC △的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.(I )求B(II)若1sin sin 4A C =,求C . 【测量目标】余弦定理解三角形,三角恒等变换公式及其应用.【考查方式】已知三角形的三边及三边关系.(1)由已知关系式展开,利用余弦定理求角. (2)三角形内角和得出A C +,由给出的sin sin A C 的形式,联想构造与已知条件相匹配的余弦公式,求出角C .【试题解析】(1)因为()(),a b c a b c ac ++-+=所以222.a c b ac +-=-(步骤1)由余弦定理得2221cos ,22a cb B ac +-==-因此120.B =(步骤2)(2)由(1)知60,A C +=所以()cos cos cos sin sin A C A C A C -=+cos cos sin sin 2sin sin A C A C A C =-+()11cos 2sin sin 2242A C A C =++=+⨯=(步骤1) 故30A C -=或30,A C -=- 因此15C =或45.C =(步骤2) 19.(本小题满分12分)如图,四棱锥P-ABCD 中,==90ABC BAD ∠∠,BC =2AD ,△P AB 与△PAD 都是边长为2的等边三角形. 图(1)(I )证明:;PB CD ⊥(II )求点.A PCD 到平面的距离【测量目标】空间垂直关系的证明和点到平面距离的求解.第19题图【考查方式】已知四棱锥,底面为特殊的直角梯形,侧面为特殊三角形(1)借助线线、线面垂直求解.(2)通过做辅助线将点面距离转化为图形中的线段,再求解.【试题解析】(1)证明:取BC 的中点E ,连接DE ,则四边形ABCD 为正方形. 过点P 作PO ABCD ⊥平面,垂足为O .连接OA ,OB,OD ,OE . 图(2) 由PAB △和PAD △都是等边三角形知,PA PB PD ==(步骤1)所以,O A O B O D ==即O 为正方形ABED 对角线的交点,故 ,OE BD ⊥从而.P B O E ⊥(步骤2)因为O 是BD 的中点,E 是BC 的中点,所以OE //CD .因此.PB CD ⊥(步骤3)(2)解:取PD 的中点F ,连接OF ,则//.OF PB 由(1)知,,PB CD ⊥故.OF CD ⊥(步骤4)又12OD BD ==OP ==故POD △为等腰三角形,(步骤5) 因此.OF PD ⊥又,PD CD D = 所以.OF PCD ⊥平面(步骤6)因为//,AE CD CD PCD ⊂平面,,AE PCD ⊄平面所以//.AE PCD 平面(步骤7) 因此点O 到平面PCD 的距离OF 就是点A 到平面PCD 的距离,(步骤8) 而112OF PB ==,所以点A 到平面PCD 的距离为1. (步骤9) 20.(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I )求第4局甲当裁判的概率;(II )求前4局中乙恰好当1次裁判概率. 【测量目标】相互独立事件同时发生的概率,互斥事件概率加法公式的应用.【考查方式】(1)直接利用独立事件的概率公式求解.(2)由已知,直接利用互斥事件的加法公式求解.【试题解析】(1)记1A 表示事件“第2局结果为甲胜”,2A 表示“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”.则12.A A A = ()()()()12121.4P A P A A P A P A === (步骤1)(2)记1B 表示事件“第1局比赛结果为乙胜”,2B 表示事件“第2局乙参加比赛,结果为乙胜”,3B 表示事件“第3局中乙参加比赛时,结果为乙胜”,B 表示事件“前4局中乙恰好当1次裁判”, 则1312312.B B B B B B B B =++ (步骤2)()()1312312P B P B B B B B B B =++=()()()1312312P B B P B B B P B B ++=()()()()()()()1312312P B P B P B P B P B P B P B ++=111+484+ =5.8(步骤3) 21.(本小题满分12分)已知函数()32=33 1.f x x ax x +++(I )求();a f x =的单调性; (II )若[)()2,0,x f x ∈+∞时,…求a 的取值范围. 【测量目标】导数在研究函数中的应用.【考查方式】已知含未知数a 的函数()f x (1)对()f x 求导,得出()f x =0时的根,根据导数性质讨论函数单调性.(2)利用特殊值法和放缩法求a 的范围.【试题解析】(1)当a =()3231,f x x x =-++()23 3.f x x '=-+(步骤1)令()0,f x '=得121, 1.x x ==(步骤2)当()1x ∈-∞时,()0,f x '>()f x 在()1-∞上是增函数;当)1x ∈时,()0,f x '<()f x 在)1上是减函数;当)1,x ∈+∞时,()0,f x '>()f x 在)1,+∞上是增函数. (步骤3) (2)由()20f …得4.5a -…当45a -…,()2,x ∈+∞时, ()()225321312f x x ax x ⎛⎫'=++-+ ⎪⎝⎭… =()1320,2x x ⎛⎫--> ⎪⎝⎭所以()f x 在()2,+∞上是增函数,(步骤4)于是当[)2+x ∈∞,时,()()20f x f 厖.综上,a 的取值范围是4,.5⎡⎫-+∞⎪⎢⎣⎭(步骤5) 22.(本小题满分12分) 已知双曲线()221222:10,0x y C a b F F a b-=>>的左、右焦点分别为,,离心率为3,直线2y C =与(I )求,;a b(II )2F l C A B 设过的直线与的左、右两支分别相交于、两点,且11,AF BF = 证明:22AF AB BF 、、成等比数列.【测量目标】双曲线的方程、性质,直线与双曲线的位置关系,等比中项等性质.【考查方式】(1)由双曲线与直线的位置关系、双曲线的几何性质求出a,b 值.(2)由直线方程和双曲线方程,利用双曲线与直线的位置关系及两点间距离公式证明线段的等比关系.【试题解析】(1)解:由题设知3,c a =即2229,a b a+=故228.b a = 所以C 的方程为22288.x y a -=(步骤1)将y=2代入上式,求得x =(步骤2)由题设知,=解得2 1.a =所以1,a b ==(步骤3)(2)证明:由(1)知,()()123,0,3,0,F F -C 的方程为2288.x y -=○1(步骤4)由题设可设l 的方程为()3,y k x k =-<将其代入○1并化简,得 ()222286980.k x k x k --++=(步骤5)设()1122,,(,),A x y B x y 则22121212226981,1,,.88k k x x x x x x k k +-+==--剠(步骤6)于是()1131,AF x ==-+123 1.BF x ==+(步骤7)由11,AF BF =得()123131,x x -+=+(步骤8) 即2122262,,383k x x k +=-=--故 解得212419,.59k x x ==-从而(步骤9)由于2113,AF x ===-2231,BF x ===- 故()2212234,AB AF BF x x =-=-+=(步骤10)()221212=39116,AF BF x x x x +--= 因而222,AF BF AB = 所以22AF AB BF 、、成等比数列(步骤11).。
2013年普通高等学校招生全国统一考试文科数学 第Ⅰ卷一、选择题:本大题共12小题。
每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B =( )(A ){0}(B ){-1,,0} (C ){0,1} (D ){-1,,0,1}(2)212(1)ii +=-( ) (A )112i --(B )112i -+(C )112i +(D )112i -(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) (A )错误!未找到引用源。
(B )错误!未找到引用源。
(C )14错误!未找到引用源。
(D )16错误!未找到引用源。
(4)已知双曲线2222:1x y C a b-=(0,0)a b >>的离心率为错误!未找到引用源。
,则C 的渐近线方程为( ) (A )14y x =± (B )13y x =± (C )12y x =±(D )y x =±(5)已知命题:p x R ∀∈,23xx<;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( ) (A )p q ∧(B )p q ⌝∧ (C )p q ∧⌝ (D )p q ⌝∧⌝(6)设首项为1,公比为错误!未找到引用源。
的等比数列{}n a 的前n 项和为n S ,则( ) (A )21n n S a =- (B )32n n S a =- (C )43n n S a =- (D )32n n S a =-(7)执行右面的程序框图,如果输入的[1,3]t ∈-,则输出的S 属于(A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]-(8)O 为坐标原点,F 为抛物线2:42C y x =的焦点,P 为C 上一点,若||42PF =,则POF ∆的面积为( )(A )2(B )22(C )23(D )4(9)函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )(10)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( ) (A )10 (B )9(C )8(D )5(11)某几何函数的三视图如图所示,则该几何的体积为( )(A )168π+ (B )88π+ (C )1616π+ (D )816π+(12)已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )(A )(,0]-∞ (B )(,1]-∞ (C) [2,1]- (D) [2,0]-第Ⅱ卷本卷包括必考题和选考题两个部分。
2013年全国各地高考文科数学试题分类汇编10:平面解析几何
一、选择题
1 .(2013年高考重庆卷(文))设P 是圆2
2
(3)(1)4x y -++=上的动点,Q 是直线3
x =-上的动点,则PQ 的最小值为( ) A .6
B .4
C .3
D .2
【答案】B
2 .(2013年高考江西卷(文))如图.已知l 1⊥l 2,圆心在l 1上、半径为1m 的圆O 在t=0
时与l 2相切于点A,圆O 沿l 1以1m/s 的速度匀速向上移动,圆被直线l 2所截上方圆弧
长记为x,令y=cosx,则y 与时间t(0≤x≤1,单位:s)的函数y=f(t)的图像大致为
【答案】B
3 .(2013年高考天津卷(文))已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与
直线10ax y -+=垂直, 则a =( ) A .1
2
-
B .1
C .2
D .
12
【答案】C
4 .(2013年高考陕西卷(文))已知点M (a ,b )在圆221:O x y +=外, 则直线ax + by = 1
与圆O 的位置关系是( )
A .相切
B .相交
C .相离
D .不确定
【答案】B
5 .(2013年高考广东卷(文))垂直于直线1y x =+且与圆2
2
1x y +=相切于第一象限的
直线方程是( )
A .0x y +=
B .10x y ++=
C .10x y +-=
D .0x y ++=
【答案】A 二、填空题
6 .(2013年高考湖北卷(文))已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π
02
θ<<
).设圆O 上到直线l 的距离等于1的点的个数为k ,则k =________.【答案】4 7 .(2013年高考四川卷(文))在平面直角坐标系内,到点
(1,2A ,(1,5)B ,(3,6)C ,(7,1)D -的距离之和最小的点的坐标是__________
【答案】(2,4)
8 .(2013年高考江西卷(文))若圆C 经过坐标原点和点(4,0),且与直线y=1相切,则圆
C 的方程是_________.
【答案】2
2325
(2)
()24
x y -++=
9 .(2013年高考湖北卷(文))在平面直角坐标系中,若点(,)P x y 的坐标x ,y 均为整数,
则称点P 为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中△ABC 是格点三角形,对应的1S =,0N =,4L =.
(Ⅰ)图中格点四边形DEFG 对应的,,S N L 分别是__________;
(Ⅱ)已知格点多边形的面积可表示为S aN bL c =++,其中a ,b ,c 为常数. 若某格点多边
形对应的71N =,18L =, 则S =__________(用数值作答).
【答案】(Ⅰ)3, 1, 6 (Ⅱ)79
10.(2013年高考浙江卷(文))直线y=2x+3被圆x 2+y 2
-6x-8y=0所截得的弦长等于
__________.
【答案】
11.(2013年高考山东卷(文))过点(3,1)作圆2
2(2)
(2)4x y -+-=的弦,其中最短的弦
长为__________【答案】
三、解答题 12.(2013年高考四川卷(文))
已知圆C 的方程为22
(4)4x y +-=,点O 是坐标原点.直线:l y kx =与圆C 交于
,M N 两点.
(Ⅰ)求k 的取值范围;
(Ⅱ)设(,)Q m n 是线段MN 上的点,且222
211
||||||
OQ OM ON =+.请将n 表示为m 的函数.
【
答
案
】
解:(Ⅰ)将x k y =代入
22(4)4
x y +-=得 则
0128)1(22=+-+x k x k ,(*)
由012)1(4)8(22>⨯+--=∆k k 得 32>k . 所以k 的取值范围是),3()3,(+∞--∞
(Ⅱ)因为M 、N 在直线l 上,可设点M 、N 的坐标分别为),(11kx x ,),(22kx x ,则
2122
)1(x k OM
+=,2222)1(x k ON +=,又22222
)1(m k n m OQ +=+=,
由
2
2
2
112ON
OM
OQ
+
=
得,
2
2221222)1(1
)1(1)1(2x k x k m k ++
+=+, 所以2
2
2121221222122)(1
12x x x x x x x x m -+=+= 由(*)知 2
2118k k x x +=+,2
21112
k x x +=
, 所以 3
536
22-=
k m ,
因为点Q 在直线l 上,所以m n
k =,代入3
53622-=k m 可得363522=-m n , 由3
5362
2-=
k m 及32>k 得 302
<<m ,即 )3,0()0,3( -∈m . 依题意,点Q 在圆C 内,则0>n ,所以 5
180
15533622+=+=m m n , 于是,n 与m 的函数关系为 5
180
152+=m n ()3,0()0,3( -∈m )。