手机摄像头sensor基础知识
- 格式:doc
- 大小:7.30 MB
- 文档页数:6
手机中的传感器如今,智能手机在生活中已经是必不可少的了,人人都能使用手机,但我们对手机中的传感器又了解了多少呢?手机传感器是手机上通过芯片来感应的元器件,如温度值、亮度值和压力值等。
随着技术的进步,手机已经不再是一个简单的通信工具,而是具有综合功能的便携式电子设备。
手机的虚拟功能,比如交互、游戏、都是通过处理器强大的计算能力来实现的,但与现实结合的功能,则是通过传感器来实现。
一、光线传感器光线感应器也叫做亮度感应器,英文名称为Light-Sensor ,很多平板电脑和手机都配备了该感应器。
一般位于手持设备屏幕上方,它能根据手持设备目前所处的光线亮度,自动调节手持设备屏幕亮度,给使用者带来最佳的视觉效果。
例如在黑暗的环境下,手持设备屏幕背光灯就会自动变暗,否则很刺眼。
原理:光线感应器是由两个组件即投光器及受光器所组成,利用投光器将光线由透镜将之聚焦,经传输而至受光器之透镜,再至接收感应器,接收感应器将收到之光线讯号转变成电信号,此电信讯号更可进一步作各种不同的开关及控制动作,其基本原理即对投光器受光器间之光线做遮蔽之动作所获得的信号加以运用以完成各种自动化控制。
用途:通常用于调节屏幕自动背光的亮度,白天提高屏幕亮度,夜晚降低屏幕亮度,使得屏幕看得更清楚,并且不刺眼。
也可用于拍照时自动白平衡。
还可以配合下面的位移传感器检测手机是否在口袋里防止误触。
二、位移传感器位移传感器又称为线性传感器,是一种属于金属感应的线性器件,传感器的作用是把各种被测物理量转换为电量。
在生产过程中,位移的测量一般分为测量实物尺寸和机械位移两种。
按被测变量变换的形式不同,位移传感器可分为模拟式和数字式两种。
模拟式又可分为物性型和结构型两种。
常用位移传感器以模拟式结构型居多,包括电位器式位移传感器、电感式位移传感器、自整角机、电容式位移传感器、电涡流式位移传感器、霍尔式位移传感器等。
数字式位移传感器的一个重要优点是便于将信号直接送入计算机系统。
1、Gsensor:(重力感应传感器)作用:根据使用者的动作进行相应的软件应用,例如:重力感应游戏,用户挥动手机,游戏做出相应的反应。
2、Psensor:(距离传感器)作用:当使用者接通电话并将电话贴近耳朵时,使屏幕变黑以免引起误操作,远离时屏幕开启,恢复可以正常工作状态。
3、Msensor (磁传感器):作用:目前仅是作为指南针的功能,可用于增强型电压控制。
4、Gyro (陀螺)作用:测量设别自身的旋转运动,内置陀螺仪可以测量手机自身的运动。
可以配合摄像头做防抖用。
5、线性加速度传感器:作用:测量三个轴的绝对加速度,与陀螺仪配合可以在无卫星信号的情况下进行定位。
6、旋转矢量传感器:作用:测量三个轴绕固定轴旋转过的角度,可以用来输出设备当前的与水平放置状态相比各个轴绕过的角度状态。
7、压差传感器:作用:测量设备内外的压力差值,可用来监控当前设备内外的压差。
8、光线感应传感器:作用:根据手机所处环境的光线来调节手机屏幕的亮度和键盘灯。
比如在光线充足的地方,屏幕很亮,键盘灯就会关闭;相反,在暗处,键盘灯就会亮,屏幕较暗。
9、Gap Sensor :作用:用于检测用户肢体与手机的接触方式,左手,右手接触等,并可与重力传感器等联合使用准确测出手机的当前状态。
10、气压传感器:作用:用来测量天气变化并可以在不开启GPS 的情况下测量所处位置的海拔高度,还可以用来辅助导航。
11 、色温传感器:作用:在手机影像处理中可以得到精确、稳定的工作,色温与环境光水平一致,得到稳定的屏幕色温及精确地图像色彩。
12、电子罗盘:作用:与磁传感器同,可以用来作为指南针用。
13、风速风向传感器:作用:用于测量当前所处位置的风速计风向信息。
14、温度传感器作用:监控设备当前温度,可用于在温度过高的情况下查询是否关闭相应程序。
15、位移传感器作用:设定安全距离,超出安全距离则发出警报。
图像术工光区完整像传感器的功工艺上有前照一、图像传COB 封装的图像传感器区域是单像素整的画面。
功能是光电转照式(FSI)、传感器架构的图像传感器器从外观看分素阵列,由多转换。
关键的背照式(B 器绑定金线分感光区域多个单像素点的参数有像素BSI)、堆栈式线后示意(Pixel Arr 点组成。
每个素、单像素尺式(Stack)ray),绑线个像素获取的尺寸、芯片尺等。
以下简Pad,内层电的光信号汇集尺寸、功耗简单介绍。
电路和基板集在一起时组。
技。
感组成镜修头的部通光区理和 CMOS 芯片CMOS 芯片由于光线进修正光线角度的CRA 保持电路架构上通常包含有电区域(Pixel A 和一定的编码片由微透镜层片剖面图进入各个单像度,使光线垂持在一点的偏上,我们加入电源、数据、Array)将光码后通过数据层、滤色片像素的角度不垂直进入感光偏差范围内。
入图像传感器时钟、通讯光信号转换为据接口将电信片层、线路层不一样,因此光元件表面。
器是一个把光讯、控制和同为电信号后信号输出。
层、感光元件此在每个单像。
这就是芯光信号转为电同步等几部分,由暗盒中的件层、基板层像素上表面增片CRA 的概电信号的暗盒分电路。
可以的逻辑电路将层组成。
增加了一个微概念,需要与盒,那么暗盒以简单理解将电信号进行微透与镜盒外为感行处20M 1/2 微米整体一个 友们二、图像传1.像素:指M,像素越多2.芯片尺寸.3inch 等。
3.单像素尺米,1.34微米体性能就相对个相当关键的其他更深入们可以研究探传感器关键参指感光区域内多,拍摄画面寸:指感光区域芯片尺寸越尺寸:指单个米,1.5微米对较高,最终的参数。
入的参数比如探讨。
参数内单像素点的面幅面就越大域对角线距越大,材料成个感光元件的米等。
开口尺终拍摄画面的如SNR,Se 的数量,比如大,可拍摄距离,通常以英成本越高。
的长宽尺寸尺寸越大,单的整体画质相ensitivity,如5Maga 摄的画面的细英制单位表示,也称单像单位时间内进相对较优秀。
手机镜头原理
手机镜头原理是通过透镜系统将光线聚焦到图像传感器上,以捕捉并记录下来。
手机镜头通常由多个镜片组成,这些镜片的形状和排列产生不同的焦距,从而实现对不同距离物体的清晰成像。
光线从外界进入手机镜头后,首先穿过物镜(Objective Lens),物镜的作用是将光线聚焦到一个点上。
光线通过物镜后,进入附加镜片或过滤器,这些附加组件可以起到滤波或校正镜头畸变的作用。
通过物镜聚焦后的光线会通过光圈(Aperture),光圈的大小
可以调节进入镜头的光线量。
较小的光圈会增加光线的聚焦度,使物体更加清晰,但同时会减少进入镜头的光线量,需要更多的光线补偿。
较大的光圈可以增加进光量,但可能会导致边缘图像模糊。
光线从光圈出来后,会进入成像传感器(Image Sensor),成
像传感器是手机镜头的核心部件。
传感器会将光线转换为电信号,并通过处理器进行数字化处理,从而形成最终的图像。
传感器的类型和像素数目会直接影响照片的清晰度和细节表现。
除了以上主要的组件,还有一些配套元件,比如自动对焦系统、光学防抖等,用来提高拍摄效果和稳定性。
总之,手机镜头原理是通过透镜系统将光线聚焦到图像传感器上,通过光学和数字化处理,实现对外界图像的捕捉和记录。
sensor规格书参数的使用(1)分辨率:常见分辨率的感性表述即30万、100万、200万,正确表述应该为0.3M、1M、2M,其中M代表百万,是像素单位。
Sensor分辨率即指在单位面积上,像素的个数,数值越大,则代表像素点越多,捕获的图像细节越多,或者说图像更清晰。
像素阵列如下如所示,其中每一个像素块中均包含有RGB三原色。
(2)有效像素阵列:有效像素阵列是指在sensor的水平H(Horizontal)和垂直V (Virtical)方向上,分别含有的有效像素点的个数,很多时候,并不是所有感应器上的像素都能被运用。
通常其余部分被用来表示黑色,H与V 的乘积一般等于或大于分辨率数值。
(3)像素尺寸:像素尺寸即每个像素点的大小,单位为um(微米)。
(4)灵敏度:灵敏度表示当sensor被光均匀的照射时,当照度是1LUX(勒克斯:照度单位)时,在1s内,光电转换器所能达到的电压幅值的最大值。
单位一般是LUX/s(5)动态范围:(6)信噪比:信噪比即信号和噪声的比例,反映了sensor压制噪声的能力,单位一般是dB,数值越大,说明sensor抑制噪声的能力越强。
(7)镜头光学尺寸:镜头光学尺寸是指sensor感光面积的大小,一般常见有1/3‘’、1/4‘’、1/2.7‘’等等,其单位为英寸,表述的为sensor感光面对角线的长度。
(8)最大输出帧率:(9)数据输出格式:数据输出格式,表示sensor输出的图像数据的格式,一般常见有MONO、YUV、RAW、RGB等。
(10)数据输出接口:数据输出接口表示sensor可以与外界进行通信的接口,常见有DVP、MIPI、SPI等。
(11)工作温度范围:表示sensor能够正常工作的环境温度范围。
(12)封装:指sensor的封装形式,一般常见有CLCC、WLP、PLCC、SM等等。
一、介绍摄像头传感器是摄像机设备的核心部件,它负责将光学图像转换为电信号。
在数字摄像机中,传感器是将光学成像转化为数字信号的关键环节。
本文将介绍摄像头传感器的原理,包括传感器的工作原理、种类、性能指标等内容。
二、工作原理1. 光电转换摄像头传感器是一种能够将光学信号转换成电信号的器件。
其工作原理是通过光电转换的方式,将进入传感器的光线转化为电荷,并最终转换为电信号。
一般来说,传感器采用CMOS或CCD技术来实现光电转换,从而捕捉图像。
2. CMOS与CCDCMOS(Complementary Metal-Oxide-Semiconductor)和CCD (Charge-Coupled Device)是两种常见的传感器技术。
CMOS传感器由图像传感器阵列和信号处理器组成,每个像素拥有自己的放大器和A/D转换器,因此具有低功耗、低成本的优势。
而CCD传感器则通过逐行扫描的方式将光信号转换为电信号,其特点是传感器本身对光的响应灵敏度高,适用于对图像质量要求较高的领域。
三、种类根据用途和结构的不同,摄像头传感器可以分为多种类型:1. 全画幅传感器全画幅传感器是指其尺寸与35mm胶片尺寸相同的传感器,具备出色的画质和高感光度。
由于其较大的面积,可以捕捉更多的光线,因此适合于对图像质量要求较高的用途。
2. APS-C传感器APS-C传感器是一种常见的摄像头传感器类型,其尺寸介于全画幅传感器和4/3传感器之间。
它具有良好的成像质量和性能表现,是众多中高端数码相机所采用的传感器类型。
3. 4/3传感器4/3传感器是一种由奥林巴斯和松下联合推出的传感器规格,其尺寸较小,适合于小型化摄像机和便携式相机。
尽管尺寸较小,但4/3传感器在图像质量和性能表现上并不逊色于其他传感器类型。
四、性能指标摄像头传感器的性能是评判其优劣的关键指标,其中包括分辨率、动态范围、信噪比等内容。
1. 分辨率传感器的分辨率是指其能够捕捉的细节和图像的清晰度。
CMOS Camera Module 摄像头模组知识培训手机摄像头模组的应用手机摄像头模组结构介绍摄像头Sensor的相关技术摄像头模组的相关技术自动变焦摄像头模组摄像头Sensor的相关技术1)Sensor的工作原理2)Sensor的像素3)Sensor的类型4)Sensor的封装形式5)Sensor的厂商和型号6)目前国内及全球Sensor使用现况光是一种波,可见光只是整个光波中的一段。
Lens就是一个能够截止不可见光波,而让可见光通过的带通滤波器。
Sensor 的工作原理其实传感器Sensor中感光的部分是由许多个像素按照一定规律排列的,如左图:光照--〉电荷--〉弱电流--〉RGB数字信号波形--〉YUV数字信号信号Sensor 的工作原理Sensor的工作原理Sensor的像素★30万像素最大点阵640×480 (VGA)★130万像素最大点阵1280×960 (SXGA)★200万像素最大点阵1600×1280 (UXGA)★300万像素最大点阵2048×1536Sensor的类型此类感光元件有两种,CCD和CMOS。
CCD(Charge Coupled Device)为电荷藕合器件图像传感器。
目前有能力生产CCD 的公司分别为:SONY、Philips、Kodak、Matsushita、Fuji和Sharp,大半是日本厂商。
CMOS(Complementary Metal-Oxide Semiconductor)为互补性氧化金属半导体图像传感器。
对于CMOS来说,具有便于大规模生产,且速度快、成本较低,将是数字相机关键器件的发展方向。
CMOS感光器以已经有逐渐取代CCD感光器的趋势,并有希望在不久的将来成为主流的感光器。
Sensor的封装形式目前的Sensor有两种封装形式,即CSP和DICE。
在模组厂商加工制造中,CSP所对应的制程是SMT,DICE所对应的制程是COB。
摄像机SENSOR介绍Sensor即传感器,是摄像机的核心部件,作用是将光信号转换成电信号,方便处理和存储。
Sensor的类型有两种,CCD和CMOS。
CCD即电荷耦合器( charge-couled device),CMOS即互补金属氧化物半导体(Complementary Metal Oxide Semiconductor),两种传感器原理上都是光敏元件在光照的条件下产生电荷,电荷转移产生电流,电流经过整流放大、模数转换形成数字信号,最终以二进制数字图像矩阵的形式输出给专门的DSP处理芯片。
CCD和CMOS两者在结构原理上的主要区别有两点:1、感光元件不同,CCD的感光元件除了感光二极管之外,还包括一个用于控制相邻电荷的存储单元,感光二极管占据了绝大多数面积,即CCD的开口率(有效感光区域与整个感光元件的面积比值)很大。
而CMOS 感光元件的构成就比较复杂,除处于核心地位的感光二极管之外,它还包括放大器与模数转换电路,每个像点的构成为一个感光二极管和四个晶体管,而感光二极管占据的面积只是整个元件的一小部分,造成的后果是CMOS的开口率很小。
这样在接受同等光照及元件大小相同的情况下,CMOS感光元件所能捕捉到的光信号就明显小于CCD元件,灵敏度较低;体现在输出结果上,就是CMOS传感器捕捉到的图像内容不如CCD传感器来得丰富,图像细节丢失情况严重且噪声明显;2、噪声大小不同,CCD传感器电荷是转移之后统一输出放大,即每个像点的电信号强度都获得同样幅度的增大。
而CMOS 传感器中每一个感光元件都直接整合了放大器和模数转换,每个像素点的电信号先单独放大转换成数字信号,再汇聚一起形成二进制数字图像矩阵。
CMOS感光元件中的放大器属于模拟器件,无法保证每个像点的放大率都保持严格一致,因此产生的噪声较大。
通过以上比较同等条件下CMOS的性能不如CCD,但CMOS的优势在于成本上,CMOS 传感器采用一般半导体电路最常用的CMOS工艺,工艺相对简单,成本低;而CCD的工艺复杂,外围外围芯片的成本高。
CameraSensor基础知识1. 感光原理Camera Sensor是由数百万上千万数量⼩⽅块的CCD或CMOS感光元件(简称像素),以平⾯阵列⽅式排列组成,其感光原理是于感光元件表层上整合RGB(红、绿、蓝)三原⾊的滤镜,通过对⼀个⼀个的感光点对光进⾏采样和量化形成图像。
Sensor中每⼀个感光点只对应⼀个彩⾊滤光⽚,因此只能感光RGB中的⼀种颜⾊。
通常所说的30万像素或130万像素等,指的是有30万或130万个感光点。
如果⼀台拥有⼀千⼆百万像素的数码相机,明显地就是最少12,000,000⼩⽅块的感光元件了Sensor的彩⾊滤镜阵列元件,基本上是采⽤了Bayer图样(RGRG/GBGB排列如上图)的排列⽅式,实现RGB三原⾊滤镜依序,以Striped Array(条状阵列)形式,红、蓝、绿相互交替,各施其职,分别去 "捕捉" 三原⾊的光能量。
以光学的⾓度⽽⾔,应该说成是光线通过镜头的不同镜⽚组,投射抵达⾄整合了Bayer图样的条状阵列RGB滤镜的图像传感器,⽽图像传感器记录了进光量的电荷,转成数字参数,成为了RAW⽂件的图像信息即RAW DATA。
绿⾊滤镜元件,是红、蓝的2倍,只因⼈类眼睛识别颜⾊不是线性的,我们的眼睛对于绿⾊,显然是⽐较敏感。
因此护眼常识都在⿎励⼈们多看绿⾊的缘故。
理论上RGB的3原⾊滤镜数量⽐例是1: 2: 1。
Bayer RGB是属于 RGB RAW data的,但是 RGB RAW data不⼀定是Bayer pattern。
Sensor输出的RAW格式图像⼤⼩取决于⾃⾝特性与配置,例如某款Sensor配置为10-bit RGB RAW并且图像尺⼨为1024*768,那么单帧图像⼤⼩为1024*768*10bit=7680kb。
当然也有些Sensor内置格式转换单元,可以直接输出YUV数据或者RGB数据。
2. 输出接⼝-DVPDVP(Digital Video Port)是传统的sensor输出接⼝,采⽤并⾏输出⽅式,数据位宽有8bit、10bit、12bit、16bit等,是CMOS电平信号(重点是⾮差分信号)。
关于手机传感器的认识1、加速传感器(重力感应)原理:现代加速传感器有单轴、两轴、三轴之分。
手机上常见的是电容式芯片三轴加速传感器,主要由双芯片构成,即重力测量单元和控制电路单元。
在每个方向上,封装部分内有一小块可移动的电极板和两块不可移动的电极板,当可移动电极板受到加速作用时,会产生惯性力,从而影响与左右两个不可移动电极板的间隔,使得电容值改变,促进电容电压值的变化,以此可以计算出加速度。
功能:加速度有两种,一个是静态的加速度,把加速度传感器倾斜一个角度,重力场会在感应场上产生一个分量,通过这个分量,可以测量出手机倾斜了多少角度,由此实现一些前后左右的控制;另外一种就是所谓的动态加速度,可以侦测速度、撞击等.手机通过加速传感器能够实时的获得手机的移动状态,其最初的用途是用来检测手机是竖放还是横放,从而决定是横屏显示还是竖屏显示。
随着三轴加速器普及,手机能够识别横放竖放,正面横放、背面横放,正面竖放、背面竖放状态,从而可以实现摇晃手机操作,翻转静音功能等;加速传感器另一个重大用处就是利用手机摇晃来玩游戏,戏中得到充分表现,从而代替传统游戏手柄。
2、距离传感器工作原理:距离感应器又叫位移传感器,距离感应器一般都在手机听筒的两侧或者是在手机听筒凹槽中,这样便于它的工作。
通过发射特别短的光脉冲,并测量此光脉冲从发射到被物体反射回来的时间,通过测时间来计算与物体之间的距离。
用各种元件检测对象物的物理变化量,通过将该变化量换算为距离,来测量从传感器到对象物的距离位移的机器。
根据使用元件不同,分为光学式位移传感器、线性接近传感器、超声波位移传感器等。
应用:这个传感器在手机上的应用是当我们打电话时,手机屏幕会自动熄灭,当你脸离开,屏幕灯会自动开启,并且自动解锁。
这个对于待机手机较短的智能手机来说是相当实用的。
现在很多智能手机都装备的这个传感器。
此外,距离感应还可应用到一些特殊的功能,例如Galaxy Note II中的”快速一览”功能。
摄像头-Camerasensor基本知识⼀、Camera ⼯作原理介绍1. 结构 .⼀般来说,camera 主要是由 lens 和 sensor IC 两部分组成,其中有的 sensor IC 集成 了 DSP,有的没有集成,但也需要外部 DSP 处理。
细分的来讲,camera 设备由下边⼏部 分构成: b$ w6 [# i& q% p* E1) lens(镜头) ⼀般 camera 的镜头结构是有⼏⽚透镜组成,分有塑胶透镜(Plastic)和玻璃透 镜(Glass) ,通常镜头结构有:1P,2P,1G1P,1G3P,2G2P,4G 等。
2) sensor(图像传感器) Senor 是⼀种半导体芯⽚,有两种类型:CCD 和 CMOS。
Sensor 将从 lens 上传导过来的光线转换为电信号, 再通过内部的 AD 转换为数字信号。
由于 Sensor 的每个 pixel 只能感光 R 光或者 B 光或者 G 光, 因此每个像素此时存贮的是单⾊的, 我们称之为 RAW DATA 数据。
要想将每个像素的 RAW DATA 数据还原成三基⾊,就需要 ISP 来处理。
3)ISP(图像信号处理) 主要完成数字图像的处理⼯作,把 sensor 采集到的原始数据转换为显⽰⽀持 的格式。
2 {4 w# {. R- z% Y4)CAMIF(camera 控制器) 芯⽚上的 camera 接⼝电路,对设备进⾏控制,接收 sensor 采集的数据交给 CPU,并送⼊ LCD 进⾏显⽰。
2. ⼯作原理 . & W* e" B3 D6 O) |4 k外部光线穿过 lens 后, 经过 color filter 滤波后照射到 Sensor ⾯上, Sensor 将从 lens 上传导过来的光线转换为电信号,再通过内部的 AD 转换为数字信号。
如果 Sensor 没有集 成 DSP,则通过 DVP 的⽅式传输到 baseband,此时的数据格式是 RAW DATA。