高考数学复习小题提速练6“12选择+4填空”80分练理
- 格式:doc
- 大小:159.50 KB
- 文档页数:7
小题提速练(一) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若(1+i)+(2-3i)=a +b i(a ,b ∈R ,i 是虚数单位),则a ,b 的值分别等于( )A .3,-2B .3,2C .3,-3D .-1,4[答案] A2.设集合A ={y |y =2x,x ∈R },B ={x |x 2-1<0},则A ∪B 等于( )A .(-1,1)B .(0,1)C .(-1,+∞)D .(0,+∞)[答案] C3.在△ABC 中,a =4,b =52,5cos(B +C )+3=0,则角B 的大小为( )【导学号:04024172】A.π6B.π4C.π3D.56π [答案] A4.设函数f (x )=ln(1+|x |)-11+x2,则使得f (x )>f (2x -1)成立的x 的取值范围是( ) A.⎝ ⎛⎭⎪⎫13,1 B.⎝⎛⎭⎪⎫-∞,13∪(1,+∞) C.⎝ ⎛⎭⎪⎫-13,13D.⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫13,+∞ [答案] A5.点O 为坐标原点,点F 为抛物线C :y 2=42x 的焦点,点P 为C 上一点.若|PF |=42,则△POF 的面积为( ) A .2 B .2 2 C .2 3 D .4[答案] C6.已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 200OC →,且A ,B ,C 三点共线(该直线不过点O ),则S 200等于( ) A .100 B .101 C .200 D .201[答案] A7.某空间几何体的三视图如图1所示,则该几何体的表面积为( )图1A .12+4 2B .18+8 2C .28D .20+8 2[答案] D8.将函数f (x )=cos(π+x )(cos x -2sin x )+sin 2x 的图象向左平移π8个单位长度后得到函数g (x )的图象,则g (x )具有性质( )【导学号:04024173】A .最大值为2,图象关于直线x =π2对称B .周期为π,图象关于⎝⎛⎭⎪⎫π4,0对称C .在⎝ ⎛⎭⎪⎫-π2,0上单调递增,为偶函数D .在⎝⎛⎭⎪⎫0,π4上单调递增,为奇函数[答案] D9.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图2所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为( )图2A .9B .18C .20D .35[答案] B10.(2016·全国卷Ⅲ)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815B.18C.115D.130[答案] C11.命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( )A .∀x ∈R ,∃n ∈N *,使得n <x 2B .∀x ∈R ,∀n ∈N *,使得n <x 2C .∃x ∈R ,∃n ∈N *,使得n <x 2D .∃x ∈R ,∀n ∈N *,使得n <x 2[答案] D12.函数f (x )=x cos x 2在区间[0,4]上的零点个数为( )【导学号:04024174】A .4B .5C .6D .7[答案] C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若圆x 2+y 2=r 2(r >0)上有且只有两个点到直线x -y -2=0的距离为1,则实数r 的取值范围是________.[解析] 注意到与直线x -y -2=0平行且距离为1的直线方程分别是x -y -2+2=0和x -y -2-2=0,要使圆上有且只有两个点到直线x -y -2=0的距离为1,需满足在两条直线x -y -2+2=0和x -y -2-2=0中,一条与该圆相交且另一条与该圆相离,所以|2-2|2<r <|-2-2|2,即2-1<r <2+1.[答案] (2-1,2+1)14.如图3,在矩形ABCD 中,AB =1,BC =a (a >0),PA ⊥平面AC ,BC 边上存在点Q ,使得PQ ⊥QD ,则实数a 的取值范围是________.【导学号:04024175】图3[解析] 如图,连接AQ .∵PA ⊥平面AC ,∴PA ⊥QD ,又PQ ⊥QD ,PQ ∩PA =P ,∴QD ⊥平面PQA ,于是QD ⊥AQ ,∴在线段BC 上存在一点Q ,使得QD ⊥AQ ,等价于以AD 为直径的圆与线段BC 有交点,∴a2≥1,a ≥2.[答案] [2,+∞)15.已知函数f (x )=x 2+mx +ln x 是单调递增函数,则m 的取值范围是________.[解析] 依题意知,x >0,f ′(x )=2x 2+mx +1x,令g (x )=2x 2+mx +1,x ∈(0,+∞). 当-m4≤0时,g (0)=1>0恒成立,∴m ≥0时,g (x )>0恒成立, 当-m4>0时,则Δ=m 2-8≤0,∴-22≤m <0,综上,m 的取值范围是m ≥-2 2. [答案] -22,+∞)16.(2016·全国卷Ⅰ)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.[解析] 设生产产品A x 件,产品B y 件,则⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.目标函数z =2 100x +900y .作出可行域为图中的阴影部分(包括边界)内的整数点,图中阴影四边形的顶点坐标分别为(60,100),(0,200),(0,0),(90,0).当直线z =2 100x +900y 经过点(60,100)时,z 取得最大值,z max =2 100×60+900×100=216 000(元). [答案] 216 000。
一、选择题(本大题共小题加速练 (六 ) “12选择+ 4 填空 ”80分练(时间: 45 分钟分值: 80 分)12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.若 (1+ i)+ (2- 3i)= a + bi(a , b ∈ R , i是虚数单位),则a ,b 的值分别等于( )A .3,- 2C . 3,- 3B . 3,2D .- 1,4A [∵ (1+ i)+ (2- 3i) =a + bi ,∴ a = 3, b =- 2,应选 A.]2.设会合 A = { y|y = 2 x , x ∈ R } , B = { x|x 2- 1< 0} ,则 A ∪ B 等于 ()A . (- 1,1)B . (0,1)C . (- 1,+ ∞)D . (0,+ ∞)C[∵ A = { y|y = 2x , x ∈ R } = (0 ,+ ∞),B = { x|x 2- 1< 0} = { x|- 1< x <1} ,∴A ∪ B = (- 1,+ ∞),应选 C.]3.(2017 广·东惠州二模 ) 以下函数中,与函数 y =- 3|x|的奇偶性同样,且在 (- ∞,0)上单一性也相同的是 ( )A . y = 1- x 2B . y = log 2|x|C . y =- 1D . y = x 3- 1xA [函数 y =- 3|x|为偶函数,在 (- ∞, 0)上为增函数.选项B 中的函数是偶函数,但其单一性不切合; 选项 C 中的函数为奇函数, 不切合要求; 选项 D 中的函数为非奇非偶函数,不符合要求.只有选项A 切合要求.应选 A.]4.在 △ABC 中, a = 5, 5cos(B + C) +3= 0,则角 B 的大小为 ()4, b = 2【导学号: 07804217】π πA. 6B . 4π 5 C.3D . 6π5A [由 5cos(B +C)+ 3= 0 得 cos A =3,则 A ∈ 0, π, sin A = 4, 4= 2 ,5 2 5 4 sin B5 1sin B =2.又 a > b ,B 必为锐角,π因此 B =.]65.已知 m ,n 是两条不一样的直线, α, β是两个不一样的平面,以下命题中真命题的个数是 ()①若 m ⊥ α,m ⊥β,则 α∥ β; ②若 m ∥ n , m ⊥ α,则 n ⊥α; ③若 m ∥ α,α∩β= n ,则 m ∥ n ; ④若 m ⊥ α,m? β,则 α⊥ β.A . 1B . 2C . 3D . 4C [对于①,因为垂直于同一条直线的两个平面相互平行,故①为真命题;对于②,两条平行线中的一条直线垂直于一个平面,则另一条也垂直于这个平面,故②为真命题;对于③,直线 m 与直线 n 可能异面,也可能平行,故③为假命题;对于④,由面面垂直的判断定理可知④为真命题.应选C.]6.某四周体的三视图如图15 所示,此中正视图、俯视图都是腰长为2 的等腰直角三角形,侧视图是边长为 2 的正方形,则此四周体的四个面中的最大面的面积为 ( )图 15 A . 2 2 B . 4 C . 2 3D .2 6C [将几何体放在正方体中考虑, 可知该几何体为三棱锥 S-ABD ,它的四个面中面 SBD 的面积最大,三角形 SBD 是边长为 2 2的等边三角形,因此此四周体的四个面中的最大面的面积为3 ×8= 2 3.]4π7.函数 f(x)= Asin(ωx+ φ)(A > 0,ω> 0)的最小正周期为 π,其图象对于直线 x = 3对称,则 |φ|的最小值为()π πA. 12B . 65π5π C. 6D . 12π B [由题意,得 ω= 2,因此 f(x)= Asin(2x + φ).因为函数f(x)的图象对于直线对称,所x =3π π ππ以 2× + φ=k π+(k ∈ Z ),即 φ= k π- (k ∈ Z ),当 k = 0 时, |φ|获得最小值,应选 B.]3 2 66x2y2→8.已知A,B 是双曲线C:a2-b2= 1(a> 0,b>0) 的两个焦点,若在双曲线上存在点P 知足2|PA →→)+ PB|≤|AB|,则双曲线 C 的离心率 e 的取值范围是 (A . 1< e≤2B. e≥2C. 1< e≤ 2D. e≥ 2B[设点 P 是双曲线左支上的点,并设双曲线左极点为→E,则 2|PA→→→→1+PB| ≤|AB,可化为 4|PO| ≤2c(2c 为双曲线的焦距 ), |PO| ≤c,易证2→1|PO| ≥a,于是 a≤ c,因此 e≥ 2故.选 B.]29.若曲线 y= f(x)= ln x+ax2(a 为常数 )不存在斜率为负数的切线,则实数 a 的取值范围是 ()A.-1,+∞B.-1,+∞22 C. (0,+∞)D. [0,+∞)D[f ′(x)=1+ 2ax=2ax2+1(x> 0),依据题意有f′(x)≥ 0(x> 0)恒成立,因此2ax2+ 1≥0(x>0) x x恒成立,即2a≥-12 (x> 0)恒成立,因此a≥0,故实数 a 的取值范围为 [0,+∞).应选 D.]x10.从 1,2,3,4,5 中挑出三个不一样数字构成一个五位数,则此中有两个数字各用两次(比如, 12332)的概率为 ()【导学号: 07804218】23A. 5B.545C.7D.7B [从 1,2,3,4,5 中挑出三个不一样数字构成一个五位数,共有 C53 (C31C53A 22+ C31C51C42C22)= 1 500(种 )不一样选法,此中有两个数字各用两次的选法有31122900 C5C3C5C4 C2= 900(种 ),因此所求概率 P= 1 500=3 .] 511.如图 16 所示, ABCD - A1B1C1D 1是棱长为1 的正方体, S-ABCD 是高为 1 的正四棱锥,若点 S,A1,B1, C1,D 1在同一个球面上,则该球的表面积为()图 16925A. 16πB.16π4981C.16πD.16πD[连结 AC, BD 交于点 G,连结 A1C1, B1D1交于点 G1,易知 S, G,G1在同向来线上,连结SG1.设 O 为球心, OG 1= x,连结 OB1,则 OB1=SO=2- x,由正方体的性质知B1 G1=2,22则在 Rt△ OB1G1中, OB12= G1B12+ OG 12,即 (2-x)2= x2+ 2 ,2解得 x=7 8,因此球的半径 R=OB 1=9,因此球的表面积 S= 4πR2=81π .] 816x22312.已知椭圆+ y = 1,设直线 l 与椭圆 C 交于 A,B 两点,坐标原点 O 到直线 l 的距离为,C:32则△AOB 面积的最大值为 ()33A. 4B.2C. 3D.2 3B[设 A(x1, y1), B(x2, y2).(1)当 AB⊥ x 轴时, |AB|= 3.(2)当 AB 与 x 轴不垂直时,设直线AB 的方程为 y= kx+ m.由已知得|m|2=32321+ k2,则 m =(k + 1).4把 y= kx+ m 代入椭圆方程,整理得(3k2+ 1)x2+ 6kmx+ 3m2- 3= 0,- 6km m2-.因此 x1+ x2=2, x1x2=2+13k+13k所以 |AB|2= (1+ k2)(x2-x1)2= (1+ k2 ) ·36k2m22-m2-=2+2k3k + 12 +222+2 +12k 2k k+ 1- mk k = 3+k 2+2=k 2+ 29k 4+ 6k 2+ 1.当 k ≠0时, |AB|2= 3+12≤3+ 12= 4,212×3+ 69k + 2+ 6k当且仅当 9k 2= k 12,即 k = ±33时等号成立.综上所述 |AB|max = 2,因此当 |AB|最大时,13= 3△AOB 面积取最大值 S = 2×|AB|max ×22 .]二、填空题 (本大题共 4 小题,每题5 分,共 20 分.把答案填在题中横线上 )13.某校 1 000 名高三学生参加了一次数学考试, 此次考试考生的分数听从正态散布2N(90,σ).若分数在 (70,110] 内的概率为 0.7,预计此次考试分数不超出 70 的人数为 ________.[分析 ] 记考试成绩为 ξ,则考试成绩的正态曲线对于直线ξ= 90 对称.因为 P(70< ξ≤ 110)=0.7,因此 P( ξ≤70)= P(ξ> 110)= 1×(1- 0.7)= 0.15,因此此次考试分数不超出70 的人数为21 000 ×0.15=150.[答案 ]15014.在矩形 ABCD 中,AB =1,AD =→ 3 →→→3,P 为矩形内一点, 且 |AP|= ,若 AP = λAB + μAD (λ,μ∈ R ),2则 λ+ 3μ的最大值为 ________.[分析 ] 以 A 为原点, AB 所在直线为 x 轴, AD 所在直线为 y 轴成立如下图的平面直角坐标系,则A(0,0) ,B(1,0), C(1, 3),D (0, 3).→ →→ 设 P(x , y),则 AP = (x , y), AB = (1,0), AD = (0, 3).→ → →由AP = λAB +μAD (λ, μ∈ R ),0≤x ≤1,x = λ,3,得又因为0≤y ≤2y = 3μ.x 2+ y 2=3,4因此 λ+ 3μ= x +y ≤22=66.x +y 2 当且仅当 x = y =4 时获得最大值[答案 ]62y≥x,15.已知 x, y 知足 x+ y≤2,若 z=2x+ y 的最大值是最小值的 3 倍,则 a 的值是 ________.x≥a,y≥x,[分析 ]画出 x+ y≤2,表示的可行域如下图:x≥ay= x,由得 A(1,1) ,x+ y= 2由x= a,得 B(a,a).y= x当直线 z= 2x+ y 过点 A(1,1)时,目标函数z= 2x+ y 获得最大值,最大值为3;当直线 z= 2x+ y 过点 B(a, a)时,目标函数z= 2x+y 获得最小值,最小值为3a.因为 3= 3×3a,因此 a=1. 31[答案]3316.已知△ ABC 中,角 A,2B,C 成等差数列,且△ ABC的面积为1+2,则 AC 边长的最小值是 ________.【导学号: 07804219】[分析 ]设内角A,B,C所对的边分别为a, b,c.3∵A,2B, C 成等差数列,∴A+ C= 3B.又∵ A+ B+ C=π,π∴B=.4由 S△ABC=12acsin B= 1+2,高考理科数学二轮复习练习:小题加速练6“12选择+4填空”80分练得 ac= 2×(2+ 2).∵b2=a2+ c2-2accos B=a2+ c2- 2ac≥(2- 2)ac= 4,当且仅当 a= c 时,等号成立,∴ b≥2,∴b 的最小值为 2.[答案] 2。
小题提速练(八) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数3i1-i对应的点在( )【导学号:07804222】A .第一象限B .第二象限C .第三象限D .第四象限B [3i1-i=+-+=-3+3i 2,故其对应的点在第二象限,选B.]2.已知A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( ) A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)A [因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1,故选A.]3.某小区有1 000户,各户每月的用电量近似服从正态分布N (300,102),则用电量在320度以上的户数约为( )(参考数据:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.27%,P (μ-2σ<ξ<μ+2σ)=95.45%,P (μ-3σ<ξ<μ+3σ)=99.73%)A .17B .23C .34D .46B [P (ξ>320)=12×[1-P (280<ξ<320)]=12×(1-95.45%)≈0.023, 0.023×1 000=23,∴用电量在320度以上的户数约为23.故选B.]4.将函数y =sin ⎝⎛⎭⎪⎫2x +π6的图象向左平移π3个单位长度,所得图象对应的函数解析式为( ) A .y =sin ⎝⎛⎭⎪⎫2x +5π6 B .y =-cos 2xC .y =cos 2xD .y =sin ⎝⎛⎭⎪⎫2x -π6 A [依题意得,y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π3+π6=sin ⎝ ⎛⎭⎪⎫2x +2π3+π6=sin ⎝ ⎛⎭⎪⎫2x +5π6.故选A.]5.已知向量a =(1,cos α),b =(sin α,1),且0<α<π,若a ⊥b ,则α=( )A.2π3 B .3π4C.π4D .π6B [∵a ⊥b ,∴a ·b =0, ∴sin α+cos α=0,∴tan α=-1.又α∈(0,π), ∴α=3π4.故选B.]6.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( )A. 3 B . 2 C .2D .3A [设双曲线C 的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由于直线l 过双曲线的焦点且与对称轴垂直,因此直线l 的方程为x =c 或x =-c ,代入x 2a 2-y 2b 2=1中得y 2=b 2⎝ ⎛⎭⎪⎫c 2a 2-1=b 4a 2,∴y =±b 2a ,故|AB |=2b 2a ,依题意2b 2a =4a ,∴b 2a 2=2,∴c 2-a 2a2=e 2-1=2,∴e =3,选A.]7.已知(2x -1)10=a 0+a 1x +a 2x 2+…+a 9x 9+a 10x 10,则a 2+a 3+…+a 9+a 10的值为( )A .-20B .0C .19D .20D [令x =1,得a 0+a 1+a 2+…+a 9+a 10=1,令x =0,得a 0=1,所以a 1+a 2+…+a 9+a 10=0.又由(2x -1)10的展开式的通项可得a 1=-20, 所以a 2+a 3+…+a 9+a 10=20.]8.钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .1B [S △ABC =12AB ·BC sin B =12×1×2sin B =12,∴sin B =22,∴B =45°或135°.若B =45°,则由余弦定理得AC =1,∴△ABC 为直角三角形,不符合题意,因此B =135°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B =1+2-2×1×2×⎝ ⎛⎭⎪⎫-22=5,∴AC = 5.故选B.] 9.某几何体的三视图如图20所示(网格线中每个小正方形的边长为1),则该几何体的表面积为( )图20A .48B .54C .64D .60D [根据三视图还原直观图,如图所示,则该几何体的表面积S =6×3+12×6×4+2×12×3×5+12×6×5=60,故选D.]10.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0x -2y -2≤02x -y +2≥0,若2x +y +k ≥0恒成立,则直线2x +y +k =0被圆(x -1)2+(y -2)2=25截得的弦长的最大值为( )【导学号:07804223】A .10B .2 5C .4 5D .3 5B [作出约束条件表示的平面区域,如图中阴影部分所示,不等式2x +y +k ≥0恒成立等价于k ≥(-2x -y )max ,设z =-2x -y ,则由图可知,当直线y =-2x -z 经过点A (-2,-2)时,z 取得最大值,即z max =-2×(-2)-(-2)=6,所以k ≥6.因为圆心(1,2)到直线2x +y +k =0的距离d =|2+2+k |22+12=|4+k |5,记题中圆的半径为r ,则r =5,所以直线被圆截得的弦长L =2r 2-d 2=2-k +2+1255,所以当k =6时,L 取得最大值,最大值为25,故选B.]11.已知过抛物线y 2=2px (p >0)的焦点F 的直线与抛物线交于A ,B 两点,且AF →=3FB →,抛物线的准线l 与x 轴交于点C ,AA 1⊥l 于点A 1,若四边形AA 1CF 的面积为123,则准线l 的方程为( ) A .x =- 2 B .x =-2 2 C .x =-2D .x =-1A [由题意,知F ⎝ ⎛⎭⎪⎫p 2,0,准线l 的方程为x =-p 2.设A (x 1,y 1),B (x 2,y 2),则AF →=⎝ ⎛⎭⎪⎫p 2-x 1,-y 1,FB →=⎝⎛⎭⎪⎫x 2-p 2,y 2.由AF →=3FB →,得p 2-x 1=3⎝ ⎛⎭⎪⎫x 2-p 2,即x 2=13(2p -x 1) ①.由题意知直线AB 的斜率存在,设直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2,代入抛物线方程,消去y ,得k 2x 2-(k 2p +2p )x+k 2p 24=0,所以x 1x 2=p 24 ②.联立①②,得x 1=32p 或x 1=p2(舍去),所以|y 1|=3p .因为S 四边形AA 1CF =|y 1|⎝ ⎛⎭⎪⎫x 1+p2+p 2=123,将x 1,|y 1|的值代入,解得p =22,所以准线l 的方程为x =-2,故选A.] 12.已知函数f (x )=ax +eln x 与g (x )=x 2x -eln x的图象有三个不同的公共点,其中e 为自然对数的底数,则实数a 的取值范围为( ) A .a <-e B .a >1C .a >eD .a <-3或a >1B [由ax +eln x =x 2x -eln x (x >0),得a +eln x x =11-eln x x.令h (x )=eln xx,且t =h (x ),则a +t =11-t,即t 2+(a -1)t -a +1=0 (*).由h ′(x )=-ln xx 2=0,得x =e ,函数h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,且x →+∞时,h (x )→0,h (x )的大致图象如图所示.由题意知方程(*)有一根t 1必在(0,1)内,另一根t 2=1或t 2=0或t 2∈(-∞,0).当t 2=1时,方程(*)无意义,当t 2=0时,a =1,t 1=0不满足题意,所以t 2∈(-∞,0),令m (t )=t 2+(a -1)t -a +1,由二次函数的图象,有⎩⎪⎨⎪⎧m =02+a --a +1<0m=12+a --a +1>0,解得a >1,故选B.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.运行如图21所示的程序,若结束时输出的结果不小于3,则t 的取值范围为________.图21[解析] 依次运行程序框图中的语句可得n =2,x =2t ,a =1;n =4,x =4t ,a =3;n =6,x =8t ,a =3.此时结束循环,输出的a x =38t ,由38t≥3,得8t ≥1,t ≥18.[答案] ⎣⎢⎡⎭⎪⎫18,+∞ 14.从一架钢琴挑出的10个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和声,若有一个音键不同,则发出不同的和声,则这样的不同的和声数为________(用数字作答).[解析] 依题意共有8类不同的和声,当有k (k =3,4,5,6,7,8,9,10)个键同时按下时,有C k 10种不同的和声,则和声总数为C 310+C 410+C 510+…+C 1010=210-C 010-C 110-C 210=1 024-1-10-45=968. [答案] 96815.已知点A 在椭圆x 225+y 29=1上,点P 满足AP →=(λ-1)·OA →(λ∈R )(O 是坐标原点),且OA →·OP→=72,则线段OP 在x 轴上的投影长度的最大值为________.[解析] 因为AP →=(λ-1)OA →,所以OP →=λOA →,即O ,A ,P 三点共线,因为OA →·OP →=72,所以OA →·OP →=λ|OA →|2=72,设A (x ,y ),OA 与x 轴正方向的夹角为θ,线段OP 在x 轴上的投影长度为|OP →||cos θ|=|λ||x |=72|x ||OA →|2=72|x |x 2+y 2=721625|x |+9|x |≤72216×925=15,当且仅当|x |=154时取等号.故线段OP 在x 轴上的投影长度的最大值为15.[答案] 1516.已知三棱锥D ABC 的体积为2,△ABC 是等腰直角三角形,其斜边AC =2,且三棱锥D ABC 的外接球的球心O 恰好是AD 的中点,则球O 的体积为________.【导学号:07804224】[解析] 设球O 的半径为R ,球心O 到平面ABC 的距离为d ,则由O 是AD 的中点得,点D 到平面ABC 的距离等于2d ,所以V D ABC =2V O ABC =23×12×2×2×d =2,解得d =3,记AC 的中点为O ′,则OO ′⊥平面ABC .在Rt△OO ′A 中,OA 2=OO ′2+O ′A 2,即R 2=d 2+12=10,所以球O 的体积V =43πR 3=43π×1010=40103π.[答案] 40103π。
小题提速练(八) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数3i1-i对应的点在( )【导学号:07804222】A .第一象限B .第二象限C .第三象限D .第四象限B [3i1-i=+-+=-3+3i 2,故其对应的点在第二象限,选B.]2.已知A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( ) A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)A [因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1,故选A.]3.某小区有1 000户,各户每月的用电量近似服从正态分布N (300,102),则用电量在320度以上的户数约为( ) (参考数据:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.27%,P (μ-2σ<ξ<μ+2σ)=95.45%,P (μ-3σ<ξ<μ+3σ)=99.73%) A .17 B .23 C .34D .46B [P (ξ>320)=12×[1-P (280<ξ<320)]=12×(1-95.45%)≈0.023, 0.023×1 000=23,∴用电量在320度以上的户数约为23.故选B.]4.将函数y =sin ⎝⎛⎭⎪⎫2x +π6的图象向左平移π3个单位长度,所得图象对应的函数解析式为( )A .y =sin ⎝ ⎛⎭⎪⎫2x +5π6B .y =-cos 2xC .y =cos 2xD .y =sin ⎝⎛⎭⎪⎫2x -π6A [依题意得,y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π3+π6=sin ⎝ ⎛⎭⎪⎫2x +2π3+π6=sin ⎝ ⎛⎭⎪⎫2x +5π6.故选A.]5.已知向量a =(1,cos α),b =(sin α,1),且0<α<π,若a ⊥b ,则α=( )A.2π3 B .3π4C.π4D .π6B [∵a ⊥b ,∴a ·b =0, ∴sin α+cos α=0,∴tan α=-1.又α∈(0,π), ∴α=3π4.故选B.]6.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( ) A. 3 B . 2 C .2D .3A [设双曲线C 的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由于直线l 过双曲线的焦点且与对称轴垂直,因此直线l 的方程为x =c 或x =-c ,代入x 2a 2-y 2b 2=1中得y 2=b 2⎝ ⎛⎭⎪⎫c 2a 2-1=b 4a 2,∴y =±b 2a ,故|AB |=2b 2a ,依题意2b 2a =4a ,∴b 2a 2=2,∴c 2-a 2a2=e 2-1=2,∴e =3,选A.]7.已知(2x -1)10=a 0+a 1x +a 2x 2+…+a 9x 9+a 10x 10,则a 2+a 3+…+a 9+a 10的值为( )A .-20B .0C .19D .20D [令x =1,得a 0+a 1+a 2+…+a 9+a 10=1,令x =0,得a 0=1,所以a 1+a 2+…+a 9+a 10=0.又由(2x -1)10的展开式的通项可得a 1=-20, 所以a 2+a 3+…+a 9+a 10=20.]8.钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .1B [S △ABC =12AB ·BC sin B =12×1×2sin B =12,∴sin B =22,∴B =45°或135°.若B =45°,则由余弦定理得AC =1,∴△ABC 为直角三角形,不符合题意,因此B =135°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B =1+2-2×1×2×⎝ ⎛⎭⎪⎫-22=5,∴AC = 5.故选B.] 9.某几何体的三视图如图20所示(网格线中每个小正方形的边长为1),则该几何体的表面积为( )图20A .48B .54C .64D .60D [根据三视图还原直观图,如图所示,则该几何体的表面积S =6×3+12×6×4+2×12×3×5+12×6×5=60,故选D.]10.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0x -2y -2≤02x -y +2≥0,若2x +y +k ≥0恒成立,则直线2x +y +k =0被圆(x -1)2+(y -2)2=25截得的弦长的最大值为( )【导学号:07804223】A .10B .2 5C .4 5D .3 5B [作出约束条件表示的平面区域,如图中阴影部分所示,不等式2x +y +k ≥0恒成立等价于k ≥(-2x -y )max ,设z =-2x -y ,则由图可知,当直线y =-2x -z 经过点A (-2,-2)时,z 取得最大值,即z max =-2×(-2)-(-2)=6,所以k ≥6.因为圆心(1,2)到直线2x +y +k =0的距离d =|2+2+k |22+12=|4+k |5,记题中圆的半径为r ,则r =5,所以直线被圆截得的弦长L =2r 2-d 2=2-k +2+1255,所以当k =6时,L 取得最大值,最大值为25,故选B.]11.已知过抛物线y 2=2px (p >0)的焦点F 的直线与抛物线交于A ,B 两点,且AF →=3FB →,抛物线的准线l 与x 轴交于点C ,AA 1⊥l 于点A 1,若四边形AA 1CF 的面积为123,则准线l 的方程为( )A .x =- 2B .x =-2 2C .x =-2D .x =-1A [由题意,知F ⎝ ⎛⎭⎪⎫p 2,0,准线l 的方程为x =-p 2.设A (x 1,y 1),B (x 2,y 2),则AF →=⎝ ⎛⎭⎪⎫p 2-x 1,-y 1,FB →=⎝ ⎛⎭⎪⎫x 2-p 2,y 2.由AF →=3FB →,得p 2-x 1=3⎝⎛⎭⎪⎫x 2-p 2,即x 2=13(2p -x 1) ①.由题意知直线AB 的斜率存在,设直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2,代入抛物线方程,消去y ,得k 2x 2-(k 2p +2p )x +k 2p 24=0,所以x 1x 2=p 24 ②.联立①②,得x 1=32p 或x 1=p2(舍去),所以|y 1|=3p .因为S 四边形AA 1CF =|y 1|⎝⎛⎭⎪⎫x 1+p2+p 2=123,将x 1,|y 1|的值代入,解得p =22,所以准线l 的方程为x =-2,故选A.] 12.已知函数f (x )=ax +eln x 与g (x )=x 2x -eln x的图象有三个不同的公共点,其中e 为自然对数的底数,则实数a 的取值范围为( ) A .a <-e B .a >1C .a >eD .a <-3或a >1B [由ax +eln x =x 2x -eln x (x >0),得a +eln x x =11-eln x x.令h (x )=eln xx,且t=h (x ),则a +t =11-t,即t 2+(a -1)t -a +1=0 (*).由h ′(x )=-ln xx 2=0,得x =e ,函数h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,且x →+∞时,h (x )→0,h (x )的大致图象如图所示.由题意知方程(*)有一根t 1必在(0,1)内,另一根t 2=1或t 2=0或t 2∈(-∞,0).当t 2=1时,方程(*)无意义,当t 2=0时,a =1,t 1=0不满足题意,所以t 2∈(-∞,0),令m (t )=t 2+(a -1)t -a +1,由二次函数的图象,有⎩⎪⎨⎪⎧m =02+a --a +1<0m=12+a --a +1>0,解得a >1,故选B.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.运行如图21所示的程序,若结束时输出的结果不小于3,则t 的取值范围为________.图21[解析] 依次运行程序框图中的语句可得n =2,x =2t ,a =1;n =4,x =4t ,a =3;n =6,x =8t ,a =3.此时结束循环,输出的a x=38t, 由38t≥3,得8t ≥1,t ≥18.[答案] ⎣⎢⎡⎭⎪⎫18,+∞ 14.从一架钢琴挑出的10个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和声,若有一个音键不同,则发出不同的和声,则这样的不同的和声数为________(用数字作答).[解析] 依题意共有8类不同的和声,当有k (k =3,4,5,6,7,8,9,10)个键同时按下时,有C k10种不同的和声,则和声总数为C 310+C 410+C 510+…+C 1010=210-C 010-C 110-C 210=1 024-1-10-45=968. [答案] 96815.已知点A 在椭圆x 225+y 29=1上,点P 满足AP →=(λ-1)·OA →(λ∈R )(O 是坐标原点),且OA →·OP →=72,则线段OP 在x 轴上的投影长度的最大值为________.[解析] 因为AP →=(λ-1)OA →,所以OP →=λOA →,即O ,A ,P 三点共线,因为OA →·OP →=72,所以OA →·OP →=λ|OA →|2=72,设A (x ,y ),OA 与x 轴正方向的夹角为θ,线段OP 在x 轴上的投影长度为|OP →||cos θ|=|λ||x |=72|x ||OA →|2=72|x |x 2+y 2=721625|x |+9|x |≤72216×925=15,当且仅当|x |=154时取等号.故线段OP 在x 轴上的投影长度的最大值为15. [答案] 1516.已知三棱锥D ABC 的体积为2,△ABC 是等腰直角三角形,其斜边AC =2,且三棱锥D ABC的外接球的球心O 恰好是AD 的中点,则球O 的体积为________.【导学号:07804224】[解析] 设球O 的半径为R ,球心O 到平面ABC 的距离为d ,则由O 是AD 的中点得,点D 到平面ABC 的距离等于2d ,所以V D ABC =2V O ABC =23×12×2×2×d =2,解得d =3,记AC 的中点为O ′,则OO ′⊥平面ABC .在Rt△OO ′A 中,OA 2=OO ′2+O ′A 2,即R 2=d 2+12=10,所以球O 的体积V =43πR 3=43π×1010=40103π. [答案] 40103π。
小题提速练(四) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |3≤3x ≤27,x ∈N *},B ={x |log 2x >1},则A ∩B =( )A .{1,2,3}B .(2,3]C .{3}D .[2,3]C [∵3≤3x≤27,即31≤3x≤33,∴1≤x ≤3,又x ∈N *,∴A ={1,2,3},∵log 2x >1,即log 2x >log 22,∴x >2,∴B ={x |x >2},∴A ∩B ={3},选C.] 2.已知复数z =15i3+4i,则z 的虚部为( )【导学号:07804211】A .-95iB .95iC .-95D .95D [z =15i 3+4i =15i 3-4i 3+4i 3-4i =1525(4+3i)=125+95i ,故选D.]3.设D 是△ABC 所在平面内一点,AB →=2DC →,则( )A.BD →=AC →-32AB →B .BD →=32AC →-AB →C.BD →=12AC →-AB →D .BD →=AC →-12AB →A [BD →=BC →+CD →=BC →-DC →=AC →-AB →-12AB →=AC →-32AB →,选A.]4.(2017·湖南三模)体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p (p ≠0),发球次数为X ,若X 的数学期望E (X )>1.75,则p 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,712B .⎝ ⎛⎭⎪⎫712,1 C.⎝ ⎛⎭⎪⎫0,12 D .⎝ ⎛⎭⎪⎫12,1 C [根据题意,学生发球次数为1即一次发球成功的概率为p ,即P (X =1)=p ,发球次数为2即二次发球成功的概率P (X =2)=p (1-p ), 发球次数为3的概率P (X =3)=(1-p )2, 则E (X )=p +2p (1-p )+3(1-p )2=p 2-3p +3,依题意有E (X )>1.75,则p 2-3p +3>1.75, 解得,p >52或p <12,结合p 的实际意义,可得0<p <12,即p ∈⎝ ⎛⎭⎪⎫0,12,故选C.]5.已知点F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 2且垂直于x 轴的直线与双曲线交于M ,N 两点,若MF 1→·NF 1→>0,则该双曲线的离心率e 的取值范围是( ) A .(2,2+1) B .(1,2+1) C .(1,3)D .(3,+∞)B [设F 1(-c,0),F 2(c,0),依题意可得c 2a 2-y 2b 2=1,得到y =±b 2a ,不妨设M ⎝ ⎛⎭⎪⎫c ,b 2a ,N ⎝ ⎛⎭⎪⎫c ,-b 2a ,则MF 1→·NF 1→=⎝⎛⎭⎪⎫-2c ,-b 2a ·⎝ ⎛⎭⎪⎫-2c ,b 2a =4c 2-b 4a 2>0,得到4a 2c 2-(c 2-a 2)2>0,即a 4+c 4-6a 2c 2<0,故e 4-6e 2+1<0,解得3-22<e 2<3+22,又e >1,故1<e 2<3+22,得1<e <1+2,故选B.]6.函数y =f (x )=2sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,-π2<φ<π2的部分图象如图9所示,关于函数y =f (x )(x ∈R ),有下列命题:图9①y =f (x )的图象关于直线x =π6对称;②y =f (x )的图象可由y =2sin 2x 的图象向右平移π6个单位长度得到;③y =f (x )的图象关于点⎝ ⎛⎭⎪⎫π6,0对称; ④y =f (x )在⎣⎢⎡⎦⎥⎤-π12,5π12上单调递增.其中正确命题的个数是( )A .1B .2C .3D .4C [依题意可得T =2×⎝⎛⎭⎪⎫11π12-5π12=π,故T =2πω=π,解得ω=2,所以f (x )=2sin(2x +φ),由f (x )=2sin(2x +φ)的图象经过点⎝⎛⎭⎪⎫5π12,2可得2sin ⎝ ⎛⎭⎪⎫2×512π+φ=2,即sin ⎝ ⎛⎭⎪⎫56π+φ=1,又-π2<φ<π2,故φ=-π3,即f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3,因为f ⎝ ⎛⎭⎪⎫π6=2sin ⎝ ⎛⎭⎪⎫2×π6-π3=0,所以①不对;y =2sin 2x 的图象向右平移π6个单位长度得到y =2sin 2⎝ ⎛⎭⎪⎫x -π6=2sin ⎝ ⎛⎭⎪⎫2x -π3的图象,②正确;因为f ⎝ ⎛⎭⎪⎫π6=2sin ⎝ ⎛⎭⎪⎫2×π6-π3=0,所以③正确;由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z ,取k =0,得-π12≤x ≤5π12,即y =f (x )在⎣⎢⎡⎦⎥⎤-π12,5π12上单调递增,④正确,故选C.]7.某几何体的三视图如图10所示,则该几何体的体积为( )【导学号:07804212】图10A.17π6B .17π3C .5πD .13π6A [由三视图可知,该几何体是半个圆锥,一个圆柱,一个半球的组合体, 其体积为16π+2π+23π=176π.选A.]8.执行如图11所示的程序框图,输出的结果为( )图11A .-1B .1 C.12D .2C [n =12,i =1进入循环,n =1-2=-1,i =2;n =1-(-1)=2,i =3;n =1-12=12,i =4,…,所以n 对应的数字呈现周期性的特点,周期为3,因为2 017=3×672+1,所以当i =2 017时,n =12,故选C.]9.若x ,y 满足⎩⎪⎨⎪⎧x +y -3≥0ax -y +3≥0y ≥0,且z =y -x 的最小值为-6,则a 的值为( )A .-1B .1C .-12D .12C [作出不等式组表示的可行域如图中阴影部分所示,当a >0时,易知z =y -x 无最小值,故a <0,目标函数所在直线过可行域内点A 时,z 有最小值,联立⎩⎪⎨⎪⎧y =0ax -y +3=0,解得A ⎝ ⎛⎭⎪⎫-3a ,0,z min =0+3a=-6,解得a =-12,故选C.]10.(数学文化题)今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,问:几何日相逢?( ) A .12日 B .16日 C .8日D .9日D [由题易知良马每日所行里数构成一等差数列,其通项公式为a n =103+13(n -1)=13n +90,驽马每日所行里数也构成一等差数列,其通项公式为b n =97-12(n -1)=-12n+1952,二马相逢时所走路程之和为2×1 125=2 250,所以na 1+a n2+n b 1+b n2=2 250,即n 103+13n +902+n ⎝⎛⎭⎪⎫97-12n +19522=2 250,化简得n 2+31n -360=0,解得n =9或n =-40(舍去),故选D.]11.设函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2与直线y =3的交点的横坐标构成以π为公差的等差数列,且x =π6是f (x )图象的一条对称轴,则下列区间中是函数f (x )的单调递减区间的是( )A.⎣⎢⎡⎦⎥⎤-π3,0 B .⎣⎢⎡⎦⎥⎤-4π3,-5π6C.⎣⎢⎡⎦⎥⎤2π3,7π6D .⎣⎢⎡⎦⎥⎤-5π6,-π3D [由题意得A =3,T =π,∴ω=2.∴f (x )=3sin(2x +φ),又f ⎝ ⎛⎭⎪⎫π6=3或f ⎝ ⎛⎭⎪⎫π6=-3,∴2×π6+φ=k π+π2,k ∈Z ,φ=π6+k π,k ∈Z ,又|φ|<π2,∴φ=π6,∴f (x )=3sin ⎝⎛⎭⎪⎫2x +π6.令π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,得π6+k π≤x ≤2π3+k π,k ∈Z ,故当k =-1时,f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤-5π6,-π3,故选D.]12.已知直三棱柱ABC A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =1,∠BAC =60°,AA 1=2,则该三棱柱的外接球的体积为( )A.40π3 B .4030π27C.32030π27D .20πB [设△A 1B 1C 1的外心为O 1,△ABC 的外心为O 2,连接O 1O 2,O 2B ,OB ,如图所示.由题意可得外接球的球心O 为O 1O 2的中点.在△ABC 中,由余弦定理可得BC 2=AB 2+AC 2-2AB ×AC cos∠BAC =32+12-2×3×1×cos 60°=7, 所以BC =7.由正弦定理可得△ABC 外接圆的直径2r =2O 2B =BC sin 60°=273,所以r =73=213. 而球心O 到截面ABC 的距离d =OO 2=12AA 1=1,设直三棱柱ABC A 1B 1C 1的外接球半径为R ,由球的截面性质可得R 2=d 2+r 2=12+⎝⎛⎭⎪⎫2132=103,故R =303,所以该三棱柱的外接球的体积为V =4π3R 3=4030π27.故选B.] 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知函数f (x )=ln x ,g (x )=x 2+mx (m ∈R ),若函数f (x )的图象在点(1,f (1))处的切线与函数g (x )的图象相切,则m 的值为________.[解析] 易知f (1)=0,f ′(x )=1x,从而得到f ′(1)=1,函数f (x )的图象在点(1,f (1))处的切线方程为y =x -1.法一:(应用导数的几何意义求解)设直线y =x -1与g (x )=x 2+mx (m ∈R )的图象相切于点P (x 0,y 0),从而可得g ′(x 0)=1,g (x 0)=x 0-1.又g ′(x )=2x +m ,因此有⎩⎪⎨⎪⎧g ′x 0=2x 0+m =1x 20+mx 0=x 0-1,得x 2=1,解得⎩⎪⎨⎪⎧x 0=1m =-1或⎩⎪⎨⎪⎧x 0=-1m =3.法二:(应用直线与二次函数的相切求解)联立⎩⎪⎨⎪⎧y =x -1y =x 2+mx ,得x 2+(m -1)x +1=0,所以Δ=(m -1)2-4=0,解得m =-1或m =3. [答案] -1或314.3名医生和6名护士被分配到3所学校为学生体检,每所学校分配1名医生和2名护士,不同的分配方法共有________种.【导学号:07804213】[解析] 3所学校依次选医生、护士,不同的分配方法共有C 13C 26C 12C 24=540种. [答案] 54015.已知直线MN 过椭圆x 22+y 2=1的左焦点F ,与椭圆交于M ,N 两点.直线PQ 过原点O 且与直线MN 平行,直线PQ 与椭圆交于P ,Q 两点,则|PQ |2|MN |=________.[解析] 法一:由题意知,直线MN 的斜率不为0,设直线MN :x =my -1,则直线PQ :x =my .设M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),Q (x 4,y 4). ⎩⎪⎨⎪⎧x =my -1x 22+y 2=1⇒(m 2+2)y 2-2my -1=0⇒y 1+y 2=2m m 2+2,y 1y 2=-1m 2+2. ∴|MN |=1+m 2|y 1-y 2|=22·m 2+1m 2+2.⎩⎪⎨⎪⎧x =my x 22+y 2=1⇒(m 2+2)y 2-2=0⇒y 3+y 4=0,y 3y 4=-2m 2+2.∴|PQ |=1+m 2|y 3-y 4|=22m 2+1m 2+2.故|PQ |2|MN |=2 2. 法二:取特殊位置,当直线MN 垂直于x 轴时,易得|MN |=2b 2a =2,|PQ |=2b =2,则|PQ |2|MN |=2 2. [答案] 2 216.设函数f (x )是定义在R 上的偶函数,对任意x ∈R ,都有f (x )=f (x +4),且当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫12x-1,若在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0(a >1)恰有3个不同的实数根,则a 的取值范围是________. [解析] 设x ∈[0,2],则-x ∈[-2,0],∴f (-x )=⎝ ⎛⎭⎪⎫12-x-1=2x-1,∵f (x )是定义在R 上的偶函数,∴f (x )=f (-x )=2x-1.∵对任意x ∈R ,都有f (x )=f (x +4), ∴当x ∈[2,4]时,(x -4)∈[-2,0],∴f (x )=f (x -4)=⎝ ⎛⎭⎪⎫12x -4-1; 当x ∈[4,6]时,(x -4)∈[0,2], ∴f (x )=f (x -4)=2x -4-1.∵在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0(a >1)恰有3个不同的实数根, ∴函数y =f (x )的图象与函数y =log a (x +2)的图象在区间(-2,6]内恰有3个不同的交点,作出两个函数的图象如图所示,易知⎩⎪⎨⎪⎧log a 6+2>3log a2+2<3,解得223<a <2,即34<a <2,因此所求a 的取值范围是(34,2).[答案] (34,2)。
小题提速练(八) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数3i1-i对应的点在( )【导学号:07804222】A .第一象限B .第二象限C .第三象限D .第四象限B [3i1-i=+-+=-3+3i 2,故其对应的点在第二象限,选B.]2.已知A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( ) A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)A [因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1,故选A.]3.某小区有1 000户,各户每月的用电量近似服从正态分布N (300,102),则用电量在320度以上的户数约为( ) (参考数据:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.27%,P (μ-2σ<ξ<μ+2σ)=95.45%,P (μ-3σ<ξ<μ+3σ)=99.73%) A .17 B .23 C .34D .46B [P (ξ>320)=12×[1-P (280<ξ<320)]=12×(1-95.45%)≈0.023, 0.023×1 000=23,∴用电量在320度以上的户数约为23.故选B.]4.将函数y =sin ⎝⎛⎭⎪⎫2x +π6的图象向左平移π3个单位长度,所得图象对应的函数解析式为( )A .y =sin ⎝ ⎛⎭⎪⎫2x +5π6B .y =-cos 2xC .y =cos 2xD .y =sin ⎝⎛⎭⎪⎫2x -π6A [依题意得,y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π3+π6=sin ⎝ ⎛⎭⎪⎫2x +2π3+π6=sin ⎝ ⎛⎭⎪⎫2x +5π6.故选A.]5.已知向量a =(1,cos α),b =(sin α,1),且0<α<π,若a ⊥b ,则α=( )A.2π3 B .3π4C.π4D .π6B [∵a ⊥b ,∴a ·b =0, ∴sin α+cos α=0,∴tan α=-1.又α∈(0,π), ∴α=3π4.故选B.]6.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( ) A. 3 B . 2 C .2D .3A [设双曲线C 的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由于直线l 过双曲线的焦点且与对称轴垂直,因此直线l 的方程为x =c 或x =-c ,代入x 2a 2-y 2b 2=1中得y 2=b 2⎝ ⎛⎭⎪⎫c 2a 2-1=b 4a 2,∴y =±b 2a ,故|AB |=2b 2a ,依题意2b 2a =4a ,∴b 2a 2=2,∴c 2-a 2a2=e 2-1=2,∴e =3,选A.]7.已知(2x -1)10=a 0+a 1x +a 2x 2+…+a 9x 9+a 10x 10,则a 2+a 3+…+a 9+a 10的值为( )A .-20B .0C .19D .20D [令x =1,得a 0+a 1+a 2+…+a 9+a 10=1,令x =0,得a 0=1,所以a 1+a 2+…+a 9+a 10=0.又由(2x -1)10的展开式的通项可得a 1=-20, 所以a 2+a 3+…+a 9+a 10=20.]8.钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .1B [S △ABC =12AB ·BC sin B =12×1×2sin B =12,∴sin B =22,∴B =45°或135°.若B =45°,则由余弦定理得AC =1,∴△ABC 为直角三角形,不符合题意,因此B =135°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B =1+2-2×1×2×⎝ ⎛⎭⎪⎫-22=5,∴AC = 5.故选B.] 9.某几何体的三视图如图20所示(网格线中每个小正方形的边长为1),则该几何体的表面积为( )图20A .48B .54C .64D .60D [根据三视图还原直观图,如图所示,则该几何体的表面积S =6×3+12×6×4+2×12×3×5+12×6×5=60,故选D.]10.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0x -2y -2≤02x -y +2≥0,若2x +y +k ≥0恒成立,则直线2x +y +k =0被圆(x -1)2+(y -2)2=25截得的弦长的最大值为( )【导学号:07804223】A .10B .2 5C .4 5D .3 5B [作出约束条件表示的平面区域,如图中阴影部分所示,不等式2x +y +k ≥0恒成立等价于k ≥(-2x -y )max ,设z =-2x -y ,则由图可知,当直线y =-2x -z 经过点A (-2,-2)时,z 取得最大值,即z max =-2×(-2)-(-2)=6,所以k ≥6.因为圆心(1,2)到直线2x +y +k =0的距离d =|2+2+k |22+12=|4+k |5,记题中圆的半径为r ,则r =5,所以直线被圆截得的弦长L =2r 2-d 2=2-k +2+1255,所以当k =6时,L 取得最大值,最大值为25,故选B.]11.已知过抛物线y 2=2px (p >0)的焦点F 的直线与抛物线交于A ,B 两点,且AF →=3FB →,抛物线的准线l 与x 轴交于点C ,AA 1⊥l 于点A 1,若四边形AA 1CF 的面积为123,则准线l 的方程为( )A .x =- 2B .x =-2 2C .x =-2D .x =-1A [由题意,知F ⎝ ⎛⎭⎪⎫p 2,0,准线l 的方程为x =-p 2.设A (x 1,y 1),B (x 2,y 2),则AF →=⎝ ⎛⎭⎪⎫p 2-x 1,-y 1,FB →=⎝ ⎛⎭⎪⎫x 2-p 2,y 2.由AF →=3FB →,得p 2-x 1=3⎝⎛⎭⎪⎫x 2-p 2,即x 2=13(2p -x 1) ①.由题意知直线AB 的斜率存在,设直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2,代入抛物线方程,消去y ,得k 2x 2-(k 2p +2p )x +k 2p 24=0,所以x 1x 2=p 24 ②.联立①②,得x 1=32p 或x 1=p2(舍去),所以|y 1|=3p .因为S 四边形AA 1CF =|y 1|⎝⎛⎭⎪⎫x 1+p2+p 2=123,将x 1,|y 1|的值代入,解得p =22,所以准线l 的方程为x =-2,故选A.] 12.已知函数f (x )=ax +eln x 与g (x )=x 2x -eln x的图象有三个不同的公共点,其中e 为自然对数的底数,则实数a 的取值范围为( ) A .a <-e B .a >1C .a >eD .a <-3或a >1B [由ax +eln x =x 2x -eln x (x >0),得a +eln x x =11-eln x x.令h (x )=eln xx,且t=h (x ),则a +t =11-t,即t 2+(a -1)t -a +1=0 (*).由h ′(x )=-ln xx 2=0,得x =e ,函数h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,且x →+∞时,h (x )→0,h (x )的大致图象如图所示.由题意知方程(*)有一根t 1必在(0,1)内,另一根t 2=1或t 2=0或t 2∈(-∞,0).当t 2=1时,方程(*)无意义,当t 2=0时,a =1,t 1=0不满足题意,所以t 2∈(-∞,0),令m (t )=t 2+(a -1)t -a +1,由二次函数的图象,有⎩⎪⎨⎪⎧m =02+a --a +1<0m=12+a --a +1>0,解得a >1,故选B.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.运行如图21所示的程序,若结束时输出的结果不小于3,则t 的取值范围为________.图21[解析] 依次运行程序框图中的语句可得n =2,x =2t ,a =1;n =4,x =4t ,a =3;n =6,x =8t ,a =3.此时结束循环,输出的a x=38t, 由38t≥3,得8t ≥1,t ≥18.[答案] ⎣⎢⎡⎭⎪⎫18,+∞ 14.从一架钢琴挑出的10个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和声,若有一个音键不同,则发出不同的和声,则这样的不同的和声数为________(用数字作答).[解析] 依题意共有8类不同的和声,当有k (k =3,4,5,6,7,8,9,10)个键同时按下时,有C k10种不同的和声,则和声总数为C 310+C 410+C 510+…+C 1010=210-C 010-C 110-C 210=1 024-1-10-45=968. [答案] 96815.已知点A 在椭圆x 225+y 29=1上,点P 满足AP →=(λ-1)·OA →(λ∈R )(O 是坐标原点),且OA →·OP →=72,则线段OP 在x 轴上的投影长度的最大值为________.[解析] 因为AP →=(λ-1)OA →,所以OP →=λOA →,即O ,A ,P 三点共线,因为OA →·OP →=72,所以OA →·OP →=λ|OA →|2=72,设A (x ,y ),OA 与x 轴正方向的夹角为θ,线段OP 在x 轴上的投影长度为|OP →||cos θ|=|λ||x |=72|x ||OA →|2=72|x |x 2+y 2=721625|x |+9|x |≤72216×925=15,当且仅当|x |=154时取等号.故线段OP 在x 轴上的投影长度的最大值为15. [答案] 1516.已知三棱锥D ABC 的体积为2,△ABC 是等腰直角三角形,其斜边AC =2,且三棱锥D ABC的外接球的球心O 恰好是AD 的中点,则球O 的体积为________.【导学号:07804224】[解析] 设球O 的半径为R ,球心O 到平面ABC 的距离为d ,则由O 是AD 的中点得,点D 到平面ABC 的距离等于2d ,所以V D ABC =2V O ABC =23×12×2×2×d =2,解得d =3,记AC 的中点为O ′,则OO ′⊥平面ABC .在Rt△OO ′A 中,OA 2=OO ′2+O ′A 2,即R 2=d 2+12=10,所以球O 的体积V =43πR 3=43π×1010=40103π. [答案]40103π。
小题提速练(二)“12选择+4填空"80分练(时间:45分钟分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x≥4},B={x|-1≤2x-1≤0},则(∁R A)∩B=() A.(4,+∞)B.错误!C.错误!D.(1,4]B[因为A={x|x≥4},所以∁R A={x|x<4},又B={x|-1≤2x-1≤0}=错误!,所以(∁R A)∩B=错误!,故选B。
]2.复数错误!对应的点在复平面的( )A.第一象限B.第二象限C.第三象限D.第四象限A[因为错误!=错误!=错误!=1+i,所以该复数对应的点为(1,1),故选A.]3.已知命题p:x+y≥2错误!,命题q:在△ABC中,若sin A>sin B,则A>B。
则下列命题为真命题的是()A.p B.﹁qC.p∨q D.p∧qC[当x,y中至少有一个负数时,x+y≥2错误!不成立,所以命题p是假命题;由正弦定理和三角形中的边角关系知,命题q是真命题.所以p∨q是真命题.]4.已知向量a=(2,-1),b=(-1,3),则下列向量与2a+b平行的是()A.(1,-2)B.(1,-3)C。
错误!D.(0,2)C[因为a=(2,-1),b=(-1,3),所以2a+b=(3,1),而1×2-3×错误!=0,故选C。
]5.若x,y∈R,且{x≥1,y≥x,x-2y+3≥0则z=错误!的最大值为( )【导学号:04024176】A.3 B.2C.1 D.错误!B[作出不等式组表示的平面区域,如图所示,错误!的几何意义是区域内(包括边界)的点P(x,y)与原点连线的斜率,由图可知,当P移动到点B(1,2)时,错误!取得最大值2.]6.已知函数f(x)=sin错误!,则下列结论中正确的是()A.函数f(x)的最小正周期为2πB.函数f(x)的图象关于点错误!对称C.将函数f(x)的图象向右平移错误!个单位长度可以得到函数y=sin 2x的图象D.函数f(x)在区间错误!上单调递增C[由题知,函数f(x)的最小正周期为π,故A不正确;令x=错误!,求得f(x)=错误!,故函数f(x)的图象不关于点错误!对称,故排除B;将f(x)的图象向右平移错误!个单位长度,得到函数y=sin错误!=sin 2x的图象,故选C;当x∈错误!时,2x+错误!∈错误!,函数f(x)单调递减,故排除D.]7.执行图1中的程序框图(其中[x]表示不超过x的最大整数),则输出的S值为( )图1A.5 B.7C.9 D.12C[程序运行如下:(1)S=0+错误!=0,n=0<5;(2)S=0+错误!=1,n=1<5;(3)S=1+[错误!]=2,n=2<5;(4)S=2+[错误!]=3,n=3<5;(5)S=3+[错误!]=5,n=4<5;(6)S=5+[错误!]=7,n=5;(7)S=7+[错误!]=9,n=6>5,循环结束,故输出S=9。
小题提速练(二) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |x ≥4},B ={x |-1≤2x -1≤0},则(∁R A )∩B =( )A .(4,+∞)B .⎣⎢⎡⎦⎥⎤0,12 C.⎝ ⎛⎭⎪⎫12,4 D .(1,4]B [因为A ={x |x ≥4},所以∁R A ={x |x <4},又B ={x |-1≤2x -1≤0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0≤x ≤12,所以(∁R A )∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0≤x ≤12,故选B.] 2.复数5+3i4-i对应的点在复平面的( )A .第一象限B .第二象限C .第三象限D .第四象限 A [因为5+3i4-i=++-+=17+17i17=1+i ,所以该复数对应的点为(1,1),故选A.]3.已知命题p :x +y ≥2xy ,命题q :在△ABC 中,若sin A >sin B ,则A >B .则下列命题为真命题的是( ) A .pB .﹁qC .p ∨qD .p ∧qC [当x ,y 中至少有一个负数时,x +y ≥2xy 不成立,所以命题p 是假命题;由正弦定理和三角形中的边角关系知,命题q 是真命题.所以p ∨q 是真命题.] 4.已知向量a =(2,-1),b =(-1,3),则下列向量与2a +b 平行的是( ) A .(1,-2)B .(1,-3) C.⎝ ⎛⎭⎪⎫2,23 D .(0,2)C [因为a =(2,-1),b =(-1,3),所以2a +b =(3,1),而1×2-3×23=0,故选C.]5.若x ,y ∈R ,且⎩⎪⎨⎪⎧x ≥1,y ≥x ,x -2y +3≥0,则z =yx的最大值为( )【导学号:04024176】A .3B .2C .1D.12B [作出不等式组表示的平面区域,如图所示,y x的几何意义是区域内(包括边界)的点P (x ,y )与原点连线的斜率,由图可知,当P 移动到点B (1,2)时,y x取得最大值2.]6.已知函数f (x )=sin ⎝⎛⎭⎪⎫2x +π4,则下列结论中正确的是( ) A .函数f (x )的最小正周期为2πB .函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π4,0对称 C .将函数f (x )的图象向右平移π8个单位长度可以得到函数y =sin 2x 的图象D .函数f (x )在区间⎝⎛⎭⎪⎫π8,5π8上单调递增C [由题知,函数f (x )的最小正周期为π,故A 不正确;令x =π4,求得f (x )=22,故函数f (x )的图象不关于点⎝ ⎛⎭⎪⎫π4,0对称,故排除B ;将f (x )的图象向右平移π8个单位长度,得到函数y =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π8+π4=sin 2x 的图象,故选C ;当x ∈⎝ ⎛⎭⎪⎫π8,5π8时,2x +π4∈⎝ ⎛⎭⎪⎫π2,3π2,函数f (x )单调递减,故排除D.]7.执行图1中的程序框图(其中[x ]表示不超过x 的最大整数),则输出的S 值为( )图1A .5B .7C .9D .12C [程序运行如下:(1)S =0+[]0=0,n =0<5;(2)S =0+[]1=1,n =1<5;(3)S =1+[2]=2,n =2<5;(4)S =2+[3]=3,n =3<5;(5)S =3+[4]=5,n =4<5;(6)S =5+[5]=7,n =5;(7)S =7+[6]=9,n =6>5,循环结束,故输出S =9.]8.某几何体的三视图如图2所示,则该几何体的体积为( )【导学号:04024177】图2A.43B.52C.73D.53A [由三视图知,该几何体为一个由底面相同的三棱锥与三棱柱组成的组合体,其体积V =13×12×2×1×1+12×2×1×1=43.]9.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙丁戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( ) A.54钱 B.43钱 C.32钱 D.53钱 B [设所成等差数列的首项为a 1,公差为d ,则依题意有 ⎩⎪⎨⎪⎧5a 1+5×42d =5,a 1+a 1+d =a 1+2d +a 1+3d +a 1+4d ,解得⎩⎪⎨⎪⎧a 1=43,d =-16.]10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a ,b ,c 成等比数列.若sin A sinC +sin 2C -sin 2A =12sin B sin C ,则sin A =( )A.14 B.34 C.114D.154D [由已知得b 2=ac ,ac +c 2-a 2=12bc ,所以b 2+c 2-a 2=12bc ,所以cos A =14,所以sin A =154.] 11.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左焦点F 作一条渐近线的垂线,与C 的右支交于点A .若|OF |=|OA |(O 为坐标原点),则C 的离心率e 为( )【导学号:04024178】A. 2 B .2 C. 5D .5C [不妨设一条渐近线为l :y =bx a,作FA ⊥l 于点B (图略),因为|OF |=|OA |,所以B 为线段FA 的中点.设双曲线的右焦点为F ′,连接F ′A ,因为O 为线段FF ′的中点,所以F ′A ⊥FA .易得直线FA ,F ′A 的方程分别为y =-a b (x +c ),y =b a(x -c ),解方程组可得点A 的坐标为⎝ ⎛⎭⎪⎫b 2-a 2c,-2ab c .因为该点在双曲线C 上,所以b 2-a 22a 2c 2-4a 2b2b 2c2=1,结合c 2=a 2+b 2,整理得5a 2=c 2,即5a =c ,所以e =ca= 5.]12.如图3所示,在等腰直角三角形ABC 中,∠A =π2,AC =1,BC 边在x 轴上,有一个半径为1的圆P 沿x 轴向△ABC 滚动,并沿△ABC 的表面滚过,则圆心P 的大致轨迹是(虚线为各段弧所在圆的半径)( )图3D [当圆在点B 的左侧滚动时,圆心P 的运动轨迹是一条线段;当圆在线段AB 上滚动时,圆心P 的运动轨迹也是一条线段;当圆与点A 接触并且绕过点A 时,圆心P 的轨迹是以点A 为圆心,1为半径的圆弧;当圆在线段AC 上和点C 右侧滚动时,与在线段AB 上和点B 的左侧滚动时的情况相同.结合各选项中的曲线知,选项D 正确.] 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.如图4所示是某青年歌手大奖赛上七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a 1,a 2,则a 1,a 2的大小关系是________.图4[解析] 由题意可知a 1=80+1+5+5+4+55=84,a 2=80+4+4+6+4+75=85,所以a 2>a 1. [答案] a 2>a 114.若直线l :x 4+y3=1与x 轴、y 轴分别相交于A ,B 两点,O 为坐标原点,则△OAB 的内切圆的方程为________.[解析] 由题意,设圆心为(a ,a ),则有|3a +4a -12|5=a ,解得a =1或a =6(舍去),所以所求圆的方程为(x -1)2+(y -1)2=1. [答案] (x -1)2+(y -1)2=115.已知函数f (x )=e x-mx +1的图象为曲线C ,若曲线C 不存在与直线y =-1e x 平行的切线,则实数m 的取值范围为________.【导学号:04024179】[解析] 由已知得f ′(x )=e x-m ,由曲线C 不存在与直线y =-1e x 平行的切线,知方程e x -m =-1e 无解,即方程m =e x +1e 无解.因为e x >0,所以e x+1e >1e ,所以m 的取值范围是⎝ ⎛⎦⎥⎤-∞,1e .[答案] ⎝⎛⎦⎥⎤-∞,1e 16.已知A ,B ,C ,D 是同一球面上的四个点,其中△ABC 是正三角形,AD ⊥平面ABC ,AD =4,AB =23,则该球的表面积为________.[解析] 依题意,把三棱锥D ABC 扩展为直三棱柱,则上、下底面中心的连线的中点O 与A 之间的距离为球的半径(图略).设△ABC 的中心为E ,因为AD =4,AB =23,△ABC 是正三角形,所以AE =2,OE =2,所以AO =22,所以该球表面积S =4π×(22)2=32π. [答案] 32π。
小题提速练(九) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M ={-1,1},N ={x |x 2-x <6},则下列结论正确的是( )A .N ⊆MB .N ∩M =∅C .M ⊆ND .M ∩N =RC [集合M ={-1,1},N ={x |x 2-x <6}={x |-2<x <3},则M ⊆N ,故选C.] 2.设(1+i)(x +y i)=2,其中x ,y 是实数,则|2x +y i|=( )A .1 B. 2 C. 3 D. 5 D [由(1+i)(x +y i)=2得x -y +(x +y )i =2,即⎩⎪⎨⎪⎧ x -y =2,x +y =0,∴⎩⎪⎨⎪⎧x =1,y =-1.∴|2-i|= 5.]3.某校组织由5名学生参加的演讲比赛,采用抽签法决定演讲顺序,在“学生A 和B 都不是第一个出场,B 不是最后一个出场”的前提下,学生C 第一个出场的概率为( ) A.13 B .15 C.19D .320A [“A 和B 都不是第一个出场,B 不是最后一个出场”的安排方法中,另外3人中任何一个人第一个出场的概率都相等,故“C 第一个出场”的概率是13.]4.已知a =(2,1),b =(-1,1),则a 在b 方向上的投影为( )A .-22B .22C .-55D .55A [∵a =(2,1),b =(-1,1),∴a·b =-1,|b |=2, ∴a 在b 方向上的投影为a·b |b |=-22,故选A.] 5.已知S n 是等差数列{a n }的前n 项和,且S 3=2a 1,则下列结论错误的是( )A .a 4=0B .S 4=S 3C .S 7=0D .{a n }是递减数列D [∵S 3=2a 1,∴a 1+a 2+a 3=2a 1,∴a 2+a 3=a 1=a 1+a 4,∴a 4=0,∴S 4=S 3,S 7=7a 4=0,故选项A ,B ,C 正确,选D.]6.⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为3,则该展开式中的常数项为( ) A .-120 B .-100 C .100D .120D [令x =1,可得a +1=3,故a =2,⎝ ⎛⎭⎪⎫2x -1x 5的展开式的通项为T r +1=(-1)r 25-r C r 5x5-2r,令5-2r =-1,得r =3,∴1x项的系数为C 3522(-1)3,令5-2r =1,得r =2,∴x 项的系数为C 2523,∴⎝ ⎛⎭⎪⎫x +2x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中的常数项为C 3522(-1)3+C 2524=120.]7.设F 1,F 2分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于P ,Q 两点,若∠F 1PQ =60°,|PF 1|=|PQ |,则椭圆的离心率为( ) A.33 B .23 C.233D .13A [∵∠F 1PQ =60°,|PF 1|=|PQ |,∴△F 1PQ 为等边三角形,∴直线PQ 过右焦点F 2且垂直于x 轴,∴△F 1PF 2为直角三角形.∵|F 1P |+|F 1Q |+|PQ |=4a ,∴|F 1P |=43a ,|PF 2|=23a ,由勾股定理,得⎝ ⎛⎭⎪⎫43a 2=⎝ ⎛⎭⎪⎫23a 2+(2c )2,即a 2=3c 2, ∴e =ca =33.] 8.如图22,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )【导学号:07804225】图22A .18+36 5B .54+18 5C .90D .81B [由三视图可知该几何体是底面为正方形的斜四棱柱,其中有两个侧面为矩形,另两个侧面为平行四边形,则表面积为(3×3+3×6+3×35)×2=54+18 5.故选B.] 9.已知实数x ,y 满足条件⎩⎪⎨⎪⎧3x +y -7≥0x +3y -13≤0x -y -1≤0,则z =|2x -3y +4|的最大值为( )A .3B .5C .6D .8 C [不等式组⎩⎪⎨⎪⎧3x +y -7≥0x +3y -13≤0x -y -1≤0表示的平面区域如图中阴影部分所示,其中A (2,1),B (1,4).设t =2x -3y ,平移直线y =23x ,则直线经过点B 时,t =2x -3y 取得最小值-10,直线经过点A 时,t =2x -3y 取得最大值1,所以-6≤t +4≤5,所以0≤z ≤6.所以z 的最大值为6,故选C.]10.《九章算术》是我国古代数学成就的杰出代表作.其中“方田”章给出计算弧田面积所用的经验公式为:弧田面积=12(弦×矢+矢2).弧田(如图23)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为2π3,半径为4米的弧田,按照上述经验公式计算所得弧田面积约是( )图23A .6平方米B .9平方米C .12平方米D .15平方米B [弦长为2×4sin π3=43,圆心到弦的距离为d =4×cos π3=2,所以弧田面积为12×[43×(4-2)+(4-2)2]=43+2≈9(平方米).]11.对于函数f (x ),如果存在x 0≠0,使得f (x 0)=-f (-x 0),则称(x 0,f (x 0))与(-x 0,f (-x 0))为函数图象的一组奇对称点.若f (x )=e x -a (e 为自然对数的底数)的图象上存在奇对称点,则实数a 的取值范围是( ) A .(-∞,1) B .(1,+∞) C .(e ,+∞)D .[1,+∞)B [因为存在实数x 0(x 0≠0),使得f (x 0)=-f (-x 0),则e x 0-a =-e -x 0+a ,即e x 0+1e x 0=2a ,又x 0≠0,所以2a =e x 0+1ex 0>2e x 0·1ex 0=2,即a >1,故选B.]12.已知定义在(0,+∞)上的函数f (x )的导函数f ′(x )满足xf ′(x )+f (x )=ln xx,且f (e)=1e ,其中e 为自然对数的底数,则不等式f (x )+e >x +1e 的解集是( ) A .(0,e)B .⎝ ⎛⎭⎪⎫0,1eC.⎝ ⎛⎭⎪⎫1e ,e D .(e ,+∞)A [令g (x )=xf (x ),则f (x )=g x x,g ′(x )=ln xx,∴f ′(x )=g xx -g xx 2=ln x -g xx2,令h (x )=ln x -g (x ),则h ′(x )=1x-g ′(x )=1-ln x x,当0<x <e 时,h ′(x )>0,当x >e 时,h ′(x )<0,∴h (x )≤h (e)=1-g (e)=1-e f (e)=0,∴f ′(x )≤0.令φ(x )=f (x )-x ,则φ′(x )=f ′(x )-1≤-1<0,∴φ(x )为减函数,又不等式f (x )+e >x +1e 可化为φ(x )>φ(e),∴0<x <e ,故选A.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.我们可以用随机数法估计π的值,如图24所示的程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为________.(保留小数点后3位)图24[解析] 在空间直角坐标系O xyz 中,不等式组⎩⎪⎨⎪⎧0<x <10<y <10<z <1表示的区域是棱长为1的正方体区域,相应区域的体积为13=1;不等式组⎩⎪⎨⎪⎧0<x <10<y <10<z <1x 2+y 2+z 2<1表示的区域是棱长为1的正方体区域内的18球形区域,相应区域的体积为18×43π×13=π6,因此π6≈5211 000,即π≈3.126. [答案] 3.12614.过抛物线y =14x 2的焦点F 作一条倾斜角为30°的直线交抛物线于A ,B 两点,则|AB |=________.[解析] 依题意,设点A (x 1,y 1),B (x 2,y 2),题中的抛物线x 2=4y 的焦点坐标是F (0,1),直线AB 的方程为y =33x +1,即x =3(y -1).由⎩⎨⎧x 2=4y x =3y -1,消去x 得3(y-1)2=4y ,即3y 2-10y +3=0,y 1+y 2=103,|AB |=|AF |+|BF |=(y 1+1)+(y 2+1)=y 1+y 2+2=163.[答案]16315.在数列{a n }中,a 1=2,a 2=8,对所有正整数n 均有a n +2+a n =a n +1,则∑n =12 017a n =________.[解析] ∵a 1=2,a 2=8,a n +2+a n =a n +1,∴a n +2=a n +1-a n ,∴a 3=a 2-a 1=8-2=6,同理可得a 4=-2,a 5=-8,a 6=-6,a 7=2,a 8=8,…,∴a n +6=a n ,又2 017=336×6+1,∴∑n =12 017a n =336×(a 1+a 2+a 3+a 4+a 5+a 6)+a 1=2.[答案] 216.球内有一个圆锥,且圆锥底面圆周和顶点均在球面上,其底面积为3π,已知球的半径R =2,则此圆锥的体积为________.【导学号:07804226】[解析] 设圆锥底面半径为r ,由πr 2=3π得r = 3. 如图所示,O 为球心,O 1为圆锥底面圆的圆心, 设O 1O =x ,则x =R 2-r 2=4-3=1, 所以圆锥的高h =R +x =3或h =R -x =1,所以圆锥的体积V =13×3π×3=3π或V =13×3π×1=π.[答案] 3π或π。
小题提速练(一) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若(1+i)+(2-3i)=a +b i(a ,b ∈R ,i 是虚数单位),则a ,b 的值分别等于( )A .3,-2B .3,2C .3,-3D .-1,4[答案] A2.设集合A ={y |y =2x,x ∈R },B ={x |x 2-1<0},则A ∪B 等于( )A .(-1,1)B .(0,1)C .(-1,+∞)D .(0,+∞)[答案] C3.在△ABC 中,a =4,b =52,5cos(B +C )+3=0,则角B 的大小为( )【导学号:04024172】A.π6B.π4C.π3D.56π [答案] A4.设函数f (x )=ln(1+|x |)-11+x2,则使得f (x )>f (2x -1)成立的x 的取值范围是( ) A.⎝ ⎛⎭⎪⎫13,1 B.⎝⎛⎭⎪⎫-∞,13∪(1,+∞) C.⎝ ⎛⎭⎪⎫-13,13D.⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫13,+∞ [答案] A5.点O 为坐标原点,点F 为抛物线C :y 2=42x 的焦点,点P 为C 上一点.若|PF |=42,则△POF 的面积为( ) A .2 B .2 2 C .2 3 D .4[答案] C6.已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 200OC →,且A ,B ,C 三点共线(该直线不过点O ),则S 200等于( ) A .100 B .101 C .200 D .201[答案] A7.某空间几何体的三视图如图1所示,则该几何体的表面积为( )图1A .12+4 2B .18+8 2C .28D .20+8 2[答案] D8.将函数f (x )=cos(π+x )(cos x -2sin x )+sin 2x 的图象向左平移π8个单位长度后得到函数g (x )的图象,则g (x )具有性质( )【导学号:04024173】A .最大值为2,图象关于直线x =π2对称B .周期为π,图象关于⎝⎛⎭⎪⎫π4,0对称C .在⎝ ⎛⎭⎪⎫-π2,0上单调递增,为偶函数D .在⎝⎛⎭⎪⎫0,π4上单调递增,为奇函数[答案] D9.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图2所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为( )图2A.9 B.18C.20 D.35[答案] B10.(2016·全国卷Ⅲ)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815B.18C.115D.130[答案] C11.命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是( )A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x2[答案] D12.函数f(x)=x cos x2在区间[0,4]上的零点个数为( )【导学号:04024174】A.4 B.5C.6 D.7[答案] C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若圆x 2+y 2=r 2(r >0)上有且只有两个点到直线x -y -2=0的距离为1,则实数r 的取值范围是________.[解析] 注意到与直线x -y -2=0平行且距离为1的直线方程分别是x -y -2+2=0和x -y -2-2=0,要使圆上有且只有两个点到直线x -y -2=0的距离为1,需满足在两条直线x -y -2+2=0和x -y -2-2=0中,一条与该圆相交且另一条与该圆相离,所以|2-2|2<r <|-2-2|2,即2-1<r <2+1.[答案] (2-1,2+1)14.如图3,在矩形ABCD 中,AB =1,BC =a (a >0),PA ⊥平面AC ,BC 边上存在点Q ,使得PQ ⊥QD ,则实数a 的取值范围是________.【导学号:04024175】图3[解析] 如图,连接AQ .∵PA ⊥平面AC ,∴PA ⊥QD ,又PQ ⊥QD ,PQ ∩PA =P ,∴QD ⊥平面PQA ,于是QD ⊥AQ ,∴在线段BC 上存在一点Q ,使得QD ⊥AQ ,等价于以AD 为直径的圆与线段BC 有交点,∴a2≥1,a ≥2.[答案] [2,+∞)15.已知函数f (x )=x 2+mx +ln x 是单调递增函数,则m 的取值范围是________.[解析] 依题意知,x >0,f ′(x )=2x 2+mx +1x,令g (x )=2x 2+mx +1,x ∈(0,+∞). 当-m4≤0时,g (0)=1>0恒成立,∴m ≥0时,g (x )>0恒成立, 当-m4>0时,则Δ=m 2-8≤0,∴-22≤m <0,综上,m 的取值范围是m ≥-2 2. [答案] -22,+∞)16.(2016·全国卷Ⅰ)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.[解析] 设生产产品A x 件,产品B y 件,则⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.目标函数z =2 100x +900y .作出可行域为图中的阴影部分(包括边界)内的整数点,图中阴影四边形的顶点坐标分别为(60,100),(0,200),(0,0),(90,0).当直线z =2 100x +900y 经过点(60,100)时,z 取得最大值,z max =2 100×60+900×100=216 000(元). [答案] 216 000。
小题提速练(六) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·江西上饶中学月考)若集合A ={x |x 2-7x <0,x ∈N *},则B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪4y∈N *,y ∈A中元素的个数为( ) A .3 B .2 C .1 D .0[答案] A2.若等差数列{a n }的前n 项和为S n ,且a 3+a 8=13,S 7=35,则a 8等于( )A .8B .9C .10D .11 [答案] B3.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图1中以x 表示:则7个剩余分数的方差为( ) A.1169B.367 C .36 D.677[答案] B4.“m =1”是“直线x -y =0和直线x +my =0互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] C5.(2016·全国卷Ⅰ)如图2,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )图2A .17πB .18πC .20πD .28π[答案] A6.已知sin 2α=13,则cos 2⎝⎛⎭⎪⎫α-π4等于( ) A .-13B .-23C.13D.23 [答案] D7.(2015·全国卷Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a 等于( )图3A .0B .2C .4D .14[答案] B8.若将一个质点随机投入如图4所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )图4A.π2B.π4C.π6D.π8[答案] B9.已知A (2,5),B (4,1),若点P (x ,y )在线段AB 上,则2x -y 的最大值为( )A .-1B .3C .7D .8[答案] C10.已知函数f (x )=x 2+2x +1-2x,则y =f (x )的图象大致为( )[答案] A11.已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2,y =f (x )的部分图象如图5所示,则f ⎝ ⎛⎭⎪⎫π24等于( )图5A .2+ 3 B. 3 C.33D .2- 3[答案] B12.(2016·全国卷Ⅲ)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.34[答案] A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.圆x 2+y 2+x -2y -20=0与圆x 2+y 2=25相交所得的公共弦长为________.[解析] 公共弦的方程为(x 2+y 2+x -2y -20)-(x 2+y 2-25)=0,即x -2y +5=0,圆x 2+y 2=25的圆心到公共弦的距离d =|0-2×0+5|5=5,而半径为5,故公共弦长为252-52=4 5.[答案] 4 514.已知函数f (x )=e x-2x +a 有零点,则a 的取值范围是________.[解析] f ′(x )=e x-2,可得f ′(x )=0的根为x 0=ln 2.当x <ln 2时,f ′(x )<0,可得函数在区间(-∞,ln 2)上为减函数,当x >ln 2时,f ′(x )>0,可得函数在区间(ln 2,+∞)上为增函数,∴函数y =f (x )在x =ln 2处取得极小值f (ln 2)=2-2ln 2+a ,并且这个极小值也是函数的最小值.由题设知函数y =f (x )的最小值要小于或等于零,即2-2ln 2+a ≤0,可得a ≤2ln 2-2,故答案为(-∞,2ln 2-2]. [答案] (-∞,2ln 2-2)15.已知△PAD 所在平面与矩形ABCD 所在平面互相垂直,PA =PD =AB =2,∠APD =90°,若点P 、A 、B 、C 、D 都在同一球面上,则此球的表面积等于________. [解析] 如图在Rt △PAD 中,AD =4+4=22,过△PAD 的外心M 作垂直于平面PAD 的直线l ,过四边形ABCD 的外心O 作垂直于平面ABCD 的直线m ,两线交于点O ,则点O 为四棱锥P ABCD 的外接球球心,2R =AC =4+8=23(R 为四棱锥P ABCD 外接球的半径),即R =3, ∴四棱锥P ABCD 外接球的表面积S =4πR 2=12π. [答案] 12π16.已知△ABC 中的内角为A ,B ,C ,重心为G ,若2sin A ·GA →+3sin B ·GB →+3sin C ·GC →=0,则cos B =________.[解析] 设a ,b ,c 分别为角A ,B ,C 所对的边,由正弦定理得2aGA →+3bGB →+3cGC →=0,则2aGA →+3bGB →=-3cGC →=-3c (-GA →-GB →),即(2a -3c )GA →+(3b -3c )GB →=0,又因为GA →,GB →不共线,则2a -3c =0,3b -3c =0,即2a =3b =3c , 所以a =3b 2,c =3b3, ∴cos B =a 2+c 2-b 22ac =112.[答案]112。
小题提速练(八) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合M ={-2,-1,0,1,2},N ={x |x +2≥x 2},则M ∩N =( )A .{-2,-1,0,1,2}B .{-2,-1,0,1}C .{-1,0,1}D .{-1,0,1,2}D [因为M ={-2,-1,0,1,2},N ={x |x +2≥x 2}={x |x 2-x -2≤0}={x |-1≤x ≤2},所以M ∩N ={-1,0,1,2}.] 2.复数i31+i的虚部为( )A.12 B .-12C.12i D .-12iB [i 31+i=i 3-2=-i 4+i 32=-12-12i ,所以该复数的虚部为-12.]3.设角A ,B ,C 是△ABC 的三个内角,则“A +B <C ”是“△ABC 是钝角三角形”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [若A +B <C ,则C >π2;若△ABC 是钝角三角形,则C 不一定为钝角,即A +B <C 不一定成立.故选A.]4.已知函数y =sin(2x +φ)在x =π6处取得最大值,则函数y =cos(2x +φ)的图象( )【导学号:04024200】A .关于点⎝ ⎛⎭⎪⎫π6,0对称B .关于点⎝ ⎛⎭⎪⎫π3,0对称 C .关于直线x =π6对称D .关于直线x =π3对称A [因为2×π6+φ=2k π+π2(k ∈Z ),所以φ=2k π+π6(k ∈Z ),所以y =cos(2x+φ)=cos ⎝ ⎛⎭⎪⎫2x +2k π+π6=cos ⎝ ⎛⎭⎪⎫2x +π6,当x =π6时,y =cos ⎝ ⎛⎭⎪⎫2×π6+π6=0,故选A.]5.已知双曲线x 2a 2-y 2b2=1(a >0,b >0),F 1,F 2分别为其左、右焦点,斜率为1的直线l 与双曲线的左、右两支分别交于P ,Q 两点,且PF 1,QF 2都垂直于x 轴,则该双曲线的离心率是( ) A.5-1 B.1+52C. 3D. 5B [依题意可得P ⎝ ⎛⎭⎪⎫-c ,-b 2a ,Q ⎝ ⎛⎭⎪⎫c ,b 2a ,且k PQ =1,即b 2ac =1.因为b 2=c 2-a 2,所以c 2-a 2=ac ,解得c a =1+52(舍去负值).故选B.]6.在等差数列{a n }中,a 3=5,S 6=36,则S 9=( )A .17B .19C .81D .100C [设公差为d ,则⎩⎪⎨⎪⎧a 1+2d =5,6a 1+6×52d =36,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以S 9=9a 1+9×82d =81.]7.一个空间几何体的三视图如图1所示,则这个几何体的表面积为( )图1A.934 B .9 3 C.924D .9 6B [由三视图可知,该几何体是一个正三棱锥,三棱锥的底面边长为3,高为 6.设三棱锥侧面的高为h ,因为正三棱锥顶点在底面的射影为底面三角形的中心,而底面三角形的高为332,所以h =62+⎝ ⎛⎭⎪⎫332-32=332,所以这个几何体的表面积S =34×32+3×12×3×332=9 3.] 8.运行如图2所示的程序框图,输出的结果是( )【导学号:04024201】图2A .7B .-4C .-5D .6D [程序运行如下:s =1,i =2;s =-1,i =3;s =2,i =4;s =-2,i =5;s =3,i =6;s =-3,i =7;s =4,i =8;s =-4,i =9;s =5,i =10;s =-5,i =11;s =6,i =12>11,程序结束,故输出s =6.] 9.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -1≥0,x +y -3≤0|x |≤1,,则z =2x -y 的取值范围是( )A .[-2,6]B .[-6,2]C .[-2,4]D .[-6,4]B [不等式组⎩⎪⎨⎪⎧x +y -1≥0,x +y -3≤0,|x |≤1表示的平面区域是图中的阴影部分.解方程组⎩⎪⎨⎪⎧x +y =1,x =1,可得A (1,0),解方程组⎩⎪⎨⎪⎧x +y =3,x =-1,可得B (-1,4).在图中作出直线2x -y =0,当直线2x -y =z 经过点A 时,z 取得最大值,最大值为2×1-0=2;当直线2x -y =z 经过点B 时,z 取得最小值,最小值为2×(-1)-4=-6.所以z 的取值范围是[-6,2].10.已知函数f (x )的图象如图3所示,则f (x )的解析式可能是( )图3A .f (x )=2-x22xB .f (x )=sin xx2C .f (x )=-cos 2xxD .f (x )=cos xxD [对于选项A ,由于f ′(x )=-1x 2-12<0在定义域(-∞,0)∪(0,+∞)上恒成立,所以f (x )=2-x22x在(-∞,0)和(0,+∞)上都是减函数,排除选项A ;对于选项B ,f ′(x )=x cos x -2sin x x 3,得f ′(π)=-1π2<0,由图象知f ′(π)应大于0,排除选项B ;对于选项C ,当x 由右侧趋近于0时,f (x )<0,与图象不符,排除选项C ;对于选项D ,f ′(x )=-x sin x -cos x x 2,得f ′(π)=-πsin π-cos ππ2=1π2>0,与已知图象相符,故选D.]11.已知A ,B ,C 都在半径为2的球面上,且AC ⊥BC ,∠ABC =30°,球心O 到平面ABC 的距离为1,点M 是线段BC 的中点,过点M 作球O 的截面,则截面面积的最小值为( )【导学号:04024202】A.3π4B.3π4C.3π D .3πB [因为AC ⊥BC ,所以∠ACB =90°,所以球心O 在平面ABC 上的射影为AB 的中点D ,所以12AB =OB 2-OD 2=1,所以AB =2,所以BC =AB cos 30°= 3.易知当线段BC 为截面圆的直径时,截面面积最小,所以截面面积的最小值为π×⎝⎛⎭⎪⎫322=3π4.] 12.对任意α∈R ,n ∈[0,2],向量c =(2n +3cos α,n -3sin α)的模不超过6的概率为( ) A.510 B.2510 C.3510 D.255C[易知|c |=n +3cos α2+n -3sin α2=5n 2+α-sin αn +9=5n 2+65nα+φ+9≤6.因为65n cos(α+φ)的最大值和最小值分别为65n ,-65n ,所以5n 2±65n +9≤6有解,即n2≤6有解,所以-6≤5n ±3≤6,得0≤n ≤355,所以所求概率为355÷2=3510.] 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知sin α=13,α是第二象限角,则tan(π-α)=________.【导学号:04024203】[解析] 依题意得,cos α=-223,所以tan(π-α)=-tan α=-sin αcos α=24.[答案]2414.在△ABC 中,若AB →=(2,-1),BC →=(-1,1),则cos ∠BAC 的值为________.[解析] 由AB →=(2,-1),BC →=(-1,1),得AC →=AB →+BC →=(2,-1)+(-1,1)=(1,0),所以cos ∠BAC =AC →·AB →|AC →|·|AB →|=21×5=255.[答案]25515.已知△ABC 的周长等于2(sin A +sin B +sin C ),则其外接圆半径R 等于________.[解析] 设△ABC 的三个内角A ,B ,C 所对的三边长分别为a ,b ,c ,则依题意有a +b +c =2(sin A +sin B +sin C ),由正弦定理得2R sin A +2R sin B +2R sin C =2(sinA +sinB +sinC ),所以R =1.[答案] 116.已知圆(x +1)2+y 2=4与抛物线y 2=mx (m ≠0)的准线交于A ,B 两点,且|AB |=23,则m 的值为________.[解析] 因为抛物线y 2=mx (m ≠0)的准线为x =-m 4,所以圆心(-1,0)到直线x =-m4的距离为⎪⎪⎪⎪⎪⎪-1+m 4.又|AB |=23,所以4=⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪-1+m 42+⎝ ⎛⎭⎪⎫2322,所以m =8.[答案] 8。
小题提速练(一) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |y =lg(x +1)},B ={x ||x |<2},则A ∩B =( )A .(-2,0)B .(0,2)C .(-1,2)D .(-2,-1)C [因为A ={x |x >-1},B ={x |-2<x <2},所以A ∩B =(-1,2),故选C.] 2.已知z i =2-i ,则复数z 在复平面内对应的点的坐标是( )【导学号:07804201】A .(-1,-2)B .(-1,2)C .(1,-2)D .(1,2)A [因为z i =2-i ,所以z =2-ii =-i(2-i)=-1-2i ,所以复数z 在复平面内对应的点的坐标为(-1,-2),故选A.]3.已知S n 是等差数列{a n }的前n 项和,2(a 1+a 3+a 5)+3(a 8+a 10)=36,则S 11=( )A .66B .55C .44D .33D [因为a 1+a 5=2a 3,a 8+a 10=2a 9,所以2(a 1+a 3+a 5)+3(a 8+a 10)=6a 3+6a 9=36,所以a 3+a 9=6,所以S 11=a 1+a 112=a 3+a 92=33,故选D.]4.△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( ) A .|b |=1 B .a ⊥b C .a·b =1D .(4a +b )⊥BC →D [∵b =AC →-AB →=BC →,∴|b |=|BC →|=2,故A 错;∵BA →·BC →=2×2×cos 60°=2,即-2a ·b =2,∴a·b =-1,故B 、C 都错;∵(4a +b )·BC →=(4a +b )·b =4a·b +b 2=-4+4=0, ∴(4a +b )⊥BC →,故选D.]5.函数f (x )=cos xx的图象大致为( )D [易知函数f (x )=cos xx为奇函数,其图象关于原点对称,所以排除选项A ,B ;又f ′(x )=-x sin x +cos x x 2,当0<x <1时,f ′(x )<0,所以f (x )=cos xx在(0,1)上为减函数,故排除选项C.故选D.]6.已知圆C :x 2+y 2=1,直线l :y =k (x +2),在[-1,1]上随机选取一个数k ,则事件“直线l 与圆C 相离”发生的概率为( )【导学号:07804202】A.12 B .2-22C.3-33D .2-32C [若直线l :y =k (x +2)与圆C :x 2+y 2=1相离,则圆C 的圆心到直线l 的距离d =2|k |k 2+1>1,又k ∈[-1,1],所以-1≤k <-33或33<k ≤1,所以事件“直线l 与圆C 相离”发生的概率为2-2332=3-33,故选C.]7.执行如图1所示的程序框图,已知输出的s ∈[0,4],若输入的t ∈[m ,n ],则实数n -m的最大值为( )图1A .1B .2C .3D .4D [由程序框图得s =⎩⎪⎨⎪⎧3t ,t <14t -t 2,t ≥1,作出s 的图象如图所示.若输入的t ∈[m ,n ],输出的s ∈[0,4],则由图象得n -m 的最大值为4,故选D.]8.某几何体的三视图如图2所示,则该几何体的表面积为( )图2A .6π+1B .+2π4+1C.+2π4+12D .+2π4+1D [由几何体的三视图知,该几何体为一个组合体,其中下部是底面直径为2,高为2的圆柱,上部是底面直径为2,高为1的圆锥的四分之一,所以该几何体的表面积为4π+π+3π4+2π4+1=+2π4+1,故选D.]9.已知,给出下列四个命题:p 1:∀(x ,y )∈D ,x +y +1≥0;p 2:∀(x ,y )∈D,2x -y +2≤0;p 3:∃(x ,y )∈D ,y +1x -1≤-4;p 4:∃(x ,y )∈D ,x 2+y 2≤2.其中为真命题的是( ) A .p 1,p 2 B .p 2,p 3 C .p 2,p 4D .p 3,p 4C [因为表示的平面区域如图中阴影部分所示,所以z 1=x +y 的最小值为-2,z 2=2x -y 的最大值为-2,z 3=y +1x -1的最小值为-3,z 4=x 2+y 2的最小值为2,所以命题p 1为假命题,命题p 2为真命题,命题p 3为假命题,命题p 4为真命题,故选C.]10.已知抛物线y 2=4x 的焦点为F ,过焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点,若△AOB 的面积为6,则|AB |=( )【导学号:07804203】A .6B .8C .12D .16A [由题易知抛物线y 2=4x 的焦点F 的坐标为(1,0),当直线AB 垂直于x 轴时,△AOB 的面积为2,不满足题意,所以设直线AB 的方程为y =k (x -1)(k ≠0),与y 2=4x 联立,消去x 得ky 2-4y -4k =0,设A (x 1,y 1),B (x 2,y 2),所以y 1+y 2=4k,y 1y 2=-4,所以|y 1-y 2|=16k 2+16,所以△AOB 的面积为12×1×16k2+16=6,解得k =±2,所以|AB |=1+1k2|y 1-y 2|=6.选A.]11.在数列{a n }中,已知a 1=1,a n +1-a n =sinn +π2(n ∈N *),记S n 为数列{a n }的前n项和,则S 2 016=( )A .1 006B .1 007C .1 008D .1 009 C [由题意,得a n +1=a n +sinn +π2(n ∈N *),所以a 2=a 1+sin π=1,a 3=a 2+sin 3π2=0,a 4=a 3+sin 2π=0,a 5=a 4+sin 5π2=1,…因此数列{a n }是一个周期为4的周期数列,而2 016=4×504,所以S 2 016=504×(a 1+a 2+a 3+a 4)=1 008,故选C.] 12.设函数f (x )=32x 2-2ax (a >0)的图象与g (x )=a 2ln x +b 的图象有公共点,且在公共点处的切线方程相同,则实数b 的最大值为( ) A.12e 2 B.12e 2 C.1e D .-32e2 A [f ′(x )=3x -2a ,g ′(x )=a 2x,因为函数f (x )的图象与函数g (x )的图象有公共点且在公共点处的切线方程相同,所以3x -2a =a 2x,故3x 2-2ax -a 2=0在(0,+∞)上有解,又a >0,所以x =a ,即切点的横坐标为a ,所以a 2ln a +b =-a 22,所以b =-a 2lna -a 22(a >0),b ′=-2a (ln a +1),由b ′=0得a =1e ,所以0<a <1e 时b ′>0,a >1e时b ′<0,所以当a =1e 时,b 取得最大值且最大值为12e 2,故选A.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若⎝⎛⎭⎪⎫x 2+1x n 的展开式的二项式系数之和为64,则含x 3项的系数为________.[解析] 由题意,得2n=64,所以n =6,所以⎝⎛⎭⎪⎫x 2+1x n =⎝ ⎛⎭⎪⎫x 2+1x 6,其展开式的通项公式为T r +1=C r 6(x 2)6-r⎝ ⎛⎭⎪⎫1x r =C r 6x 12-3r .令12-3r =3,得r =3,所以展开式中含x 3项的系数为C 36=20. [答案] 2014.已知双曲线经过点(1,22),其一条渐近线方程为y =2x ,则该双曲线的标准方程为________.[解析] 因为双曲线的渐近线方程为y =2x ,所以设双曲线的方程为x 2-y 24=λ(λ≠0),又双曲线过点(1,22),所以λ=-1,所以双曲线的标准方程为y 24-x 2=1.[答案]y 24-x 2=115.我国南北朝时期的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上,于5世纪末提出下面的体积计算原理(祖暅原理):“幂势既同,则积不容异”.“势”是几何体的高,“幂”是截面积.意思是,两等高立方体,若在每一等高处的截面积都相等,则两立方体体积相等.现有下题:在xOy 平面上,将两个半圆弧(x -1)2+y 2=1(x ≥1)和(x -3)2+y 2=1(x ≥3)、两条直线y =1和y =-1围成的封闭图形记为D ,如图3所示阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,y )(|y |≤1)作Ω的水平截面,所得截面面积为4π1-y 2+8π,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为________.图3[解析] 根据提示,一个底面半径为1,高为2π的圆柱平放,一个高为2,底面积为8π的长方体,这两个几何体与Ω放在一起,根据祖暅原理,每个平行水平面的截面面积都相等,故它们的体积相等,即Ω的体积为π·12·2π+2·8π=2π2+16π. [答案] 2π2+16π16.已知数列{a n }中,a 1=-1,a n +1=2a n +3n -1(n ∈N *),则其前n 项和S n =________.【导学号:07804204】[解析] 因为a n +1=2a n +3n -1,所以a n +1+3(n +1)+2=2(a n +3n +2),所以数列{a n +3n +2}是首项为4,公比为2的等比数列,所以a n +3n +2=2n +1,所以a n =2n +1-3n-2,所以数列{a n }的前n 项和S n =2n +2-4-n n +2.[答案] 2n +2-4-n n +2。
小题提速练(二) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={-1,0,1,2},B ={x ∈N |x 2-1≤0},则(∁N B )∩A =( )A .{2}B .{0,2}C .{-1,0,2}D .{-1,0,1}A [因为B ={x ∈N |x 2-1≤0}={x ∈N |-1≤x ≤1}={0,1},∁N B ={x ∈N |x ≠0且x ≠1},又A ={-1,0,1,2},所以(∁N B )∩A ={2}, 故选A.]2.已知复数z 满足z (1-i)=2+4i ,其中i 为虚数单位,则复数z 的模为( )【导学号:07804205】A .10B .10C .-10D .±10 B [由z (1-i)=2+4i ,得z =2+4i 1-i =++2=-1+3i ,所以|z |=|-1+3i|=-2+32=10.故选B.]3.已知向量a =(1,2),b =(2k,3),且a ⊥(2a +b ),则实数k 的值为( )A .-8B .-2C .1.5D .7A [法一:(先坐标运算再数量积求解)因为2a +b =(2,4)+(2k,3)=(2+2k,7),又a ⊥(2a +b ),a =(1,2),所以2+2k +14=0,解得k =-8.法二:(先数量积运算再坐标运算)因为a ⊥(2a +b ),所以a ·(2a +b )=2a 2+a·b =10+2k +6=0,所以k =-8.故选A.]4.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为30°,则其离心率的值为( )A .2B .2 2 C.233D .322C [依题意可得双曲线的渐近线方程为y =±b a x ,b a =tan 30°=33,故b 2a 2=13,离心率为e =ca=c 2a 2=a 2+b 2a 2=43=233,选C.] 5.从1至9共9个自然数中任取七个不同的数,则这七个数的平均数是5的概率为( )A.23 B .13 C.19D .18C [1至9共9个自然数中任取七个不同的数的取法共有C 79=9×82=36种,因为1+9=2+8=3+7=4+6,所以从(1,9),(2,8),(3,7),(4,6)中任选三组,则有C 34=4,故这七个数的平均数是5的概率为436=19,选C.]6.某几何体的三视图如图4所示,则该几何体的体积为( )图4A .24 3B .8 3 C.833D .1033B [如图,该几何体是一个放倒的四棱锥S ABCD ,底面是直角梯形,面积为(2+4)×4÷2=12,四棱锥的高为23,所以该四棱锥的体积为13×12×23=8 3.故选B.]7.已知α∈⎝ ⎛⎭⎪⎫π4,π2,a =(cos α)cos α,b =(sin α)cos α,c =(cos α)sin α,则( )A .a <b <cB .a <c <bC .b <a <cD .c <a <bD [因为α∈⎝ ⎛⎭⎪⎫π4,π2,故22<sin α<1,0<cos α<22,故cos α<sin α,a =(cos α)cos α>c =(cos α)sin α,即a >c ;又a =(cos α)cos α<b =(sin α)cos α,故c <a <b ,选D.]8.如图5所示的程序框图的算法思想源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“m MOD n”表示m除以n的余数),若输入的m,n分别为495,135,则输出的m=( )图5A.0 B.5 C.45 D.90C[该程序框图是求495与135的最大公约数,由495=135×3+90,135=90×1+45,90=45×2,所以495与135的最大公约数是45,所以输出的m=45,故选C.] 9.10.已知等比数列{a n}的公比q>1,其前n项和为S n,若S4=2S2+1,则S6的最小值为( ) A.9 B.3-2 3C .3+2 3D .3+ 6C [因为等比数列{a n }的公比q >1,S 4=2S 2+1,所以a 1-q41-q=2·a 1-q 21-q+1,即a 1⎣⎢⎡⎦⎥⎤1-q 41-q--q 21-q=1,a 1=1-q --q 22,所以S 6=1-q--q22·1-q61-q=1-q6--q22=q 4+q 2+1--q2=q 2-2+q 2-+3q 2-1=q 2-1+3q 2-1+3.因为q >1,所以q 2-1>0,所以q 2-1+3q 2-1+3≥23+3,当且仅当q 2-1=3q 2-1,即q 2=1+3时取等号,故S 6的最小值为23+3.故选C.]11.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≤0,x ln x ,x >0,g (x )=kx -1,若方程f (x )-g (x )=0在x ∈(-2,e)时有3个实根,则k 的取值范围为( ) A.⎝⎛⎭⎪⎫1,1+1e ∪⎣⎢⎡⎭⎪⎫32,2 B.⎝ ⎛⎭⎪⎫1+1e ,32C.⎝ ⎛⎭⎪⎫32,2 D.⎝⎛⎭⎪⎫1,1+1e ∪⎝ ⎛⎭⎪⎫32,2 D [由题意得f (0)=0,g (0)=-1,则x =0不是方程f (x )-g (x )=0的实数根, 又f (x )-g (x )=0,所以f (x )-kx +1=0,即k =f x +1x(x ≠0). 令h (x )=fx +1x ,则h (x )=⎩⎪⎨⎪⎧x +1x +4,x <0,ln x +1x,x >0,故方程f (x )-g (x )=0在x ∈(-2,e)时有3个实数根,即直线y =k 与h (x )的图象在x ∈(-2,e)上有3个交点.函数h (x )在(-2,e)上的图象如图7所示,可得k 的取值范围为⎝ ⎛⎭⎪⎫1,1+1e ∪⎝ ⎛⎭⎪⎫32,2.故选D.]12.在平面直角坐标系xOy 中,A ,B 为x 轴正半轴上的两个动点,P (异于原点O )为y 轴上的一个定点,若以AB 为直径的圆与圆x 2+(y -2)2=1相外切,且∠APB 的大小恒为定值,则线段OP 的长为( )A. 3B. 6 C .3 D .6A [设以AB (点B 在点A 的右侧)为直径的圆的圆心为(a,0),半径为r (0<r <a ),OP =b (b >0,且b 为常数), 因为tan∠OPA =a -rb ,tan∠OPB =a +rb, 所以tan∠APB =tan(∠OPB -∠OPA )=a +r b -a -rb 1+a +r b ·a -r b=2rbb 2+a 2-r 2.因为以AB 为直径的圆与圆x 2+(y -2)2=1相外切,所以a 2+4=r +1, 即a 2=(r +1)2-4,可得a 2-r 2=2r -3,所以tan∠APB =2rb b 2+a 2-r 2=2rbb 2-3+2r=2b b 2-3r+2(r 为变量,b 为常数),又tan∠APB 的大小恒为定值,所以b 2-3=0,即b =3,故选A.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知f (x )=x 2,则曲线y =f (x )过点P (-1,0)的切线方程是________.[解析] 由题意,得f ′(x )=2x ,点P 不在曲线上, 设直线与曲线相切于点(x 0,y 0), 则所求切线方程的斜率k =2x 0, 所以切线方程为y -0=2x 0(x +1), 由(x 0,y 0)在曲线y =f (x )上, 得y 0=x 20,将(x 0,x 20)代入切线方程得x 20=2x 0(x 0+1), 解得x 0=0或x 0=-2,所以所求切线方程为y =0或y =-4(x +1), 即y =0或4x +y +4=0. [答案] y =0或4x +y +4=014.已知S ,A ,B ,C 是球O 表面上的点,SA ⊥平面ABC ,AB ⊥BC ,SA =AB =2,BC =23,则球O 的表面积为________.【导学号:07804207】[解析] 法一:(直接法)由题意知,S ,A ,B ,C 是如图所示三棱锥S ABC 的顶点,且SA ⊥平面ABC ,AB ⊥BC ,AC =22+32=4,SC =22+42=2 5.如图9所示,取AC 的中点E ,SC 的中点F ,连接EF ,EB ,BF ,FA ,则FS =FC =FA =12SC =5,BE =12AC=2,FB =BE 2+EF 2=22+12=5,故FS =FC =FA =FB ,即点F 就是三棱锥的外接球的球心,且其半径为5,故球的表面积S =4π·(5)2=20π.法二:(还原几何体法)由题意可知,S ,A ,B ,C 为如图所示长方体的四个顶点,连接SC ,且SA =AB =2,BC =23,则2R =SC=SA 2+AB 2+BC 2=25(设球O 的半径为R ),即R =5,故球O 的表面积S =4πR 2=20π. [答案] 20π15.已知点P (x ,y )的坐标满足⎩⎪⎨⎪⎧x ≤0,y >x ,y <2x +1,则x +yx 2+y 2的取值范围为________. [解析] 作出不等式组⎩⎪⎨⎪⎧x ≤0,y >x ,y <2x +1表示的平面区域,如图中阴影部分所示,其中B (-1,-1),C (0,1).设A (1,1),向量OA →,OP →的夹角为θ, ∵OA →·OP →=x +y ,|OP →|=x 2+y 2,∴cos θ=OA →·OP→|OA →||OP →|=x +y 2×x 2+y 2=22×x +yx 2+y 2, 由图可知∠AOC ≤θ<∠AOB , 即45°≤θ<180°, ∴-1<cos θ≤22, 即-1<22×x +y x 2+y 2≤22, ∴-2<x +yx 2+y 2≤1. [答案] (-2,1]16.已知数列{a n }的前n 项和为S n ,数列{a n }为12,13,23,14,24,34,15,25,35,45,…,1n ,2n,…,n -1n,…,若S k =14,则a k =________. [解析] 因为1n +2n +…+n -1n =1+2+…+n -1n =n 2-12,1n +1+2n +1+…+nn +1=1+2+…+n n +1=n 2,所以数列12,13+23,14+24+34,…,1n +1+2n +1+…+n n +1是首项为12,公差为12的等差数列,所以该数列的前n 项和T n =12+1+32+…+n 2=n 2+n 4.令T n =n 2+n 4=14, 解得n =7, 所以a k =78.[答案] 78。
小题提速练(七) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |0≤x ≤5},B ={x ∈N *|x -1≤2},则A ∩B =( )A .{x |1≤x ≤3}B .{x |0≤x ≤3}C .{0,1,2,3}D .{1,2,3}D [因为B ={x ∈N *|x ≤3}={1,2,3},所以A ∩B ={1,2,3},故选D.] 2.若z 是复数,z =1-2i1+i,则z ·z =( )A.102B .52C .1D .52D [因为z =1-2i1+i=--+-=-12-32i ,所以z =-12+32i ,所以z ·z =⎝ ⎛⎭⎪⎫-12-32i ⎝ ⎛⎭⎪⎫-12+32i =52,故选D.]3.已知等差数列{a n }的公差为5,前n 项和为S n ,且a 1,a 2,a 5成等比数列,则S 6=( )A .80B .85C .90D .95C [由题意,得(a 1+5)2=a 1(a 1+4×5),解得a 1=52,所以S 6=6×52+6×52×5=90,故选C.]4.(2017·广东梅州一模)设椭圆x 2m 2+y 2n2=1(m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为( )【导学号:07804220】A.x 212+y 216=1 B .x 216+y 212=1 C.x 248+y 264=1 D .x 264+y 248=1 B [y 2=8x 的焦点坐标为(2,0),即c =2,所以椭圆的焦点在x 轴上,排除A ,C ,又e =c a=12,所以a =4,故排除D.故选B.]5.若a =⎝ ⎛⎭⎪⎫1215,b =⎝ ⎛⎭⎪⎫15-12,c =log 1510,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .c >b >aD .b >a >cD [0<⎝ ⎛⎭⎪⎫1215<⎝ ⎛⎭⎪⎫120=1,即0<a <1,⎝ ⎛⎭⎪⎫15-12=512>50=1,即b >1,又c <0,所以b >a >c ,故选D.]6.已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( )A .-4B .-3C .-2D .-1D [(1+x )5中含有x 与x 2的项为T 2=C 15x =5x ,T 3=C 25x 2=10x 2,∴x 2的系数为10+5a =5,∴a =-1,故选D.]7.某几何体的三视图如图17所示,其中俯视图为扇形,则该几何体的体积为()图17A.16π3 B .π3C.2π9D .16π9D [由三视图可知该几何体是底面半径为2、高为4的圆锥的一部分,设底面扇形的圆心角为θ,则cos(π-θ)=12,所以θ=2π3,所以所求几何体的体积V =23π2π×13π×22×4=16π9,故选D.]8.《九章算术》是我国古代的数学名著,书中有类似问题:今有良马与驽马发长安,至齐,齐去长安一千一百二十五里.良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马.问:几何日相逢及各行几何?该问题所对应的程序框图如图18所示,则在这个问题中,两马相逢时,良马比驽马多跑的路程里数为( )图18A .540B .450C .560D .460A [由题意,良马每日所行路程构成等差数列{a n },其中首项a 1=103,公差d =13; 驽马每日所行路程构成等差数列{b n },其中首项b 1=97,公差t =-0.5. 从而{a n }的前n 项和A n =na 1+n n -2d =103n +n n -2×13,{b n }的前n 项和B n =nb 1+n n -2t =97n +n n -2×(-0.5),所以良马和驽马前n 天所行路程之和S n =A n +B n =200n +n n -2×12.5.令S n =2×1 125=2 250,则200n +n n -2×12.5=2 250,整理得n 2+31n -360=0,解得n =9或n =-40(舍去).故良马所行路程A 9=103×9+9×82×13=1 395,驽马所行路程B 9=97×9+9×82×(-0.5)=855.良马比驽马多行路程里数为1 395-855=540.故选A.]9.已知双曲线y 24-x 2=1的两条渐近线分别与抛物线y 2=2px (p >0)的准线交于A ,B 两点.O 为坐标原点.若△OAB 的面积为1,则p 的值为( ) A .1 B . 2 C .2 2D .4B [双曲线的两条渐近线方程为y =±2x ,抛物线的准线方程为x =-p2,故A ,B 两点的坐标为⎝ ⎛⎭⎪⎫-p 2,±p ,|AB |=2p ,所以S △OAB =12·2p ·p 2=p 22=1,解得p =2,故选B.] 10.如图19所示,周长为1的圆的圆心C 在y 轴上,点A (0,1)为圆C 与y 轴的上交点,一动点M 从A 开始逆时针绕圆运动一周,记AM =s ,直线AM 与x 轴交于点N (t,0),则函数t =f (s )的图象大致为( )图19D [当s 由0→12时,t 从-∞→0,且t =f (s )在⎝ ⎛⎭⎪⎫0,12上单调递增;当s 由12→1时,t 从0→+∞,且t =f (s )在⎝ ⎛⎭⎪⎫12,1上也单调递增.∴排除A ,B ,C ,故选D.]11.在三棱锥S ABC 中,SB ⊥BC ,SA ⊥AC ,SB =BC ,SA =AC ,AB =12SC ,且三棱锥S ABC 的体积为932,则该三棱锥的外接球的半径为( ) 【导学号:07804221】A .1B .2C .3D .4C [如图,取SC 的中点O ,连接OB ,OA ,因为SB ⊥BC ,SA ⊥AC ,SB =BC ,SA =AC ,所以OB ⊥SC ,OA ⊥SC ,OB =12SC ,OA =12SC ,所以SC ⊥平面OAB ,O 为外接球的球心,SC 为球O 的直径,设球O 的半径为R ,则AB =12SC =R ,所以△AOB 为正三角形,所以∠BOA =60°,所以V S ABC =V S OAB +V C OAB =2×12R 2sin 60°×13×R=932,解得R =3,故选C.] 12.已知函数f (x )=⎩⎪⎨⎪⎧-nsinπx2+2n ,x ∈[2n ,2n +,-n +1sin πx2+2n +2,x ∈[2n +1,2n +(n ∈N ),若数列{a m }满足a m =f (m )(m ∈N *),数列{a m }的前m 项和为S m ,则S 105-S 96=( )A .909B .910C .911D .912A [S 105-S 96=a 97+a 98+a 99+…+a 105=f (97)+f (98)+f (99)+…+f (105)=⎣⎢⎡⎦⎥⎤-972π+98+⎣⎢⎡⎦⎥⎤-982π+98+⎝ ⎛⎭⎪⎫sin 992π+100+⎝ ⎛⎭⎪⎫sin 1002π+100+⎣⎢⎡⎦⎥⎤-1012π+102+⎣⎢⎡⎦⎥⎤-1022π+102+⎝ ⎛⎭⎪⎫sin 1032π+104+⎝ ⎛⎭⎪⎫sin 1042π+104+⎣⎢⎡⎦⎥⎤-1052π+106=97+98+99+100+101+102+103+104+105=97+1052×9=909.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知菱形ABCD 的边长为2,∠ABC =60°,则BD →·CD →=________.[解析] BD →·CD →=(BA →+BC →)·BA →=BA 2→+BC →·BA →=22+2×2cos 60°=6. [答案] 614.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极小值10,则b a=________.[解析] 因为f ′(x )=3x 2+2ax +b ,由题意,得f ′(1)=0,所以3+2a +b =0,1+a +b -a2-7a =10,解得⎩⎪⎨⎪⎧a =-2,b =1或⎩⎪⎨⎪⎧a =-6,b =9.又当⎩⎪⎨⎪⎧a =-6,b =9时,f ′(x )=3x 2-12x +9,函数f (x )在x =1处取得极大值10;当⎩⎪⎨⎪⎧a =-2,b =1时,f ′(x )=3x 2-4x +1,函数f (x )在x =1处取得极小值10,所以⎩⎪⎨⎪⎧a =-2,b =1,即b a 的值为-12.[答案] -1215.在(0,8)上随机取一个数m ,则事件“直线x +y -1=0与圆(x -3)2+(y -4)2=m 2没有公共点”发生的概率为________.[解析] 因为m ∈(0,8),直线x +y -1=0与圆(x -3)2+(y -4)2=m 2没有公共点,所以⎩⎪⎨⎪⎧0<m <8,|3+4-1|2>m ,解得0<m <32,所以所求概率P =328.[答案]32816.已知x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +2≥0x -2y -2≤0x +y -2≤0,若z =x -ay (a >0)的最大值为4,则a =________.[解析] 作出不等式组表示的平面区域如图中阴影部分所示,则A (2,0),B (-2,-2).显然直线z =x -ay 过A 时不能取得最大值4,若直线z =x -ay 过点B 时取得最大值4,则-2+2a =4,解得a =3,此时,目标函数为z =x -3y ,作出直线x -3y =0,平移该直线,当直线经过点B 时,截距最小,此时,z 的最大值为4,满足条件.[答案] 3。
小题提速练(七) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |0≤x ≤5},B ={x ∈N *|x -1≤2},则A ∩B =( )A .{x |1≤x ≤3}B .{x |0≤x ≤3}C .{0,1,2,3}D .{1,2,3}D [因为B ={x ∈N *|x ≤3}={1,2,3},所以A ∩B ={1,2,3},故选D.] 2.若z 是复数,z =1-2i1+i,则z ·z =( )A.102B .52C .1D .52D [因为z =1-2i1+i=--+-=-12-32i ,所以z =-12+32i ,所以z ·z =⎝ ⎛⎭⎪⎫-12-32i ⎝ ⎛⎭⎪⎫-12+32i =52,故选D.]3.已知等差数列{a n }的公差为5,前n 项和为S n ,且a 1,a 2,a 5成等比数列,则S 6=( )A .80B .85C .90D .95C [由题意,得(a 1+5)2=a 1(a 1+4×5),解得a 1=52,所以S 6=6×52+6×52×5=90,故选C.]4.(2017·广东梅州一模)设椭圆x 2m 2+y 2n2=1(m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为( )【导学号:07804220】A.x 212+y 216=1 B .x 216+y 212=1C.x 248+y 264=1 D .x 264+y 248=1B [y 2=8x 的焦点坐标为(2,0),即c =2,所以椭圆的焦点在x 轴上,排除A ,C ,又e=c a =12,所以a =4,故排除D.故选B.]5.若a =⎝ ⎛⎭⎪⎫1215,b =⎝ ⎛⎭⎪⎫15-12,c =log 1510,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .c >b >aD .b >a >cD [0<⎝ ⎛⎭⎪⎫1215<⎝ ⎛⎭⎪⎫120=1,即0<a <1,⎝ ⎛⎭⎪⎫15-12=512>50=1,即b >1,又c <0,所以b >a >c ,故选D.]6.已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( )A .-4B .-3C .-2D .-1D [(1+x )5中含有x 与x 2的项为T 2=C 15x =5x ,T 3=C 25x 2=10x 2,∴x 2的系数为10+5a =5,∴a =-1,故选D.]7.某几何体的三视图如图17所示,其中俯视图为扇形,则该几何体的体积为()图17A.16π3 B .π3C.2π9D .16π9D [由三视图可知该几何体是底面半径为2、高为4的圆锥的一部分,设底面扇形的圆心角为θ,则cos(π-θ)=12,所以θ=2π3,所以所求几何体的体积V =23π2π×13π×22×4=16π9,故选D.]8.《九章算术》是我国古代的数学名著,书中有类似问题:今有良马与驽马发长安,至齐,齐去长安一千一百二十五里.良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马.问:几何日相逢及各行几何?该问题所对应的程序框图如图18所示,则在这个问题中,两马相逢时,良马比驽马多跑的路程里数为( )图18A .540B .450C .560D .460A [由题意,良马每日所行路程构成等差数列{a n },其中首项a 1=103,公差d =13; 驽马每日所行路程构成等差数列{b n },其中首项b 1=97,公差t =-0.5. 从而{a n }的前n 项和A n =na 1+n n -2d =103n +n n -2×13,{b n }的前n 项和B n =nb 1+n n -2t =97n +n n -2×(-0.5),所以良马和驽马前n 天所行路程之和S n =A n +B n =200n +n n -2×12.5.令S n =2×1 125=2 250,则200n +n n -2×12.5=2 250,整理得n 2+31n -360=0,解得n =9或n =-40(舍去).故良马所行路程A 9=103×9+9×82×13=1 395,驽马所行路程B 9=97×9+9×82×(-0.5)=855.良马比驽马多行路程里数为1 395-855=540.故选A.]9.已知双曲线y 24-x 2=1的两条渐近线分别与抛物线y 2=2px (p >0)的准线交于A ,B 两点.O为坐标原点.若△OAB 的面积为1,则p 的值为( ) A .1 B . 2 C .2 2D .4B [双曲线的两条渐近线方程为y =±2x ,抛物线的准线方程为x =-p2,故A ,B 两点的坐标为⎝ ⎛⎭⎪⎫-p 2,±p ,|AB |=2p ,所以S △OAB =12·2p ·p 2=p 22=1,解得p =2,故选B.] 10.如图19所示,周长为1的圆的圆心C 在y 轴上,点A (0,1)为圆C 与y 轴的上交点,一动点M 从A 开始逆时针绕圆运动一周,记AM =s ,直线AM 与x 轴交于点N (t,0),则函数t =f (s )的图象大致为( )图19D [当s 由0→12时,t 从-∞→0,且t =f (s )在⎝ ⎛⎭⎪⎫0,12上单调递增;当s 由12→1时,t从0→+∞,且t =f (s )在⎝ ⎛⎭⎪⎫12,1上也单调递增.∴排除A ,B ,C ,故选D.]11.在三棱锥S ABC 中,SB ⊥BC ,SA ⊥AC ,SB =BC ,SA =AC ,AB =12SC ,且三棱锥S ABC 的体积为932,则该三棱锥的外接球的半径为( )【导学号:07804221】A .1B .2C .3D .4C [如图,取SC 的中点O ,连接OB ,OA ,因为SB ⊥BC ,SA ⊥AC ,SB =BC ,SA =AC ,所以OB ⊥SC ,OA ⊥SC ,OB =12SC ,OA =12SC ,所以SC ⊥平面OAB ,O 为外接球的球心,SC 为球O 的直径,设球O 的半径为R ,则AB =12SC =R ,所以△AOB 为正三角形,所以∠BOA =60°,所以V S ABC =V S OAB +V C OAB =2×12R 2sin60°×13×R =932,解得R =3,故选C.]12.已知函数f (x )=⎩⎪⎨⎪⎧-nsin πx2+2n ,x ∈[2n ,2n +,-n +1sin πx2+2n +2,x ∈[2n +1,2n +(n ∈N ),若数列{a m }满足a m =f (m )(m ∈N *),数列{a m }的前m 项和为S m ,则S 105-S 96=( )A .909B .910C .911D .912A [S 105-S 96=a 97+a 98+a 99+…+a 105=f (97)+f (98)+f (99)+…+f (105)=⎣⎢⎡⎦⎥⎤-972π+98+⎣⎢⎡⎦⎥⎤-982π+98+⎝ ⎛⎭⎪⎫sin 992π+100+⎝ ⎛⎭⎪⎫sin 1002π+100+⎣⎢⎡⎦⎥⎤-1012π+102+⎣⎢⎡⎦⎥⎤-1022π+102+⎝ ⎛⎭⎪⎫sin 1032π+104+⎝ ⎛⎭⎪⎫sin 1042π+104+⎣⎢⎡⎦⎥⎤-1052π+106=97+98+99+100+101+102+103+104+105=97+1052×9=909.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知菱形ABCD 的边长为2,∠ABC =60°,则BD →·CD →=________.[解析] BD →·CD →=(BA →+BC →)·BA →=BA 2→+BC →·BA →=22+2×2cos 60°=6. [答案] 614.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极小值10,则ba=________.[解析] 因为f ′(x )=3x 2+2ax +b ,由题意,得f ′(1)=0,所以3+2a +b =0,1+a+b -a 2-7a =10,解得⎩⎪⎨⎪⎧a =-2,b =1或⎩⎪⎨⎪⎧a =-6,b =9.又当⎩⎪⎨⎪⎧a =-6,b =9时,f ′(x )=3x2-12x +9,函数f (x )在x =1处取得极大值10;当⎩⎪⎨⎪⎧a =-2,b =1时,f ′(x )=3x 2-4x+1,函数f (x )在x =1处取得极小值10,所以⎩⎪⎨⎪⎧a =-2,b =1,即b a 的值为-12.[答案] -1215.在(0,8)上随机取一个数m ,则事件“直线x +y -1=0与圆(x -3)2+(y -4)2=m 2没有公共点”发生的概率为________.[解析] 因为m ∈(0,8),直线x +y -1=0与圆(x -3)2+(y -4)2=m 2没有公共点,所以⎩⎪⎨⎪⎧0<m <8,|3+4-1|2>m ,解得0<m <32,所以所求概率P =328.[答案]32816.已知x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +2≥0x -2y -2≤0x +y -2≤0,若z =x -ay (a >0)的最大值为4,则a =________.[解析] 作出不等式组表示的平面区域如图中阴影部分所示,则A (2,0),B (-2,-2).显然直线z =x -ay 过A 时不能取得最大值4,若直线z =x -ay 过点B 时取得最大值4,则-2+2a =4,解得a =3,此时,目标函数为z =x -3y ,作出直线x -3y =0,平移该直线,当直线经过点B 时,截距最小,此时,z 的最大值为4,满足条件.[答案] 3。
小题提速练(六) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若(1+i)+(2-3i)=a +b i(a ,b ∈R ,i 是虚数单位),则a ,b 的值分别等于( )A .3,-2B .3,2C .3,-3D .-1,4A [∵(1+i)+(2-3i)=a +b i , ∴a =3,b =-2,故选A.]2.设集合A ={y |y =2x,x ∈R },B ={x |x 2-1<0},则A ∪B 等于( )A .(-1,1)B .(0,1)C .(-1,+∞)D .(0,+∞)C [∵A ={y |y =2x ,x ∈R }=(0,+∞),B ={x |x 2-1<0}={x |-1<x <1},∴A ∪B =(-1,+∞),故选C.]3.(2017·广东惠州二模)下列函数中,与函数y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( ) A .y =1-x 2B .y =log 2|x |C .y =-1xD .y =x 3-1A [函数y =-3|x |为偶函数,在(-∞,0)上为增函数.选项B 中的函数是偶函数,但其单调性不符合;选项C 中的函数为奇函数,不符合要求;选项D 中的函数为非奇非偶函数,不符合要求.只有选项A 符合要求.故选A.]4.在△ABC 中,a =4,b =52,5cos(B +C )+3=0,则角B 的大小为( )【导学号:07804217】A.π6 B .π4C.π3D .56π A [由5cos(B +C )+3=0得cos A =35,则A ∈⎝⎛⎭⎪⎫0,π2,sin A =45,445=52sin B ,sin B =12.又a >b ,B 必为锐角,所以B =π6.]5.已知m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中真命题的个数是( )①若m ⊥α,m ⊥β,则α∥β; ②若m ∥n ,m ⊥α,则n ⊥α; ③若m ∥α,α∩β=n ,则m ∥n ; ④若m ⊥α,m ⊂β,则α⊥β. A .1 B .2 C .3D .4C [对于①,由于垂直于同一条直线的两个平面互相平行,故①为真命题;对于②,两条平行线中的一条直线垂直于一个平面,则另一条也垂直于这个平面,故②为真命题;对于③,直线m 与直线n 可能异面,也可能平行,故③为假命题;对于④,由面面垂直的判定定理可知④为真命题.故选C.]6.某四面体的三视图如图15所示,其中正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中的最大面的面积为( )图15A .2 2B .4C .2 3D .2 6C [将几何体放在正方体中考虑,可知该几何体为三棱锥S ABD ,它的四个面中面SBD 的面积最大,三角形SBD 是边长为22的等边三角形,所以此四面体的四个面中的最大面的面积为34×8=2 3.] 7.函数f (x )=A sin(ωx +φ)(A >0,ω>0)的最小正周期为π,其图象关于直线x =π3对称,则|φ|的最小值为( ) A.π12 B .π6C.5π6D .5π12B [由题意,得ω=2,所以f (x )=A sin(2x +φ).因为函数f (x )的图象关于直线x=π3对称,所以2×π3+φ=k π+π2(k ∈Z ),即φ=k π-π6(k ∈Z ),当k =0时,|φ|取得最小值π6,故选B.]8.已知A ,B 是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,若在双曲线上存在点P 满足2|PA →+PB →|≤|AB →|,则双曲线C 的离心率e 的取值范围是( ) A .1<e ≤2 B .e ≥2 C .1<e ≤ 2D .e ≥ 2B [设点P 是双曲线左支上的点,并设双曲线左顶点为E ,则2|PA →+PB →|≤|AB →|,可化为4|PO →|≤2c (2c 为双曲线的焦距),|PO →|≤12c ,易证|PO →|≥a ,于是a ≤12c ,所以e ≥2.故选B.]9.若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,+∞ B .⎣⎢⎡⎭⎪⎫-12,+∞C .(0,+∞)D .[0,+∞)D [f ′(x )=1x +2ax =2ax 2+1x(x >0),根据题意有f ′(x )≥0(x >0)恒成立,所以2ax2+1≥0(x >0)恒成立,即2a ≥-1x2(x >0)恒成立,所以a ≥0,故实数a 的取值范围为[0,+∞).故选D.]10.从1,2,3,4,5中挑出三个不同数字组成一个五位数,则其中有两个数字各用两次(例如,12332)的概率为( )【导学号:07804218】A.25 B .35 C.47D .57B [从1,2,3,4,5中挑出三个不同数字组成一个五位数,共有C 35(C 13C 35A 22+C 13C 15C 24C 22)=1 500(种)不同选法,其中有两个数字各用两次的选法有C 35C 13C 15C 24C 22=900(种),所以所求概率P =9001 500=35.]11.如图16所示,ABCD A 1B 1C 1D 1是棱长为1的正方体,S ABCD 是高为1的正四棱锥,若点S ,A 1,B 1,C 1,D 1在同一个球面上,则该球的表面积为( )图16A.916π B .2516πC.4916π D .8116πD [连接AC ,BD 交于点G ,连接A 1C 1,B 1D 1交于点G 1,易知S ,G ,G 1在同一直线上,连接SG 1.设O 为球心,OG 1=x ,连接OB 1,则OB 1=SO =2-x ,由正方体的性质知B 1G 1=22, 则在Rt△OB 1G 1中,OB 21=G 1B 21+OG 21,即(2-x )2=x 2+⎝ ⎛⎭⎪⎫22, 解得x =78,所以球的半径R =OB 1=98,所以球的表面积S =4πR 2=8116π.]12.已知椭圆C :x 23+y 2=1,设直线l 与椭圆C 交于A ,B 两点,坐标原点O 到直线l 的距离为32,则△AOB 面积的最大值为( ) A.34B .32C. 3 D .2 3B [设A (x 1,y 1),B (x 2,y 2). (1)当AB ⊥x 轴时,|AB |= 3.(2)当AB 与x 轴不垂直时,设直线AB 的方程为y =kx +m . 由已知得|m |1+k2=32,则m 2=34(k 2+1). 把y =kx +m 代入椭圆方程,整理得(3k 2+1)x 2+6kmx +3m 2-3=0, 所以x 1+x 2=-6km 3k 2+1,x 1x 2=3m 2-13k 2+1. 所以|AB |2=(1+k 2)(x 2-x 1)2=(1+k 2)·⎣⎢⎡⎦⎥⎤36k 2m23k 2+12-12m 2-13k 2+1=12k 2+13k 2+1-m 23k 2+12=3k 2+19k 2+13k 2+12=3+12k29k 4+6k 2+1. 当k ≠0时,|AB |2=3+129k 2+1k2+6≤3+122×3+6=4, 当且仅当9k 2=1k 2,即k =±33时等号成立.综上所述|AB |max =2,所以当|AB |最大时, △AOB 面积取最大值S =12×|AB |max ×32=32.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.某校1 000名高三学生参加了一次数学考试,这次考试考生的分数服从正态分布N (90,σ2).若分数在(70,110]内的概率为0.7,估计这次考试分数不超过70的人数为________.[解析] 记考试成绩为ξ,则考试成绩的正态曲线关于直线ξ=90对称.因为P (70<ξ≤110)=0.7,所以P (ξ≤70)=P (ξ>110)=12×(1-0.7)=0.15,所以这次考试分数不超过70的人数为1 000×0.15=150. [答案] 15014.在矩形ABCD 中,AB =1,AD =3,P 为矩形内一点,且|AP →|=32,若AP →=λAB →+μAD →(λ,μ∈R ),则λ+3μ的最大值为________.[解析]以A为原点,AB所在直线为x轴,AD所在直线为y轴建立如图所示的平面直角坐标系,则A(0,0),B(1,0),C(1,3),D(0,3).设P(x,y),则AP→=(x,y),AB→=(1,0),AD→=(0,3).由AP→=λAB→+μAD→(λ,μ∈R),得⎩⎨⎧x=λ,y=3μ.又因为⎩⎪⎨⎪⎧0≤x≤1,0≤y≤32,x2+y2=34,所以λ+3μ=x+y≤2x2+y2=62⎝⎛⎭⎪⎫当且仅当x=y=64时取得最大值.[答案]6215.已知x,y满足⎩⎪⎨⎪⎧y≥x,x+y≤2,x≥a,若z=2x+y的最大值是最小值的3倍,则a的值是________.[解析]画出⎩⎪⎨⎪⎧y≥x,x+y≤2,x≥a表示的可行域如图所示:由⎩⎪⎨⎪⎧y=x,x+y=2得A(1,1),由⎩⎪⎨⎪⎧x=a,y=x得B(a,a).当直线z=2x+y过点A(1,1)时,目标函数z=2x+y取得最大值,最大值为3;当直线z=2x+y过点B(a,a)时,目标函数z=2x+y取得最小值,最小值为3a.因为3=3×3a,所以a=13.[答案]1316.已知△ABC 中,角A ,32B ,C 成等差数列,且△ABC 的面积为1+2,则AC 边长的最小值是________.【导学号:07804219】[解析] 设内角A ,B ,C 所对的边分别为a ,b ,c . ∵A ,32B ,C 成等差数列,∴A +C =3B . 又∵A +B +C =π, ∴B =π4.由S △ABC =12ac sin B =1+2,得ac =2×(2+2).∵b 2=a 2+c 2-2ac cos B =a 2+c 2-2ac ≥(2-2)ac =4,当且仅当a =c 时,等号成立,∴b ≥2,∴b 的最小值为2. [答案] 2。