2019届高三数学人教版一轮训练:第十二篇第1节 坐标系 Word版含解析
- 格式:doc
- 大小:162.50 KB
- 文档页数:4
第1节 坐标系最新考纲 1.了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况;2.了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化;3.能在极坐标系中给出简单图形表示的极坐标方程.知 识 梳 理1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换. 2.极坐标系与点的极坐标(1)极坐标系:如图所示,在平面内取一个定点O (极点);自极点O 引一条射线Ox (极轴);再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角.3.极坐标与直角坐标的互化4.圆的极坐标方程5.直线的极坐标方程(1)直线l 过极点,且极轴到此直线的角为α,则直线l 的极坐标方程是θ=α(ρ∈R ). (2)直线l 过点M (a ,0)且垂直于极轴,则直线l 的极坐标方程为ρcos_θ=a .(3)直线过M ⎝⎛⎭⎪⎫b ,π2且平行于极轴,则直线l 的极坐标方程为ρsin_θ=b .诊 断 自 测1.思考辨析(在括号内打“√”或“×”)(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( )(2)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是⎝ ⎛⎭⎪⎫2,-π3.( )(3)在极坐标系中,曲线的极坐标方程不是唯一的.( ) (4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线.( ) 答案 (1)× (2)√ (3)√ (4)×2.(选修4-4P15习题T3改编)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( ) A.ρ=1cos θ+sin θ,0≤θ≤π2B.ρ=1cos θ+sin θ,0≤θ≤π4C.ρ=cos θ+sin θ,0≤θ≤π2D.ρ=cos θ+sin θ,0≤θ≤π4解析 ∵y =1-x (0≤x ≤1),∴ρsin θ=1-ρcos θ(0≤ρcos θ≤1); ∴ρ=1sin θ+cos θ⎝ ⎛⎭⎪⎫0≤θ≤π2.答案 A3.在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为________.解析 由ρ=2sin θ,得ρ2=2ρsin θ,所以曲线C 的直角坐标方程为x 2+y 2-2y =0.答案 x 2+y 2-2y =04.(2017·北京卷)在极坐标系中,点A 在圆ρ2-2ρcos θ-4ρsin θ+4=0上,点P 的坐标为(1,0),则|AP |的最小值为________. 解析 由ρ2-2ρcos θ-4ρsin θ+4=0,得x 2+y 2-2x -4y +4=0,即(x -1)2+(y -2)2=1,圆心坐标为C (1,2),半径长为1. ∵点P 的坐标为(1,0),∴点P 在圆C 外. 又∵点A 在圆C 上,∴|AP |min =|PC |-1=2-1=1. 答案 15.已知直线l 的极坐标方程为2ρsin ⎝ ⎛⎭⎪⎫θ-π4=2,点A 的极坐标为A ⎝⎛⎭⎪⎫22,7π4,则点A 到直线l 的距离为________.解析 由2ρsin ⎝ ⎛⎭⎪⎫θ-π4=2,得2ρ⎝⎛⎭⎪⎫22sin θ-22cos θ=2,∴y -x =1.由A ⎝ ⎛⎭⎪⎫22,7π4,得点A 的直角坐标为(2,-2).∴点A 到直线l 的距离d =|2+2+1|2=522.答案522考点一 平面直角坐标系中的伸缩变换【例1】 求双曲线C :x 2-y 264=1经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 变换后所得曲线C ′的焦点坐标.解 设曲线C ′上任意一点P ′(x ′,y ′),由⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,得⎩⎪⎨⎪⎧x =x ′3,y =2y ′,代入曲线C :x 2-y 264=1,得x ′29-y ′216=1,即曲线C ′的方程为x 29-y 216=1,因此曲线C ′的焦点F 1(-5,0),F 2(5,0).规律方法 1.平面上的曲线y =f (x )在变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下的变换方程的求法是将⎩⎪⎨⎪⎧x =x ′λ,y =y ′μ代入y =f (x ),整理得y ′=h (x ′)为所求.2.解答该类问题应明确两点:一是根据平面直角坐标系中的伸缩变换公式的意义与作用;二是明确变换前的点P (x ,y )与变换后的点P ′(x ′,y ′)的坐标关系,用方程思想求解.【训练1】 在平面直角坐标系中,已知伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y .(1)求点A ⎝ ⎛⎭⎪⎫13,-2经过φ变换所得点A ′的坐标;(2)求直线l :y =6x 经过φ变换后所得直线l ′的方程.解 (1)设点A ′(x ′,y ′),由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,得⎩⎪⎨⎪⎧x ′=3x ,y ′=y 2,∴⎩⎪⎨⎪⎧x ′=13×3=1,y ′=-22=-1.∴点A ′的坐标为(1,-1).(2)设P ′(x ′,y ′)是直线l ′上任意一点.由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,得⎩⎪⎨⎪⎧x =x ′3,y =2y ′.代入y =6x ,得2y ′=6·x ′3=2x ′,即y ′=x ′,∴y =x 为所求直线l ′的方程. 考点二 极坐标与直角坐标的互化【例2-1】 在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=22.(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标. 解 (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 圆O 的直角坐标方程为:x 2+y 2=x +y ,即x 2+y 2-x -y =0,直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=22, 即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为:y -x =1,即x -y +1=0.(2)由⎩⎪⎨⎪⎧x 2+y 2-x -y =0,x -y +1=0,得⎩⎪⎨⎪⎧x =0,y =1,故直线l 与圆O 公共点的一个极坐标为⎝⎛⎭⎪⎫1,π2.【例2-2】 (2016·北京卷改编)在极坐标系中,已知极坐标方程C 1:ρcos θ-3ρsin θ-1=0,C 2:ρ=2cos θ.(1)求曲线C 1,C 2的直角坐标方程,并判断两曲线的形状; (2)若曲线C 1,C 2交于A ,B 两点,求两交点间的距离. 解 (1)由C 1:ρcos θ-3ρsin θ-1=0, ∴x -3y -1=0,表示一条直线. 由C 2:ρ=2cos θ,得ρ2=2ρcos θ. ∴x 2+y 2=2x ,即(x -1)2+y 2=1. 所以C 2是圆心为(1,0),半径r =1的圆. (2)由(1)知,点(1,0)在直线x -3y -1=0上, 所以直线C 1过圆C 2的圆心.因此两交点A ,B 的连线段是圆C 2的直径. 所以两交点A ,B 间的距离|AB |=2r =2.规律方法 1.进行极坐标方程与直角坐标方程互化的关键是抓住互化公式;x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=yx(x ≠0).2.进行极坐标方程与直角坐标方程互化时,要注意ρ,θ的取值范围及其影响;要善于对方程进行合理变形,并重视公式的逆向与变形使用;要灵活运用代入法和平方法等技巧. 【训练2】 (1)在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.已知点A 的极坐标为⎝ ⎛⎭⎪⎫2,π4,直线的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π4=a ,且点A 在直线上,求a 的值及直线的直角坐标方程.(2)把曲线C 1:x 2+y 2-8x -10y +16=0化为极坐标方程.解 (1)∵点A ⎝ ⎛⎭⎪⎫2,π4在直线ρcos ⎝⎛⎭⎪⎫θ-π4=a 上, ∴a =2cos ⎝ ⎛⎭⎪⎫π4-π4=2,所以直线的方程可化为ρcos θ+ρsin θ=2, 从而直线的直角坐标方程为x +y -2=0.(2)将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0,得ρ2-8ρcos θ-10ρsin θ+16=0,所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. 考点三 曲线极坐标方程的应用【例3-1】 (2017·全国Ⅱ卷)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)设点M 为曲线C 1上的动点,点P 在线段OM 上,且|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎪⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.解 (1)设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0). 由题设知|OP |=ρ,|OM |=ρ1=4cos θ.由|OM |·|OP |=16得C 2的极坐标方程为ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0).由题设知|OA |=2,ρB =4cos α,于是△OAB 的面积 S =12|OA |·ρB ·sin∠AOB =4cos α·⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3 =2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2α-π3-32≤2+ 3.当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3.【例3-2】 (2016·全国Ⅰ卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解 (1)消去t ,得C 1的普通方程x 2+(y -1)2=a 2, ∴曲线C 1表示以点(0,1)为圆心,a 为半径的圆. 将x =ρcos θ,y =ρsin θ代入C 1的普通方程中, 得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0. (2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去),a =1. 当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.规律方法 1.(1)例3-1中利用极径、极角的几何意义,表示△AOB 的面积,借助三角函数的性质求最值优化了解题过程.(2)例3-2第(1)题将曲线C 1的参数方程先化成普通方程,再化为极坐标方程,考查学生的转化与化归能力.第(2)题中关键是理解极坐标方程的含义,消去ρ,建立与直线C 3:θ=α0的联系,进而求a .2.由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.【训练3】 (2018·太原一模)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2cos φ,y =sin φ(φ为参数),曲线C 2:x 2+y 2-2y =0.以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,射线l :θ=α(ρ≥0)与曲线C 1,C 2分别交于点A ,B (均异于原点O ). (1)求曲线C 1,C 2的极坐标方程;(2)当0<α<π2时,求|OA |2+|OB |2的取值范围.解 (1)C 1的普通方程为x 22+y 2=1,C 1的极坐标方程为ρ2cos 2 θ+2ρ2sin 2 θ-2=0,C 2的极坐标方程为ρ=2sin θ.(2)联立θ=α(ρ≥0)与C 1的极坐标方程得|OA |2=21+sin 2α, 联立θ=α(ρ≥0)与C 2的极坐标方程得|OB |2=4sin 2α,则|OA |2+|OB |2=21+sin 2α+4sin 2α=21+sin 2α+4(1+sin 2α)-4. 令t =1+sin 2α,则|OA |2+|OB |2=2t+4t -4,当0<α<π2时,t ∈(1,2).设f (t )=2t+4t -4,易得f (t )在(1,2)上单调递增,∴2<|OA |2+|OB |2<5,故|OA |2+|OB |2的取值范围是(2,5).基础巩固题组 (建议用时:50分钟)1.(2017·天津卷改编)在极坐标系中,已知直线4ρcos ⎝ ⎛⎭⎪⎫θ-π6+1=0与圆ρ=2sin θ,试判定直线与圆的位置关系.解 由4ρcos ⎝ ⎛⎭⎪⎫θ-π6+1=0得23ρcos θ+2ρsin θ+1=0,故直线的直角坐标方程为23x +2y +1=0.由ρ=2sin θ得ρ2=2ρsin θ,故圆的直角坐标方程为x 2+y 2=2y ,则x 2+(y -1)2=1. 圆心为(0,1),半径为r =1.∵圆心到直线23x +2y +1=0的距离d =|2×1+1|(23)2+22=34<1, ∴直线与圆相交,有两个公共点.2.以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=21-sin θ.(1)将曲线的极坐标方程化为直角坐标方程;(2)过极点O 作直线l 交曲线于点P ,Q ,若|OP |=3|OQ |,求直线l 的极坐标方程.解 (1)∵ρ=x 2+y 2,ρsin θ=y , ∴ρ=21-sin θ化为ρ-ρsin θ=2,∴曲线的直角坐标方程为x 2=4y +4.(2)设直线l 的极坐标方程为θ=θ0(ρ∈R ), 根据题意21-sin θ0=3·21-sin (θ0+π),解得θ0=π6或θ0=5π6,直线l 的极坐标方程θ=π6(ρ∈R )或θ=5π6(ρ∈R ).3.(2018·衡水模拟)在极坐标系中,已知曲线C 1:ρ=2与C 2:ρcos ⎝ ⎛⎭⎪⎫θ-π4=2交于两点A ,B .(1)求两交点的极坐标;(2)求线段AB 的垂直平分线l 的极坐标方程. 解 (1)C 1:ρ=2的直角坐标方程为x 2+y 2=4,C 2:ρcos ⎝ ⎛⎭⎪⎫θ-π4=2的方程即ρcos θ+ρsin θ=2,化为直角坐标方程得x +y -2=0.由⎩⎪⎨⎪⎧x 2+y 2=4,x +y -2=0,解得⎩⎪⎨⎪⎧x =2,y =0或⎩⎪⎨⎪⎧x =0,y =2, 所以两交点为(0,2),(2,0),化为极坐标为⎝⎛⎭⎪⎫2,π2,(2,0).(2)易知直线l 经过点(0,0)及线段AB 的中点(1,1),所以其方程为y =x ,化为极坐标方程得θ=π4(ρ∈R ).4.(2018·西安调研)在直角坐标系xOy中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ= 2sin θ,C 3:ρ=23cos θ. (1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.解 (1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎪⎫32,32. (2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0), 其中0≤α<π.因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α). 所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.5.在极坐标系中,已知直线l 的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4 =1,圆C 的圆心的极坐标是C ⎝⎛⎭⎪⎫1,π4,圆的半径为1.(1)求圆C 的极坐标方程; (2)求直线l 被圆C 所截得的弦长.解 (1)设O 为极点,OD 为圆C 的直径,A (ρ,θ)为圆C 上的一个动点, 则∠AOD =π4-θ或∠AOD =θ-π4,|OA |=|OD |cos ⎝ ⎛⎭⎪⎫π4-θ或|OA |=|OD |cos ⎝ ⎛⎭⎪⎫θ-π4.所以圆C 的极坐标方程为ρ=2cos ⎝⎛⎭⎪⎫θ-π4. (2)由ρsin ⎝ ⎛⎭⎪⎫θ+π4=1,得22ρ(sin θ+cos θ)=1,∴直线l 的直角坐标方程为x +y -2=0, 又圆心C 的直角坐标为⎝⎛⎭⎪⎫22,22满足直线l 的方程, ∴直线l 过圆C 的圆心,故直线被圆所截得的弦长为直径2.能力提升题组 (建议用时:30分钟)6.(2015·全国Ⅰ卷)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积. 解 (1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2, C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0, 得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,则易得△C 2MN 为直角三角形,所以△C 2MN 的面积为S =12×12=12. 7.(2018·合肥二模)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4cos θ.(1)求出圆C 的直角坐标方程;(2)已知圆C 与x 轴相交于A ,B 两点,直线l :y =2x 关于点M (0,m )(m ≠0)对称的直线为l ′.若直线l ′上存在点P 使得∠APB =90°,求实数m 的最大值.解 (1)由ρ=4cos θ得ρ2=4ρcos θ,故x 2+y 2-4x =0,即圆C 的直角坐标方程为(x -2)2+y 2=4.(2)l :y =2x 关于点M (0,m )的对称直线l ′的方程为y =2x +2m .依题设,易知AB 为圆C 的直径,故直线l ′上存在点P 使得∠APB =90°的充要条件是直线l ′与圆C 有公共点. 因此|4+2m |5≤2,于是,实数m 的最大值为5-2. 8.已知曲线C 1:x +3y =3和C 2:⎩⎨⎧x =6cos φ,y =2sin φ(φ为参数).以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)把曲线C 1和C 2的方程化为极坐标方程;(2)设C 1与x ,y 轴交于M ,N 两点,且线段MN 的中点为P .若射线OP 与C 1,C 2交于P ,Q 两点,求P ,Q 两点间的距离.解 (1)曲线C 1化为ρcos θ+3ρsin θ= 3.∴ρsin ⎝ ⎛⎭⎪⎫θ+π6=32.曲线C 2化为x 26+y 22=1(*)将x =ρcos θ,y =ρsin θ代入(*)式得ρ26cos 2θ+ρ22sin 2θ=1,即ρ2(cos 2θ+3sin 2θ)=6.∴曲线C 2的极坐标方程为ρ2=61+2sin 2θ.(2)∵M (3,0),N (0,1),∴P ⎝ ⎛⎭⎪⎫32,12,∴OP 的极坐标方程为θ=π6,把θ=π6代入ρsin ⎝ ⎛⎭⎪⎫θ+π6=32,得ρ1=1,P ⎝ ⎛⎭⎪⎫1,π6. 把θ=π6代入ρ2=61+2sin 2θ,得ρ2=2,Q ⎝ ⎛⎭⎪⎫2,π6.∴|PQ |=|ρ2-ρ1|=1,即P ,Q 两点间的距离为1.。
12.1 坐标系[基础送分 提速狂刷练]1.(2018·延庆县期末)在极坐标方程中,与圆ρ=4sin θ相切的一条直线的方程是( )A .ρsin θ=2B .ρcos θ=2C .ρcos θ=4D .ρcos θ=-4 答案 B解析 ρ=4sin θ的普通方程为x 2+(y -2)2=4, 选项B :ρcos θ=2的普通方程为x =2.圆x 2+(y -2)2=4与直线x =2显然相切.故选B.2.(2017·渭滨区月考)在极坐标系中,A ⎝ ⎛⎭⎪⎫5,π2,B ⎝ ⎛⎭⎪⎫-8,11π6,C ⎝ ⎛⎭⎪⎫3,7π6,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .钝角三角形 答案 C解析 B ⎝⎛⎭⎪⎫8,5π6,∴OA =5,OB =8,OC =3,∴∠AOB =5π6-π2=π3,∠BOC =7π6-5π6=π3,∠AOC =7π6-π2=2π3,在△AOB 中,由余弦定理可得AB =25+64-2×5×8×12=7,同理可得,BC =64+9-2×8×3×12=7,AC =25+9-2×5×3×⎝ ⎛⎭⎪⎫-12=7, ∴AB =BC =AC ,∴△ABC 是等边三角形.故选C.3.牛顿在1736年出版的《流数术和无穷级数》中,第一个将极坐标系应用于表示平面上的任何一点,牛顿在书中验证了极坐标和其他九种坐标系的转换关系.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎪⎫θ-π4=22. (1)求O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 的公共点的极坐标. 解 (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 故圆O 的直角坐标方程为x 2+y 2-x -y =0,直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为x -y +1=0. (2)由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得⎩⎪⎨⎪⎧x 2+y 2-x -y =0,x -y +1=0,解得⎩⎪⎨⎪⎧x =0,y =1,即圆O 与直线l 在直角坐标系下的公共点为(0,1),将(0,1)转化为极坐标为⎝⎛⎭⎪⎫1,π2.4.(2018·郑州模拟)在极坐标系中,曲线C 1,C 2的极坐标方程分别为ρ=-2cos θ,ρcos ⎝⎛⎭⎪⎫θ+π3=1.(1)求曲线C 1和C 2的公共点的个数;(2)过极点作动直线与曲线C 2相交于点Q ,在OQ 上取一点P ,使|OP |·|OQ |=2,求点P 的轨迹,并指出轨迹是什么图形.解 (1)C 1的直角坐标方程为(x +1)2+y 2=1,它表示圆心为(-1,0),半径为1的圆,C 2的直角坐标方程为x -3y -2=0,所以曲线C 2为直线,由于圆心到直线的距离为d =32>1,所以直线与圆相离,即曲线C 1和C 2没有公共点.(2)设Q (ρ0,θ0),P (ρ,θ),则⎩⎪⎨⎪⎧ρρ0=2,θ=θ0,即⎩⎪⎨⎪⎧ρ0=2ρ,θ0=θ.①因为点Q (ρ0,θ0)在曲线C 2上, 所以ρ0cos ⎝ ⎛⎭⎪⎫θ0+π3=1,②将①代入②,得2ρcos ⎝⎛⎭⎪⎫θ+π3=1,即ρ=2cos ⎝ ⎛⎭⎪⎫θ+π3为点P 的轨迹方程,化为直角坐标方程为⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y +322=1,因此点P 的轨迹是以⎝ ⎛⎭⎪⎫12,-32为圆心,1为半径的圆.5.(2017·湖北模拟)在极坐标系中,曲线C :ρ=2a cos θ(a >0),l :ρcos ⎝ ⎛⎭⎪⎫θ-π3=32,C 与l 有且仅有一个公共点. (1)求a ;(2)O 为极点,A ,B 为曲线C 上的两点,且∠AOB =π3,求|OA |+|OB |的最大值.解 (1)曲线C :ρ=2a cos θ(a >0),变形ρ2=2a ρcos θ, 化为x 2+y 2=2ax ,即(x -a )2+y 2=a 2. ∴曲线C 是以(a,0)为圆心,a 为半径的圆.由l :ρcos ⎝ ⎛⎭⎪⎫θ-π3=32,展开为12ρcos θ+32ρsin θ=32,∴l 的直角坐标方程为x +3y -3=0.由题可知直线l 与圆C 相切,即|a -3|2=a ,解得a =1.(2)不妨设A 的极角为θ,B 的极角为θ+π3,则|OA |+|OB |=2cos θ+2cos ⎝ ⎛⎭⎪⎫θ+π3=3cos θ-3sin θ =23cos ⎝⎛⎭⎪⎫θ+π6,当θ=-π6时,|OA |+|OB |取得最大值2 3.6.(2018·沈阳模拟)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.已知圆C 的极坐标方程为ρ2-42ρcos ⎝⎛⎭⎪⎫θ-π4+6=0.(1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程; (2)若点P (x ,y )在圆C 上,求x +y 的最大值和最小值. 解 (1)由ρ2-42ρcos ⎝ ⎛⎭⎪⎫θ-π4+6=0,得ρ2-42ρ⎝ ⎛⎭⎪⎫cos θcos π4+sin θsin π4+6=0,即ρ2-42ρ⎝⎛⎭⎪⎫22cos θ+22sin θ+6=0, ρ2-4ρcos θ-4ρsin θ+6=0,即x 2+y 2-4x -4y +6=0为所求圆的普通方程, 整理为圆的标准方程(x -2)2+(y -2)2=2,令x -2=2cos α,y -2=2sin α.得圆的参数方程为⎩⎨⎧x =2+2cos α,y =2+2sin α(α为参数).(2)由(1)得,x +y =4+2(cos α+sin α)=4+2sin ⎝⎛⎭⎪⎫α+π4,∴当sin ⎝ ⎛⎭⎪⎫α+π4=1时,x +y 的最大值为6,当sin ⎝ ⎛⎭⎪⎫α+π4=-1时,x +y 的最小值为2. 故x +y 的最大值和最小值分别是6和2.。
第1课时坐标系1.在同一平面直角坐标系中,经过伸缩变换⎩⎪⎨⎪⎧x′=5x ,y′=3y 后,曲线C 变为曲线x ′2+y ′2=1,则曲线C 的方程为()A .25x 2+9y 2=1B .9x 2+25y 2=1 C .25x +9y =1 D.x225+y29=1答案 A2.化极坐标方程ρ2cos θ-ρ=0为直角坐标方程为() A .x 2+y 2=0或y =1 B .x =1 C .x 2+y 2=0或x =1 D .y =1 答案 C3.在极坐标系中,极坐标为(2,π6)的点到极点和极轴的距离分别为()A .1,1B .1,2C .2,1D .2,2 答案 C解析 点(ρ,θ)到极点和极轴的距离分别为ρ,ρ|sin θ|,所以点(2,π6)到极点和极轴的距离分别为2,2sin π6=1.4.在极坐标系中,点(2,-π3)到圆ρ=-2cos θ的圆心的距离为() A .2 B.4+π29C.9+π29D.7答案 D解析 在直角坐标系中,点(2,-π3)的直角坐标为(1,-3),圆ρ=-2cos θ的直角坐标方程为x 2+y 2=-2x ,即(x +1)2+y 2=1,圆心为(-1,0),所以所求距离为(1+1)2+(-3-0)2=7.故选D. 5.(2017·皖北协作区联考)在极坐标系中,直线ρ(3cos θ-sin θ)=2与圆ρ=4sin θ的交点的极坐标为()A .(2,π6)B .(2,π3)C .(4,π6)D .(4,π3)答案 A解析 ρ(3cos θ-sin θ)=2可化为直角坐标方程3x -y =2,即y =3x -2.ρ=4sin θ可化为x 2+y 2=4y ,把y =3x -2代入x 2+y 2=4y ,得4x 2-83x +12=0,即x 2-23x +3=0,所以x =3,y =1.所以直线与圆的交点坐标为(3,1),化为极坐标为(2,π6),故选A. 6.在极坐标系中,与圆ρ=4sin θ相切的一条直线的方程是() A .ρsin θ=2 B .ρcos θ=2 C .ρcos θ=4 D .ρcos θ=-4 答案 B解析 方法一:圆的极坐标方程ρ=4sin θ即ρ2=4ρsin θ,所以直角坐标方程为x 2+y 2-4y =0. 选项A ,直线ρsin θ=2的直角坐标方程为y =2,代入圆的方程,得x 2=4,∴x =±2,不符合题意;选项B ,直线ρcos θ=2的直角坐标方程为x =2,代入圆的方程,得(y -2)2=0,∴y =2,符合题意.同理,以后选项都不符合题意.方法二:如图,⊙C 的极坐标方程为ρ=4sin θ,CO ⊥Ox ,OA 为直径,|OA|=4,直线l 和圆相切, l 交极轴于点B(2,0),点P(ρ,θ)为l 上任意一点, 则有cos θ=|OB||OP|=2ρ,得ρcos θ=2.7.在极坐标系中,曲线ρ2-6ρcos θ-2ρsin θ+6=0与极轴交于A ,B 两点,则A ,B 两点间的距离等于()A.3B .2 3 C .215D .4 答案 B解析 化极坐标方程为直角坐标方程得x 2+y 2-6x -2y +6=0,易知此曲线是圆心为(3,1),半径为2的圆,如图所示.可计算|AB|=2 3.8.在极坐标系中,圆ρ=2cos θ的圆心的极坐标是________,它与方程θ=π4(ρ>0)所表示的图形的交点的极坐标是________. 答案 (1,0),(2,π4)解析 ρ=2cos θ表示以点(1,0)为圆心,1为半径的圆,故圆心的极坐标为(1,0). 当θ=π4时,ρ=2,故交点的极坐标为(2,π4).9.(2018·广州综合测试一)在极坐标系中,直线ρ(sin θ-cos θ)=a 与曲线ρ=2cos θ-4sin θ相交于A ,B 两点,若|AB|=23,则实数a 的值为________. 答案 -5或-1解析 将直线ρ(sin θ-cos θ)=a 化为普通方程,得y -x =a ,即x -y +a =0,将曲线ρ=2cos θ-4sin θ的方程化为普通方程,得x 2+y 2=2x -4y ,即(x -1)2+(y +2)2=5,圆心坐标为(1,-2),半径长为r = 5.设圆心到直线AB 的距离为d ,由勾股定理可得d =r2-(|AB|2)2=5-(232)2=2,而d =|1-(-2)+a|12+(-1)2=|a +3|2=2,所以|a +3|=2,解得a =-5或a =-1.10.(2017·天津,理)在极坐标系中,直线4ρcos(θ-π6)+1=0与圆ρ=2sin θ的公共点的个数为________. 答案 2解析 依题意,得4ρ(32cos θ+12sin θ)+1=0,即23ρcos θ+2ρsin θ+1=0,所以直线的直角坐标方程为23x +2y +1=0.由ρ=2sin θ,得ρ2=2ρsin θ,所以圆的直角坐标方程为x 2+y 2=2y ,即x 2+(y -1)2=1,其圆心(0,1)到直线23x +2y +1=0的距离d =34<1,则直线与圆的公共点的个数是2.11.在极坐标系中,曲线ρ2-10ρcos θ-2ρsin θ+10=0与极轴交于M 、N 两点,则|MN|=________. 答案 215解析 ∵M、N 两点在极轴上,∴其极角θ=0°,代入方程中得ρ2-10ρ+10=0, ∴(ρ-5)2=15,ρ=5±15,令M 、N 对应极径为ρM 和ρN ,则|MN|=|ρM -ρN |=215.12.(2018·河北冀州中学月考)直线2ρcos θ=1与圆ρ=2cos θ相交的弦长为________. 答案3解析 直线的方程为2x =1,圆的方程为x 2+y 2-2x =0,圆心为(1,0),半径r =1,圆心到直线的距离为d =|2-1|22+0=12.设所求的弦长为l ,则12=(12)2+(l 2)2,解得l = 3.13.在极坐标系中,设曲线C 1:ρ=2sin θ与C 2:ρ=2cos θ的交点分别为A ,B ,则线段AB 的垂直平分线的极坐标方程为________.答案 ρsin θ+ρcos θ=1(或ρsin(θ+π4)=22)解析 曲线C 1:ρ=2sin θ的直角坐标方程为x 2+y 2-2y =0,曲线C 2:ρ=2cos θ的直角坐标方程为x 2+y2-2x =0,所以AB 的方程为-x +y =0.又易知AB 的垂直平分线斜率为-1,经过圆C 1的圆心(0,1),所以AB的垂直平分线的方程为x +y -1=0,化为极坐标方程为ρsin θ+ρcos θ=1,或化成ρsin(θ+π4)=22.14.在极坐标系中,直线ρsin(θ+π4)=2被圆ρ=4截得的弦长为________.答案 4 3解析 直线ρsin(θ+π4)=2的直角坐标方程为x +y -22=0,圆ρ=4的直角坐标方程为x 2+y 2=16.圆心的坐标是(0,0),半径是4,圆心到直线的距离d =|-22|12+12=2,所以直线ρsin(θ+π4)=2被圆ρ=4截得的弦长是242-22=4 3.15.(2018·广东肇庆一模)已知曲线C 的极坐标方程为ρ=2(ρ>0,0≤θ<2π),曲线C 在点(2,π4)处的切线为l ,以极点为坐标原点,以极轴为x 轴的正半轴建立直角坐标系,则l 的直角坐标方程为________. 答案 x +y -22=0解析 根据极坐标与直角坐标的转化公式可以得到曲线ρ=2⇒x 2+y 2=4,点(2,π4)⇒(2,2).因为点(2,2)在圆x 2+y 2=4上,故圆在点(2,2)处的切线方程为2x +2y =4⇒x +y -22=0,故填x +y -22=0.16.在直角坐标系xOy 中,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知圆C 的圆心的极坐标为(2,π4),半径r =2,点P 的极坐标为(2,π),过P 作直线l 交圆C 于A ,B 两点. (1)求圆C 的直角坐标方程; (2)求|PA|·|P B|的值.答案 (1)(x -1)2+(y -1)2=2(2)8 解析 (1)圆C 的圆心的极坐标C(2,π4), ∴x =2cos π4=1,y =2sin π4=1,∴圆C 的直角坐标方程为(x -1)2+(y -1)2=2.(2)点P 的极坐标为(2,π),化为直角坐标为P(-2,0). 当直线l 与圆C 相切于点D 时,则|PD|2=|PC|2-r 2=(-2-1)2+(0-1)2-(2)2=8. ∴|PA|·|PB|=|PD|2=8.17.(2018·河北唐山模拟)在极坐标系Ox 中,直线C 1的极坐标方程为ρsin θ=2,M 是C 1上任意一点,点P 在射线OM 上,且满足|OP|·|OM|=4,记点P 的轨迹为C 2. (1)求曲线C 2的极坐标方程;(2)求曲线C 2上的点到直线C 3:ρcos(θ+π4)=2距离的最大值.答案 (1)ρ=2sin θ(ρ≠0)(2)1+322解析 (1)设P(ρ,θ),M(ρ1,θ),依题意有 ρ1sin θ=2,ρρ1=4.消去ρ1,得曲线C 2的极坐标方程为 ρ=2sin θ(ρ≠0).(2)将C 2,C 3的极坐标方程化为直角坐标方程,得C 2:x 2+(y -1)2=1,C 3:x -y =2.C 2是以点(0,1)为圆心,以1为半径的圆,圆心到直线C 3的距离d =322,故曲线C 2上的点到直线C 3距离的最大值为1+322.18.(2017·广东珠海质检)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程是ρcos(θ-π4)=22,圆C 的极坐标方程是ρ=4sin θ.(1)求l 与C 交点的极坐标;(2)设P 为C 的圆心,Q 为l 与C 交点连线的中点,已知直线PQ 的参数方程是⎩⎪⎨⎪⎧x =3t +a ,y =b 23t +1(t 为参数),求a ,b 的值.答案 (1)(4,π2)或(22,π4)(2)a =-1b =2解析 (1)将ρ=4sin θ代入ρcos(θ-π4)=22,得sin θcos θ=cos 2θ,所以cos θ=0或tan θ=1,取θ=π2或θ=π4.再由ρ=4sin θ得ρ=4或ρ=2 2.所以l 与C 交点的极坐标是(4,π2)或(22,π4).(2)∵圆C 的极坐标方程是ρ=4sin θ,∴圆C 的直角坐标方程是x 2+(y -2)2=4.即P 点坐标为(0,2). 由(1)知l 与C 交点的直角坐标为(0,4),(2,2).即Q 点的直角坐标为(1,3).将PQ 的参数方程化为普通方程得y =b2(x -a)+1.将P ,Q 两点坐标代入,得⎩⎪⎨⎪⎧2=-ab2+1,3=b2(1-a )+1,解得a =-1,b =2.1.(2015·北京)在极坐标系中,点(2,π3)到直线ρ(cos θ+3sin θ)=6的距离为________.答案 1。
(北京专用)2019版高考数学一轮复习坐标系与参数方程第一节坐标系作业本理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((北京专用)2019版高考数学一轮复习坐标系与参数方程第一节坐标系作业本理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(北京专用)2019版高考数学一轮复习坐标系与参数方程第一节坐标系作业本理的全部内容。
第一节坐标系A组基础题组1。
在极坐标系中,圆ρ=2cos θ的半径为( )A. B。
1 C。
2 D.42.在极坐标系中,点到直线ρcos θ-ρsin θ-1=0的距离等于( )A.B。
C。
D。
23。
(2017北京海淀零模,4)在极坐标系中,圆ρ=2cos θ垂直于极轴的两条切线的方程分别为()A。
θ=0(ρ∈R)和ρcos θ=2B.θ=(ρ∈R)和ρcos θ=2C.θ=(ρ∈R)和ρcos θ=1D.θ=0(ρ∈R)和ρcos θ=14.已知点M的极坐标为,则将点M的极坐标化成直角坐标为( )A。
B。
C. D.5.在极坐标系中,曲线ρ=2cos θ是()A.过极点的直线B。
半径为2的圆C.关于极点对称的图形D。
关于极轴对称的图形6。
(2017北京海淀二模,9)在极坐标系中,极点到直线ρcos θ=1的距离为.7.在极坐标系中,直线ρsin θ=3被圆ρ=4sin θ截得的弦长为.8。
(2017北京顺义二模,12)在极坐标系中,圆ρ=-2cos θ的圆心C到直线2ρcos θ+ρsin θ—2=0的距离等于。
9。
在极坐标系中,设ρ>0,0≤θ〈2π,则曲线ρ=2与曲线ρsin θ=2交点的极坐标为.10.在极坐标系中,圆C的极坐标方程为ρ2-4ρcos—1=0,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,则在直角坐标系中,圆心C的坐标是。
选考部分第十二篇坐标系与参数方程(选修4—4)第1节坐标系【选题明细表】1.将圆x2+y2=1上每一点的横坐标变为原来的2倍,纵坐标变为原来的3倍,得曲线Γ.(1)写出Γ的参数方程;(2)设直线l:3x+2y-6=0与Γ的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.解:(1)设(x1,y1)为圆上的点,在已知变换下变为Γ上的点(x,y),依题意,得即由+=1,得()2+()2=1,即曲线Γ的方程为+=1.故Γ的参数方程为(t为参数).(2)由解得或不防设P1(2,0),P2(0,3),则线段P1P2的中点坐标为(1,),所求直线的斜率k=.于是所求直线方程为y-= (x-1),即4x-6y+5=0,化为极坐标方程,得4ρcos θ-6ρsin θ+5=0.2.在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求C1,C2的极坐标方程;(2)若直线C3的极坐标方程为θ= (ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.解:(1)因为x=ρcos θ,y=ρsin θ,所以C1的极坐标方程为ρcos θ=-2,C2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-3ρ+4=0,解得ρ1=2,ρ2=.故ρ1-ρ2=,即|MN|=.由于C2的半径为1,所以△C2MN的面积为.3.在极坐标系中,曲线C:ρ=2acos θ(a>0),l:ρcos(θ-)=,C与l有且仅有一个公共点.(1)求a;(2)O为极点,A,B为曲线C上的两点,且∠AOB=,求|OA|+|OB|的最大值.解:(1)曲线C:ρ=2acos θ(a>0),变形ρ2=2aρcos θ,化为x2+y2=2ax,即(x-a)2+y2=a2.所以曲线C是以(a,0)为圆心,a为半径的圆.由l:ρcos(θ-)=,展开为ρcos θ+ρsin θ=,所以l的直角坐标方程为x+y-3=0.由题可知直线l与圆C相切,即=a,解得a=1.(2)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cos θ+2cos(θ+)=3cos θ-sin θ=2cos(θ+), 当θ=-时,|OA|+|OB|取得最大值2.4. (2017·成都模拟)在直角坐标系xOy中,半圆C的直角坐标方程为(x-1)2+y2=1(0≤y≤1).以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求C的极坐标方程;(2)直线l的极坐标方程是ρ(sin θ+cos θ)=5,射线OM:θ=与半圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.解:(1)由x=ρcos θ,y=ρsin θ,所以半圆C的极坐标方程是ρ=2cos θ,θ∈[0,].(2)设(ρ1,θ1)为点P的极坐标,则有解得设(ρ2,θ2)为点Q的极坐标,则有解得由于θ1=θ2,所以|PQ|=|ρ1-ρ2|=4,所以线段PQ的长为4.。
第 12章 选4系列 12.1 坐标系[知识梳理] 1.伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标一般地,不作特殊说明时,我们认为ρ≥0,θ可取任意实数. 3.极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则它们之间的关系为:⎩⎪⎨⎪⎧ x =ρcos θ,y =ρsin θ;⎩⎨⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).[诊断自测] 1.概念思辨(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( )(2)点P 的直角坐标为(-2,2),那么它的极坐标可表示为⎝⎛⎭⎪⎫2,3π4.( )(3)过极点作倾斜角为α的直线的极坐标方程可表示为θ=α或θ=π+α.( )(4)圆心在极轴上的点(a,0)处,且过极点O 的圆的极坐标方程为ρ=2a sin θ.( )答案 (1)× (2)√ (3)√ (4)× 2.教材衍化(1)(选修A4-4P 15T 4)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( )A .ρ=1cos θ+sin θ,0≤θ≤π2B .ρ=1cos θ+sin θ,0≤θ≤π4C .ρ=cos θ+sin θ,0≤θ≤π2 D .ρ=cos θ+sin θ,0≤θ≤π4 答案 A解析 ∵y =1-x (0≤x ≤1), ∴ρsin θ=1-ρcos θ(0≤ρcos θ≤1); ∴ρ=1sin θ+cos θ⎝⎛⎭⎪⎫0≤θ≤π2.故选A. (2)(选修A4-4P 8T 5)通过平面直角坐标系中的平移变换和伸缩变换,可以把椭圆(x +1)29+(y -1)24=1变为圆心在原点的单位圆,求上述平移变换和伸缩变换,以及这两种变换的合成的变换.解先通过平移变换⎩⎨⎧x ′=x +1,y ′=y -1,把椭圆(x +1)29+(y -1)24=1变为椭圆x ′29+y ′24=1;再通过伸缩变换⎩⎨⎧x ″=x ′3,y ″=y ′2,把椭圆x ′29+y ′24=1变为单位圆x ″2+y ″2=1.上述两种变换的合成变换是⎩⎪⎨⎪⎧x ″=x +13,y ″=y -12.3.小题热身(1)(2017·东营模拟)在极坐标系中,已知点P ⎝ ⎛⎭⎪⎫2,π6,则过点P 且平行于极轴的直线方程是( )A .ρsin θ=1B .ρsin θ= 3C .ρcos θ=1D .ρcos θ= 3 答案 A解析 先将极坐标化成直角坐标表示,P ⎝ ⎛⎭⎪⎫2,π6转化为点x =ρcos θ=2cos π6=3,y =ρsin θ=2sin π6=1,即(3,1),过点(3,1)且平行于x 轴的直线为y =1,再化为极坐标为ρsin θ=1.故选A.(2)(2016·北京高考)在极坐标系中,直线ρcos θ-3ρsin θ-1=0与圆ρ=2cos θ交于A ,B 两点,则|AB |=________.答案 2解析 将ρcos θ-3ρsin θ-1=0化为直角坐标方程为x -3y -1=0,将ρ=2cos θ化为直角坐标方程为(x -1)2+y 2=1,圆心坐标为(1,0),半径r =1,又(1,0)在直线x -3y -1=0上,所以|AB |=2r =2.题型1 平面直角坐标系中的伸缩变换典例将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)求曲线C 的标准方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.由题意找出(x ,y )与(x 1,y 1)的关系,采用代入法求解.解 (1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上点(x ,y ),依题意,得⎩⎨⎧x =x 1,y =2y 1,由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1, 故曲线C 的方程为x 2+y24=1. (2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎨⎧x =1,y =0或⎩⎨⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 故所求直线的极坐标方程为ρ=34sin θ-2cos θ. 方法技巧伸缩变换后方程的求法平面上的曲线y =f (x )在变换φ:⎩⎨⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下的变换方程的求法是将⎩⎨⎧x =x ′λ,y =y ′μ代入y =f (x ),得y ′μ=f ⎝ ⎛⎭⎪⎫x ′λ,整理之后得到y ′=h (x ′),即为所求变换之后的方程.见典例.提醒:应用伸缩变换时,要分清变换前的点的坐标(x ,y )与变换后的坐标(x ′,y ′).冲关针对训练求双曲线C :x 2-y 264=1经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y变换后所得曲线C ′的焦点坐标.解 设曲线C ′上任意一点P ′(x ′,y ′), 将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入x 2-y264=1,得x ′29-4y ′264=1,化简得x ′29-y ′216=1,即x 29-y 216=1为曲线C ′的方程,可见仍是双曲线,则焦点F 1(-5,0),F 2(5,0)即为所求.题型2 极坐标与直角坐标的互化典例(2015·全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.(1)用转化公式;(2)理解ρ1,ρ2的几何意义,化成ρ的二次方程后,利用韦达定理求ρ1,ρ2.解 (1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12. 方法技巧极坐标方程与直角坐标方程的互化1.直角坐标方程化为极坐标方程:将公式x =ρcos θ及y =ρsin θ直接代入直角坐标方程并化简即可.2.极坐标方程化为直角坐标方程:通过变形,构造出形如ρcos θ,ρsin θ,ρ2的形式,再应用公式进行代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形技巧.冲关针对训练(2016·北京高考改编)在极坐标系中,已知极坐标方程C 1:ρcos θ-3ρsin θ-1=0,C 2:ρ=2cos θ.求曲线C 1,C 2的直角坐标方程,并判断两曲线的形状.解 由C 1:ρcos θ-3ρsin θ-1=0, ∴x -3y -1=0,表示一条直线. 由C 2:ρ=2cos θ,得ρ2=2ρcos θ. ∴x 2+y 2=2x ,即(x -1)2+y 2=1.所以C 2是圆心为(1,0),半径r =1的圆. 题型3 极坐标方程的应用典例 (2016·全国卷Ⅱ)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B两点,|AB |=10,求l 的斜率.解方程组⎩⎨⎧θ=α,ρ2+12ρcos α+11=0,利用韦达定理求|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2即可.解 (1)由x =ρcos θ,y =ρsin θ,可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ). 设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C的极坐标方程,得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11. |AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10,得cos 2α=38,tan α=±153.所以l 的斜率为153或-153. 方法技巧极坐标方程及其应用的类型及解题策略1.求极坐标方程.可在平面直角坐标系中,求出曲线方程,然后再转化为极坐标方程.2.求点到直线的距离.先将极坐标系下点的坐标、直线方程转化为平面直角坐标系下点的坐标、直线方程,然后利用直角坐标系中点到直线的距离公式求解.3.求线段的长度.先将极坐标系下的点的坐标、曲线方程转化为平面直角坐标系下的点的坐标、曲线方程,然后再求线段的长度.冲关针对训练在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =7cos α,y =2+7sin α(其中α为参数),曲线C 2:(x -1)2+y 2=1.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 1的普通方程和曲线C 2的极坐标方程;(2)若射线θ=π6(ρ>0)与曲线C 1,C 2分别交于A ,B 两点,求|AB |. 解(1)由⎩⎨⎧x =7cos α,y =2+7sin α,得⎩⎨⎧x =7cos α,y -2=7sin α,所以曲线C 1的普通方程为x 2+(y -2)2=7.把x =ρcos θ,y =ρsin θ代入(x -1)2+y 2=1,得(ρcos θ-1)2+(ρsin θ)2=1,化简得曲线C 2的极坐标方程为ρ=2cos θ.(2)依题意可设A ⎝ ⎛⎭⎪⎫ρ1,π6,B ⎝ ⎛⎭⎪⎫ρ2,π6. 因为曲线C 1的极坐标方程为ρ2-4ρsin θ-3=0, 将θ=π6(ρ>0)代入曲线C 1的极坐标方程,得 ρ2-2ρ-3=0,解得ρ1=3.同理,将θ=π6(ρ>0)代入曲线C 2的极坐标方程, 得ρ2=3,所以|AB |=|ρ1-ρ2|=3- 3.1.(2017·南阳期末)直线l :y +kx +2=0与曲线C :ρ=2cos θ有交点,则k 的取值范围是( )A .k ≤-34B .k ≥-34C .k ∈RD .k ∈R 但k ≠0答案 A解析 由曲线C :ρ=2cos θ化为ρ2=2ρcos θ, ∴x 2+y 2=2x ,联立⎩⎨⎧x 2+y 2=2x ,y +kx +2=0,化为(1+k 2)x 2+(4k -2)x +4=0.∵直线l 与曲线C 有交点, ∴Δ=(4k -2)2-16(1+k 2)≥0,化为16k ≤-12, 解得k ≤-34.∴k 的取值范围是k ≤-34.故选A.2.(2017·甘谷期末)在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sin θ与ρcos θ=-1的交点的极坐标为( )A.⎝ ⎛⎭⎪⎫-2,3π4B.⎝ ⎛⎭⎪⎫2,3π4 C.⎝⎛⎭⎪⎫-2,7π4 D.⎝⎛⎭⎪⎫2,7π4答案 B 解析由⎩⎨⎧ρ=2sin θ,ρcos θ=-1,可得sin2θ=-1,再根据0≤θ<2π求得2θ=3π2,∴θ=3π4,∴ρ=2sin θ=2,∴曲线ρ=2sin θ与ρcos θ=-1的交点的极坐标为⎝ ⎛⎭⎪⎫2,3π4.故选B.3.(2017·大庆期中)已知A ,B 两点的极坐标为⎝ ⎛⎭⎪⎫6,π3和⎝ ⎛⎭⎪⎫8,4π3,则线段AB 中点的直角坐标为( )A.⎝ ⎛⎭⎪⎫12,-32B.⎝ ⎛⎭⎪⎫-32,12C.⎝ ⎛⎭⎪⎫32,-12D.⎝ ⎛⎭⎪⎫-12,-32 答案 D解析 ∵A 点的极坐标为⎝ ⎛⎭⎪⎫6,π3,∴x A =6×cos π3=3,y A =6×sin π3=33,∴A (3,33);同理可得B (-4,-43).设线段AB 的中点为M (m ,n ),由线段的中点坐标公式可得⎩⎪⎨⎪⎧ m =-4+32=-12,n =-43+332=-32,∴线段AB 中点的直角坐标为⎝ ⎛⎭⎪⎫-12,-32.故选D. 4.(2017·全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝ ⎛⎭⎪⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.解 (1)设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0).由题设知|OP |=ρ,|OM |=ρ1=4cos θ.由|OM |·|OP |=16得C 2的极坐标方程为ρ=4cos θ(ρ>0).因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0).(2)设点B 的极坐标为(ρB ,α)(ρB >0).由题设知|OA |=2,ρB =4cos α,于是△OAB 的面积S =12|OA |·ρB ·sin ∠AOB =4cos α·⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫α-π3 =2⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫2α-π3-32≤2+ 3.当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3.[基础送分 提速狂刷练]1.(2018·延庆县期末)在极坐标方程中,与圆ρ=4sin θ相切的一条直线的方程是( )A .ρsin θ=2B .ρcos θ=2C .ρcos θ=4D .ρcos θ=-4答案 B解析 ρ=4sin θ的普通方程为x 2+(y -2)2=4,选项B :ρcos θ=2的普通方程为x =2.圆x 2+(y -2)2=4与直线x =2显然相切.故选B.2.(2017·渭滨区月考)在极坐标系中,A ⎝ ⎛⎭⎪⎫5,π2,B ⎝ ⎛⎭⎪⎫-8,11π6,C ⎝ ⎛⎭⎪⎫3,7π6,则△ABC 的形状为( ) A .直角三角形 B .等腰三角形C .等边三角形D .钝角三角形答案 C解析 B ⎝ ⎛⎭⎪⎫8,5π6,∴OA =5,OB =8,OC =3,∴∠AOB =5π6-π2=π3,∠BOC =7π6-5π6=π3,∠AOC =7π6-π2=2π3,在△AOB 中,由余弦定理可得AB =25+64-2×5×8×12=7,同理可得,BC =64+9-2×8×3×12=7, AC =25+9-2×5×3×⎝ ⎛⎭⎪⎫-12=7, ∴AB =BC =AC ,∴△ABC 是等边三角形.故选C.3.牛顿在1736年出版的《流数术和无穷级数》中,第一个将极坐标系应用于表示平面上的任何一点,牛顿在书中验证了极坐标和其他九种坐标系的转换关系.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=22. (1)求O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 的公共点的极坐标. 解 (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,故圆O 的直角坐标方程为x 2+y 2-x -y =0,直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=22,即ρsin θ-ρcos θ=1, 则直线l 的直角坐标方程为x -y +1=0.(2)由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得⎩⎨⎧ x 2+y 2-x -y =0,x -y +1=0,解得⎩⎨⎧ x =0,y =1, 即圆O 与直线l 在直角坐标系下的公共点为(0,1),将(0,1)转化为极坐标为⎝ ⎛⎭⎪⎫1,π2. 4.(2018·郑州模拟)在极坐标系中,曲线C 1,C 2的极坐标方程分别为ρ=-2cos θ,ρcos ⎝ ⎛⎭⎪⎫θ+π3=1. (1)求曲线C 1和C 2的公共点的个数;(2)过极点作动直线与曲线C 2相交于点Q ,在OQ 上取一点P ,使|OP |·|OQ |=2,求点P 的轨迹,并指出轨迹是什么图形.解 (1)C 1的直角坐标方程为(x +1)2+y 2=1,它表示圆心为(-1,0),半径为1的圆,C 2的直角坐标方程为x -3y -2=0,所以曲线C 2为直线,由于圆心到直线的距离为d =32>1,所以直线与圆相离,即曲线C 1和C 2没有公共点.(2)设Q (ρ0,θ0),P (ρ,θ),则⎩⎨⎧ ρρ0=2,θ=θ0,即⎩⎪⎨⎪⎧ ρ0=2ρ,θ0=θ.①因为点Q (ρ0,θ0)在曲线C 2上,所以ρ0cos ⎝ ⎛⎭⎪⎫θ0+π3=1,② 将①代入②,得2ρcos ⎝ ⎛⎭⎪⎫θ+π3=1, 即ρ=2cos ⎝ ⎛⎭⎪⎫θ+π3为点P 的轨迹方程,化为直角坐标方程为⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y +322=1,因此点P 的轨迹是以⎝ ⎛⎭⎪⎫12,-32为圆心,1为半径的圆.5.(2017·湖北模拟)在极坐标系中,曲线C :ρ=2a cos θ(a >0),l :ρcos ⎝ ⎛⎭⎪⎫θ-π3=32,C 与l 有且仅有一个公共点. (1)求a ;(2)O 为极点,A ,B 为曲线C 上的两点,且∠AOB =π3,求|OA |+|OB |的最大值.解 (1)曲线C :ρ=2a cos θ(a >0),变形ρ2=2aρcos θ,化为x 2+y 2=2ax ,即(x -a )2+y 2=a 2.∴曲线C 是以(a,0)为圆心,a 为半径的圆.由l :ρcos ⎝ ⎛⎭⎪⎫θ-π3=32,展开为12ρcos θ+32ρsin θ=32,∴l 的直角坐标方程为x +3y -3=0.由题可知直线l 与圆C 相切,即|a -3|2=a ,解得a =1.(2)不妨设A 的极角为θ,B 的极角为θ+π3,则|OA |+|OB |=2cos θ+2cos ⎝⎛⎭⎪⎫θ+π3=3cos θ-3sin θ =23cos ⎝ ⎛⎭⎪⎫θ+π6, 当θ=-π6时,|OA |+|OB |取得最大值2 3.6.(2018·沈阳模拟)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.已知圆C 的极坐标方程为ρ2-42ρcos ⎝ ⎛⎭⎪⎫θ-π4+6=0. (1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;(2)若点P (x ,y )在圆C 上,求x +y 的最大值和最小值.解 (1)由ρ2-42ρcos ⎝ ⎛⎭⎪⎫θ-π4+6=0,得 ρ2-42ρ⎝ ⎛⎭⎪⎫cos θcos π4+sin θsin π4+6=0, 即ρ2-42ρ⎝ ⎛⎭⎪⎫22cos θ+22sin θ+6=0, ρ2-4ρcos θ-4ρsin θ+6=0,即x 2+y 2-4x -4y +6=0为所求圆的普通方程, 整理为圆的标准方程(x -2)2+(y -2)2=2,令x -2=2cos α,y -2=2sin α.得圆的参数方程为⎩⎨⎧ x =2+2cos α,y =2+2sin α(α为参数).(2)由(1)得, x +y =4+2(cos α+sin α)=4+2sin ⎝ ⎛⎭⎪⎫α+π4, ∴当sin ⎝ ⎛⎭⎪⎫α+π4=1时,x +y 的最大值为6, 当sin ⎝ ⎛⎭⎪⎫α+π4=-1时,x +y 的最小值为2. 故x +y 的最大值和最小值分别是6和2.。
第2节 参数方程【选题明细表】知识点、方法题号参数方程与普通方程的互化及应用2极坐标方程与参数方程的综合应用1,3,4 1.导学号38486229(2017·广东省潮州二模)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知点R的极坐标为(2,),曲线C的参数方程为(θ为参数)(1)求点R的直角坐标;化曲线C的参数方程为普通方程;(2)设P为曲线C上一动点,以PR为对角线的矩形PQRS的一边垂直于极轴,求矩形PQRS周长的最小值,及此时P点的直角坐标.解:(1)点R的极坐标转化成直角坐标为R(2,2).由消参数θ,得曲线C的普通方程为+y2=1.(2)设P(cos θ,sinθ)根据题意,得到Q(2,sin θ),则|PQ|=2-cos θ,|QR|=2-sinθ,所以矩形PQRS的周长为:2(|PQ|+|QR|)=8-4sin(θ+).由0≤θ<2π知当θ=时,sin(θ+)=1,所以矩形的最小周长为4,点P(,).2.导学号 38486230已知圆C:(θ为参数)和直线l:(其中t为参数,α为直线l的倾斜角).(1)当α=时,求圆上的点到直线l距离的最小值;(2)当直线l与圆C有公共点时,求α的取值范围.解:(1)当α=时,直线l的直角坐标方程为x+y-3=0,圆C的圆心坐标为(1,0),圆心到直线的距离d==,圆的半径为1,故圆上的点到直线l距离的最小值为-1.(2)圆C的直角坐标方程为(x-1)2+y2=1,将直线l的参数方程代入圆C的直角坐标方程,得t2+2(cos α+sin α)t+3=0,这个关于t的一元二次方程有解,故Δ=4(cos α+sin α)2-12≥0,则sin2(α+)≥,即sin(α+)≥或sin(α+)≤-.又0≤α<π,故只能sin(α+)≥,即≤α+≤,即≤α≤.故α的范围是[,].3.导学号 38486231(2018·河南六市联考)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρ=4cosθ.(1)求曲线C的直角坐标方程及直线l的普通方程;(2)将曲线C上的所有点的横坐标缩短为原来的,再将所得到的曲线向左平移1个单位,得到曲线C 1,求曲线C1上的点到直线l的距离的最小值.解:(1)曲线C的直角坐标方程为x2+y2=4x,即(x-2)2+y2=4,直线l的普通方程为x-y+2=0.(2)将曲线C上的所有点的横坐标缩短为原来的,得(2x-2)2+y2=4,即(x-1)2+=1,再将所得曲线向左平移1个单位,得曲线C1:x2+=1,则曲线C1的参数方程为(θ为参数).设曲线C1上任一点P(cos θ,2sinθ),则点P到直线l的距离d==≥(其中tan =-0,所以点P到直线l的距离的最小值为.4.导学号 38486232(2018·云南曲靖一中等多校联考)在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C的极坐标方程ρ=2sin(θ+).倾斜角为,且经过定点P(0,1)的直线l与曲线C交于M,N两点.(1)写出直线l的参数方程的标准形式,并求曲线C的直角坐标方程;(2)求+的值.解:(1)由倾斜角为,且经过定点P(0,1)的直线l的参数方程为:(t为参数)化为(t为参数)曲线C的极坐标方程ρ=2sin(θ+),即ρ2=2ρ×(sin θ+cosθ),可得直角坐标方程:x2+y2=2x+2y.(2)把直线l的参数方程(t为参数)代入圆C的方程为:t2-t-1=0,t1+t2=1,t1t2=-1.所以+=+====.。
课时分层训练(六十七) 坐标系1.在极坐标系中,求点⎝ ⎛⎭⎪⎫2,π6到直线ρsin ⎝⎛⎭⎪⎫θ-π6=1的距离.[解] 点⎝⎛⎭⎪⎫2,π6化为直角坐标为(3,1),3分直线ρsin ⎝ ⎛⎭⎪⎫θ-π6=1化为ρ⎝ ⎛⎭⎪⎫32sin θ-12cos θ=1, 得32y -12x =1, 即直线的方程为x -3y +2=0,6分故点(3,1)到直线x -3y +2=0的距离d =|3-3×1+2|12+-32=1.10分 2.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎪⎫θ-π4=22. 【导学号:31222438】(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标.[解] (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,2分 圆O 的直角坐标方程为x 2+y 2=x +y , 即x 2+y 2-x -y =0,4分直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为y -x =1,即x -y +1=0.6分(2)由⎩⎪⎨⎪⎧x 2+y 2-x -y =0,x -y +1=0,得⎩⎪⎨⎪⎧x =0,y =1,8分故直线l 与圆O 公共点的一个极坐标为⎝⎛⎭⎪⎫1,π2.10分3.(2017·邯郸调研)在极坐标系中,已知直线l 的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=1,圆C 的圆心的极坐标是C ⎝⎛⎭⎪⎫1,π4,圆的半径为1. 【导学号:31222439】(1)求圆C 的极坐标方程; (2)求直线l 被圆C 所截得的弦长.[解] (1)设O 为极点,OD 为圆C 的直径,A (ρ,θ)为圆C 上的一个动点,则∠AOD =π4-θ或∠AOD =θ-π4,2分OA =OD cos ⎝⎛⎭⎪⎫π4-θ或OA =OD cos ⎝⎛⎭⎪⎫θ-π4, ∴圆C 的极坐标方程为ρ=2cos ⎝⎛⎭⎪⎫θ-π4.4分(2)由ρsin ⎝ ⎛⎭⎪⎫θ+π4=1,得22ρ(sin θ+cos θ)=1,6分∴直线l 的直角坐标方程为x +y -2=0, 又圆心C 的直角坐标为⎝⎛⎭⎪⎫22,22,满足直线l 的方程, ∴直线l 过圆C 的圆心,8分故直线被圆所截得的弦长为直径2.10分4.(2017·南京调研)在极坐标系中,已知圆C 的圆心C ⎝⎛⎭⎪⎫3,π3,半径r =3.(1)求圆C 的极坐标方程;(2)若点Q 在圆C 上运动,点P 在OQ 的延长线上,且OQ →=2QP →,求动点P 的轨迹方程. [解] (1)设M (ρ,θ)是圆C 上任意一点. 在△OCM 中,∠COM =⎪⎪⎪⎪⎪⎪θ-π3,由余弦定理得 |CM |2=|OM |2+|OC |2-2|OM |·|OC |cos ⎝ ⎛⎭⎪⎫θ-π3,化简得ρ=6cos ⎝ ⎛⎭⎪⎫θ-π3.4分(2)设点Q (ρ1,θ1),P (ρ,θ), 由OQ →=2QP →,得OQ →=23OP →,∴ρ1=23ρ,θ1=θ,8分代入圆C 的方程,得23ρ=6cos ⎝ ⎛⎭⎪⎫θ-π3, 即ρ=9cos ⎝⎛⎭⎪⎫θ-π3.10分5.(2015·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.[解] (1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0,2分联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎪⎫32,32.4分 (2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).8分 所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.10分6.从极点O 作直线与另一直线l :ρcos θ=4相交于点M ,在OM 上取一点P ,使OM ·OP =12.(1)求点P 的轨迹方程;(2)设R 为l 上的任意一点,求|RP |的最小值.[解] (1)设动点P 的极坐标为(ρ,θ),M 的极坐标为(ρ0,θ),则ρρ0=12.2分 ∵ρ0cos θ=4,∴ρ=3cos θ,即为所求的轨迹方程.4分 (2)将ρ=3cos θ化为直角坐标方程, 得x 2+y 2=3x ,即⎝ ⎛⎭⎪⎫x -322+y 2=⎝ ⎛⎭⎪⎫322.8分 知点P 的轨迹是以⎝ ⎛⎭⎪⎫32,0为圆心,半径为32的圆.直线l 的直角坐标方程是x =4. 结合图形易得|RP |的最小值为1.10分。
选考部分
第十二篇坐标系与参数方程(选修4—4)
第1节坐标系
【选题明细表】
1.将圆x2+y2=1上每一点的横坐标变为原来的2倍,纵坐标变为原来的3倍,得曲线Γ.
(1)写出Γ的参数方程;
(2)设直线l:3x+2y-6=0与Γ的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.
解:(1)设(x1,y1)为圆上的点,在已知变换下变为Γ上的点(x,y),
依题意,得即
由+=1,得()2+()2=1,
即曲线Γ的方程为+=1.
故Γ的参数方程为(t为参数).
(2)由
解得或
不防设P1(2,0),P2(0,3),
则线段P1P2的中点坐标为(1,),
所求直线的斜率k=.
于是所求直线方程为y-= (x-1),
即4x-6y+5=0,化为极坐标方程,
得4ρcos θ-6ρsin θ+5=0.
2.在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(1)求C1,C2的极坐标方程;
(2)若直线C3的极坐标方程为θ= (ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.
解:(1)因为x=ρcos θ,y=ρsin θ,
所以C1的极坐标方程为ρcos θ=-2,
C2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.
(2)将θ=代入ρ2-2ρcos θ-4ρsin θ+4=0,
得ρ2-3ρ+4=0,解得ρ1=2,ρ2=.
故ρ1-ρ2=,
即|MN|=.
由于C2的半径为1,所以△C2MN的面积为.
3.在极坐标系中,曲线C:ρ=2acos θ(a>0),l:ρcos(θ-)=,C与l有且仅有一个公共点.
(1)求a;
(2)O为极点,A,B为曲线C上的两点,且∠AOB=,求|OA|+|OB|的最
大值.
解:(1)曲线C:ρ=2acos θ(a>0),变形ρ2=2aρcos θ,
化为x2+y2=2ax,即(x-a)2+y2=a2.
所以曲线C是以(a,0)为圆心,a为半径的圆.
由l:ρcos(θ-)=,展开为ρcos θ+ρsin θ=,所以l的直角坐标方程为x+y-3=0.
由题可知直线l与圆C相切,即=a,解得a=1.
(2)不妨设A的极角为θ,B的极角为θ+,
则|OA|+|OB|=2cos θ+2cos(θ+)=3cos θ-sin θ=2cos(θ+),
当θ=-时,|OA|+|OB|取得最大值2.
4. (2017·成都模拟)在直角坐标系xOy中,半圆C的直角坐标方程为(x-1)2+y2=1(0≤y≤1).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求C的极坐标方程;
(2)直线l的极坐标方程是ρ(sin θ+cos θ)=5,射线OM:θ=与半圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.
解:(1)由x=ρcos θ,y=ρsin θ,所以半圆C的极坐标方程是ρ=2cos θ,θ∈[0,].
(2)设(ρ1,θ1)为点P的极坐标,
则有
解得
设(ρ2,θ2)为点Q的极坐标,
则有
解得
由于θ1=θ2,
所以|PQ|=|ρ1-ρ2|=4,所以线段PQ的长为4.。