§2 共轴球面光学系统
- 格式:ppt
- 大小:489.00 KB
- 文档页数:13
共轴球面光学系统特点
共轴球面光学系统是一种采用球面反射镜的光学系统,它由一个球面
反射镜和一个准直物镜组成,它可以聚焦起一束高度集中的光束来实现观
测或其他应用目的。
共轴球面光学系统能够提供高度集中的光束,使其能
够在极短的像差范围内获得高质量的图像,在科学、工业、医学、检测等
领域有着广泛的应用。
其主要特点有:
1、透射特性卓越:由于共轴球面光学系统采用的球面反射镜是镀铬
或钎焊的,具有良好的光学性能,其较高的反射率可以使光的各种波长的
透射率都达到较高的水平。
2、聚焦效果好:由于共轴球面光学系统采用的设计原理是根据透镜
来实现聚焦,因此可以较好的实现视野的高度放大,使其能够有效聚焦。
3、维护方便:共轴球面光学系统采用的是球面反射镜,它只需要定
期清洁即可,而且它没有润滑要求,所以维护非常方便。
4、耐用性强:共轴球面光学系统采用的是优质的、耐用的球面反射镜,可以保证长期使用的稳定性,耐用性也很强。
5、体积小:共轴球面光学系统采用的是非折射性镜片,所以体积小,可以更容易地应用于有空间限制的系统中。
第二章共轴球面光学系统第一节符号规则●常见的光学系统有多个光学零件组成,每个光学零件往往由多个球面组成●这些球面的球心在一条直线上即为“共轴球面系统”●这条直线称为“光轴”●折射球面的结构参数:曲率半径r、物方折射率n、像方折射率n'●入射光线的参数:物方截距L、物方孔径角U●像方量在相应的物方量字母旁加“ ’ ”区分●光线的传播方向为自左向右●规定符号规则如下:●1)沿轴线段(如L、L’和r)●以顶点为原点,与光线方向相同为正,相反为负●2)垂轴线段(如h、y和y’)●以光轴为基准,光轴以上为正,以下为负●3)光线与光轴的夹角(如U、U’)●光轴转向光线;角量均以锐角计、顺时针为正、逆时针为负●4)光线与法线的夹角(如I、I’、I”)●光线转向法线●5)光轴与法线的夹角(如φ)●光轴转向法线●6)折射面间隔d●前一面顶点到后一面顶点,与光线方向相同为正,相反为负;在折射系统中,d恒为正●物方截距、像方截距、物方孔径角、像方孔径角等物理量是可以有正负的,但作为几何量AO、OA’、∠EAO、∠EA’O等应为正值;在负值物理量前加负号,以保证相应几何量为正●根据物像的位置判断物像的虚实●负(正)物距对应实(虚)物●正(负)像距对应实(虚)像第二节物体经过单个折射球面的成像1,单球面成像的光路计算已知折射球面的结构参数曲率半径r ,物方折射率n ,像方折射率n ’已知入射光线AE 的参数物方截距L ,物方孔径角U (轴上物点)求出射光线参数像方截距L ’,像方孔径角U ’(轴上像点)光路计算2在ΔAEC 中用正弦定律,有 sin sin()I U r L r -=-导出求入射角I 的公式sin sin L r I U r -=(2-1)由折射定律可以求得折射角I ’sin sin n I I n '=='(2-2)由角度关系,可以求得像方孔径角U ’U U I I ''=+-(2-3) 在ΔA ’EC 中应用正弦定律,得像方截距L ’ sin sin I L r r U ''=+' (2-4)式(2-1)至(2-4)就是子午面内实际光线的光路计算公式,利用这组公式可以由已知的L 和U 求L ’和U ’ sin sin L r I U r -= sin sin n I I n '=='U U I I ''=+-sin sin I L r r U ''=+'当物点A 位于轴上无限远处时,相应的L=∞,U=0,则式(2-1)须改变为sin hI r =(2-5)●若L 是定值,L ’是U 的函数,即从同一点发出的光线,孔径角不同,将在像方交在不同的点上 ● 同心光束经过单球面后不再是同心光束●这种误差被称为“球差” ●球差是各种像差中最常见的一种●如果把孔径角U 限制在很小的范围内,光线距光轴很近,称为“近轴光”,U 、U ’、I 和I ’都很小,式(2-1)~(2-4)中的正弦值用弧度来表示 ● 用小写字母u 、u ’、i 、i ’、l 和l ’表示近轴量● l r i u r n ii n u u i i i l r r u -='='''=+-''=+'(2-6)~(2-9) ● 当入射光线平行于光轴时,也以h 作为入射光线的参数,有●h i r =(2-10) ●近轴光线l ’与u 无关,即当物点位置确定后,其像点位置与孔径角u 无关,物点发出的同心光束经折射后在近轴区仍为同心光束 ●在近轴区成的是完善像,这个完善像通常称为“高斯像” ● 近轴区最常用的物像位置公式●n n n n l l r ''--='(2-14) ●已知物点位置l 求像点位置l ’时(或反过来)十分方便 ●1、轴上物点:轴上同一物点发出的近轴光线,经过球面折射以后聚交一点,即轴上物点近轴成像时是符合理想成像条件的。