广东省深圳市2016年初中数学毕业生学业考试模拟试题
- 格式:doc
- 大小:322.00 KB
- 文档页数:9
2016年广东省初中毕业生数学学科学业考试大纲一、考试性质初中毕业生数学学科学业考试(以下简称为“数学学科学业考试”) 是义务教育阶段数学学科的终结性考试,目的是全面、准确地反映初中毕业生的数学学业水平.考试的结果既是评定我省初中毕业生数学学业水平是否达到毕业标准的主要依据,也是高中阶段学校招生的重要依据之一.二、指导思想(一)数学学科学业考试要体现《义务教育数学课程标准(2011年版)》(以下简称《标准》)的评价理念,有利于引导数学教学全面落实《标准》所设立的课程目标,有利于改善学生的数学学习方式,有利于减轻过重的学业负担.(二)数学学科学业考试既要重视对学生学习数学知识与技能的结果和过程的评价,也要重视对学生在数学思考能力和解决问题能力方面发展状况的评价,还应当重视对学生数学认识水平的评价.(三)数学学科学业考试命题应当面向全体学生,根据学生的年龄特征、个性特点和生活经验编制试题,力求公正、客观、全面、准确地评价学生通过义务教育阶段的数学学习所获得的相应发展.三、考试依据(一)教育部2002年颁发的《关于积极推进中小学评价与考试制度改革的通知》.(二)教育部2011年颁发的《义务教育数学课程标准(2011年版)》.(三)广东省初中数学教学的实际情况.四、考试要求(一)以《标准》中的“课程内容”为基本依据,不拓展知识与技能的考试范围,不提高考试要求,选学内容不列入考试范围;(二)试题主要考查如下方面:基础知识和基本技能;数学活动经验;数学思考;对数学的基本认识;解决问题的能力等.(三)突出对学生基本数学素养的考查,注重考查学生掌握适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验) 以及基本的数学思想方法和必要的应用技能的情况,对在数学学习和应用数学解决问题过程中最为重要的、必须掌握的核心概念、思想方法和常用的技能重点考查.(四)试卷内容大致比例:代数约占60分;几何约占50分;统计与概率约占10分.五、考试内容第一部分数与代数1.数与式(1)有理数①理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.②借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).③理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).④理解有理数的运算律,并能运用运算律简化运算.⑤能运用有理数的运算解决简单的问题.(2)实数①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根.②了解乘方与开方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.③了解无理数和实数的概念,知道实数与数轴上的点一一对应.能求实数的相反数与绝对值.④能用有理数估计一个无理数的大致范围.⑤了解近似数;在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值.⑥了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数) 加、减、乘、除运算法化).(3)代数式①能借助现实情境了解代数式,进一步理解用字母表示数的意义.②能分析简单问题的数量关系,并用代数式表示.③会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算.(4)整式与分式①了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示).②了解整式的概念,掌握合并同类项和去括号法则,会进行简单的整式加法和减法运算;能进行简单的整式乘法(其中的多项式相乘仅指一次式之间以及一次式与二次式相乘).③会推导乘法公式:(a+b)( a-b)=a 2-b 2,(a±b)2=a2±2 a b+b 2,了解公式的几何背景,并能利用公式进行简单的计算.④会用提取公因式法、公式法(直接用公式不超过两次)进行因式分解(指数是正整数).⑤了解分式和最简分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.2.方程与不等式(1)方程与方程组①能够根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型.②经历估计方程解的过程.③掌握等式的基本性质.④会解一元一次方程、可化为一元一次方程的分式方程(方程中的分式不超过两个).⑤掌握代入消元法和加减消元法,能解二元一次方程组.⑥理解配方法,会用配方法、公式法、因式分解法解数字系数的一元二次方程.⑦会用一元二次方程根的判别式判别方程是否有实数根和两个根之间是否相等.⑧能根据具体问题的实际意义,检验方程的解是否合理.(2)不等式与不等式组①结合具体问题,了解不等式的意义,探索不等式的基本性质.②会解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集.③能够根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题.3.函数(1)函数①通过简单实例中的数量关系,了解常量、变量的意义.②结合实例,了解函数的概念和三种表示方法,能举出函数的实例.③能结合图象对简单实际问题中的函数关系进行分析.④能确定简单实际问题中函数自变量的取值范围,并会求出函数值.⑤能用适当的函数表示法刻画简单实际问题中变量之间的关系.⑥结合对函数关系的分析,能对变量的变化情况进行初步讨论.(2)一次函数①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式.②会利用待定系数法确定一次函数的表达式.③能画出一次函数的图象,根据一次函数的图象和表达式y=kx+b(k≠0) 探索并理解k>0或k<0时,图象的变化情况.④理解正比例函数.⑤体会一次函数与二元一次方程的关系.⑥能用一次函数解决简单实际问题.(3)反比例函数①结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.②能画出反比例函数的图象,根据图象和表达式kyx(k≠0) 探索并理解k>0或k<0时,图象的变化情况.③能用反比例函数解决某些实际问题.(4)二次函数①通过对实际问题情境的分析,体会二次函数的意义.②会用描点法画出二次函数的图象,能通过图象了解二次函数的性质.③会用配方法将数字系数的二次函数的表达式化为y=a(x-h)2+k(a≠0)的形式,并能由此得到二次函数图象的顶点坐标、开口方向,画出图象的对称轴,并能解决简单实际问题.④会利用二次函数的图象求一元二次方程的近似解.第二部分空间与图形1.图形的认识(1)点、线、面、角①通过实物和具体模型,了解从物体抽象出来的几何体、平面、直线和点等.②会比较线段的长短,理解线段的和、差以及线段中点的意义.③掌握基本事实:两点确定一条直线.④掌握基本事实:两点之间线段最短.⑤理解两点间距离的意义,能度量两点间距离.⑥理解角的概念,能比较角的大小.⑦认识度、分、秒,会对度、分、秒进行简单换算,并会计算角的和、差.(2)相交线与平行线①理解对顶角、余角、补角的概念,探索并掌握对顶角相等,同角(等角) 的余角相等,同角(等角)的补角相等的性质.②理解垂线、垂线段等概念,能用三角尺或量角器过一点画已知直线的垂线.③理解点到直线距离的意义,能度量点到直线的距离.④掌握过一点有且仅有一条直线与已知直线垂直.⑤识别同位角、内错角、同旁内角;掌握平行线概念:掌握两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.⑥掌握过直线外一点有且只有一条直线与这条直线平行.⑦掌握两条平行直线被第三条直线所截,同位角相等.⑧能用三角尺和直尺过已知直线外一点画这条直线的平行线.⑨探索并证明平行线的判定定理:两条直线被第三条直线所截,如果内错角相等(或同旁内角互补),那么这两条直线平行;探索并证明平行线的性质定理:两条平行直线被第三条直线所截,内错角相等(或同旁内角互补).⑩了解平行于同一条直线的两条直线平行.(3)三角形①理解三角形及其内角、外角、中线、高线、角平分线等概念,了解三角形的稳定性.②探索并证明三角形内角和定理,掌握该定理的推论:三角形的外角等于与它不相邻的两个内角的和.证明三角形的任意两边之和大于第三边.③理解全等三角形的概念,能识别全等三角形中的对应边、对应角.④掌握两边及其夹角分别相等的两个三角形全等、两角及其夹边分别相等的两个三角形全等、三边分别相等的两个三角形全等等基本事实,并能证明定理:两角分别相等且其中一组等角的对边相等的两个三角形全等.⑤探索并证明角平分线的性质定理:角平分线上的点到角两边的距离相等;反之,角的内部到角两边的距离的点在角的平分线上.⑥理解线段垂直平分线的概念,探索并证明线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端点的距离相等;反之,到线段两端的距离相等的点在线段的垂直平分线上.⑦理解等腰三角形的概念,探索并证明等腰三角形的性质定理:等腰三角形的两个底角相等:底边上的高线、中线及顶角平分线重合.探索并掌握等腰三角形的判定定理:有两个底角相等的三角形是等腰三角形.探索等边三角形的性质定理:等边三角形的各角都等于60°:探索等边三角形的判定定理:三个角都相等的三角形(或仅有一个角是60°的等腰三角形)是等边三角形.⑧了解直角三角形的概念,探索并掌握直角三角形的性质定理:直角三角形的两个锐角互余,直角三角形斜边上的中线等于斜边的一半,掌握有两个角互余的三角形是直角三角形.⑨探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题:探索并掌握判定直角三角形全等的“斜边、直角边”定理.⑩了解三角形重心的概念.(4)四边形①了解多边形的定义,多边形的顶点、边、内角、外角、对角线等概念;探索并掌握多边形内角和与外角和公式.②理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系;了解四边形的不稳定性.③探索并证明平行四边形的有关性质定理:平行四边形的对边相等、对角相等、对角线互相平分;探索并证明平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形:两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.④了解两条平行线之间距离的意义,能度量两条平行线之间的距离.⑤探索并证明矩形、菱形、正方形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直;以及它们的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形.正方形具有矩形和菱形的一切性质.⑥探索并证明三角形中位线定理.(5)圆①理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念:探索并了解点与圆的位置关系.②探索圆周角与圆心角及其所对的弧的关系,了解并证明圆周角及其推论:圆周角的度数等于它所对弧上的圆心角度数的一半;直径所对的圆周角是直角;90°的圆周角所对的弦是直径;圆内接四边形的对角互补.③知道三角形的内心和外心.④了解直线和圆的位置关系,掌握切线的概念,探索切线与过切点的半径的关系,会用三角尺过圆上一点画圆的切线.⑤会计算圆的弧长、扇形的面积.(6)尺规作图①能用尺规完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作一个角的平分线;作一条线段的垂直平分线;过一点作已知直线的垂线.②会利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边和底边上的高作等腰三角形;已知一直角边和斜边作直角三角形.③会利用基本作图完成:过不在同一直线上的三点作圆;会作三角形的外接圆、内切圆,作圆的内接正方形和正六边形.④在尺规作图中,了解尺规作图的道理,保留作图痕迹,不要求写作法.(7)定义、命题、定理①通过具体实例,了解定义、命题、定理、推论的意义.②结合具体实例,会区分命题的条件和结论,了解原命题及其逆命题的概念.会识别两个互逆的命题,知道原命题成立其逆命题不一定成立.③知道证明的意义和证明的必要性,知道证明要合乎逻辑,知道证明的过程中可以有不同的表达形式,会综合法证明的格式.④了解反例的作用,知道利用反例可以判断一个命题是错误的.⑤通过实例体会反证法的含义.2.图形与变换(1)图形的轴对称①通过具体实例认识轴对称,探索它的基本性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分.②能画出简单平面图形关于给定对称轴的对称图形.③了解轴对称图形的概念:探索等腰三角形、矩形、菱形、正多边形、圆的轴对称性质.④认识并欣赏自然界和现实生活中的轴对称图形.(2)图形的旋转①通过具体实例认识平面图形关于旋转中心的旋转,探索它的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等,两组对应点分别与旋转中心连线所成的角相等.②了解中心对称、中心对称图形的概念,探索它的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分.③探索线段、平行四边形、正多边形、圆的中心对称性质.④认识并欣赏自然界和现实生活中的中心对称图形.(3)图形的平移①通过具体实例认识平移,探索它的基本性质:一个图形和它经过平移所得到的图形中,两组对应点的连线平行(或在同一条直线上)且相等.②认识并欣赏平移在自然界和现实生活中的应用.(4)图形的相似①了解比例的性质、线段的比、成比例的线段;通过建筑、艺术上的实例了解黄金分割.②通过具体实例认识图形的相似,了解相似多边形和相似比.③掌握两条直线被一组平行线所截,所得的对应线段成比例.④了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方.⑤了解两个三角形相似的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边对应成比例的两个三角形相似.⑥了解图形的位似,知道利用位似将一个图形放大或缩小.⑦会用图形的相似解决一些简单的实际问题.⑧利用相似的直角三角形,探索并认识锐角三角函数(sinA,cosA,tanA),知道30°、45°、60°角的三角函数值.⑨会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角.⑩能用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际问题.(5)图形的投影①通过丰富的实例,了解中心投影和平行投影的概念.②会画直棱柱、圆柱、圆锥、球的主视图、左视图、俯视图,会判断简单物体的三视图,能根据三视图描述简单的几何体.③了解直棱柱、圆锥的侧面展开图,能根据展开图想象和制作立体模型.④通过实例,了解上述视图与展开图在现实生活中的应用.3.图形与坐标(1)坐标与图形位置①结合实例进一步体会有序数对可以表示物体的位置.②理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标.③在实际问题中,能建立适当的直角坐标系,描述物体的位置.④对给定的正方形,会选择适当的直角坐标系,写出它的顶点坐标,体会可以用坐标刻画一个简单图形.⑤在平面上,能用方位角和距离刻画两个物体的相对位置.(2)坐标与图形运动①在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系.②在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的顶点坐标,并知道对应顶点坐标之间的关系.③在直角坐标系中,探索并了解将一个多边形依次沿两个坐标轴方向平移后所得到的图形与原来的图形具有平移关系,体会图形顶点坐标的变化.④在直角坐标系中,探索并了解将一个多边形的顶点坐标(有一个顶点为原点、有一条边在横坐标轴上)分别扩大或缩小相同倍数时所对应的图形与原图形是位似的.第三部分统计与概率1.抽样与数据分析(1)经历收集、整理、描述和分析数据的活动,了解数据处理的过程;能用计算器处理较为复杂的数据.(2)体会抽样的必要性,通过实例了解简单随机抽样.(3)会制作扇形统计图,能用条形统计图、拆线统计图、扇形统计图直观、有效地描述数据.(4)理解平均数的意义,能计算中位数、众数、加权平均数,了解它们是数据集中趋势的描述.(5)体会刻画数据离散程度的意义,会计算简单数据的方差.(6)通过实例,了解频数和频数分布的意义,能画频数直方图,能利用频数直方图解释数据中蕴涵的信息.(7)体会样本与总体的关系,知道可以通过样本平均数、样本方差推断总体平均数和总体方差.(8)能解释统计结果,根据结果做出简单的判断和预测,并能进行交流.(9)通过表格等感受随机现象的变化趋势.2.事件的概率(1)能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率.(2)知道大量的重复试验,可以用频率来估计概率.六、考试方式和试卷结构(一)考试方式采用闭卷、笔答形式.(二)试卷结构1.由地级市组织命题的试卷,其结构由组织单位自行确定.2.广东省教育考试院命制的试卷,结构如下:(1)考试时间为100分钟.全卷满分120分.(2)试卷结构:选择题10道,共30分;填空题6道,共24分;解答题(一)3道,共18分;解答题(二)3道,共21分;解答题(三)3道,共27分.五类合计25道题.选择题为四选一型的单项选择题;填空题只要求直接填写结果.解答题(一)(二)包括:计算题(在下列四种形式中任选:数值计算、代数式运算、解方程(组)、解不等式(组));计算综合题(在下列四种形式中任选:方程(不等式) 计算综合题、函数类综合题、几何类计算综合题、统计概率计算综合题);证明题(在下列两种形式中任选:几何证明、简单代数证明);简单应用题(包括实际应用和非实际应用.在下列三种形式中任选:方程(组)应用题、不等式应用题、解三角形应用题、函数应用题);作图题仅限尺规作图.解答题(三)包括:“代数综合题”、“几何综合题”和“代数与几何综合题”,各1道.解答题都应根据题目的要求,写出文字说明、演算步骤或推证过程.(3)试卷分为试题和答题卡,分开印刷,试题不留答题位置,答案必须填涂或写在答题卡上.答题方式由各地级市确定并公布.。
直角三角形专题试卷一、解答题1、如图,某市对位于笔直公路AC上两个小区A、B的供水路线进行优化改造.供水站M在笔直公路AD上,测得供水站M在小区A的南偏东60°方向,在小区B的西南方向,小区A、B之间的距离为300(+1)米,求供水站M分别到小区A、B的距离.(结果可保留根号)2、如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.3、如图,大楼AN上悬挂一条幅AB,小颖在坡面D处测得条幅顶部A的仰角为30°,沿坡面向下走到坡脚E处,然后向大楼方向继续行走10米来到C处,测得条幅的底部B的仰角为45°,此时小颖距大楼底端N处20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:),且D、M、E、C、N、B、A在同一平面内,E、C、N在同一条直线上,求条幅的长度(结果精确到1米)(参考数据:≈1.73,≈1.41)4、如图,三沙市一艘海监船某天在黄岩岛P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P的距离BP的长.(参考数据:≈1.414,结果精确到0.1)5、如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西60°的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45°的方向.求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号).6、如图,建筑物AB后有一座假山,其坡度为i=1:,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°,求建筑物AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)7、某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).8、如图,随着我市铁路建设进程的加快,现规划从A地到B地有一条笔直的铁路通过,但在附近的C处有一大型油库,现测得油库C在A地的北偏东60°方向上,在B地的西北方向上,AB的距离为250(+1)米.已知在以油库C为中心,半径为200米的X围内施工均会对油库的安全造成影响.问若在此路段修建铁路,油库C是否会受到影响?请说明理由.9、保护视力要求人写字时眼睛和笔端的距离应超过30cm,图1是一位同学的坐姿,把他的眼睛B,肘关节C和笔端A的位置关系抽象成图2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)10、某某长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.(结果精确到,≈1.732)11、如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到)(参考数据:≈1.414,≈1.732)12、(2016•黔东南州)黔东南州某校吴老师组织九(1)班同学开展数学活动,带领同学们测量学校附近一电线杆的高.已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D处测得电线杆顶端A的仰角为30°,在C处测得电线杆顶端A得仰角为45°,斜坡与地面成60°角,CD=4m,请你根据这些数据求电线杆的高(AB).(结果精确到1m,参考数据:≈1.4,≈1.7)13、如图,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是,看旗杆顶部M的仰角为45°;小红的眼睛与地面的距离(CD)是,看旗杆顶部M的仰角为30°.两人相距30米且位于旗杆两侧(点B,N,D在同一条直线上).求旗杆MN的高度.(参考数据:,,结果保留整数)14、(2015•某某)如图1是“东方之星”救援打捞现场图,小红据此构造出一个如图2所示的数学模型,已知:A、B、D三点在同一水平线上,CD⊥AD,∠A=30°,∠CBD=75°,AB=60m.(1)求点B到AC的距离.(2)求线段CD的长度.15、测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°,(可用的参考数据:sin50°≈0.8,tan50°≈1.2)(1)若已知CD=20米,求建筑物BC的高度;(2)若已知旗杆的高度AB=5米,求建筑物BC的高度.16、如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡的高度EF;(2)求山峰的高度CF.( 1.414,CF结果精确到米)17、如图,在数学活动课中,小敏为了测量校园内旗杆CD的高度,先在教学楼的底端A点处,观测到旗杆顶端C的仰角∠CAD=60°,然后爬到教学楼上的B处,观测到旗杆底端D的俯角是30°,已知教学楼AB高4米.(1)求教学楼与旗杆的水平距离AD;(结果保留根号)(2)求旗杆CD的高度.18、如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B、C两地相距120海里.(1)求出此时点A到岛礁C的距离;(2)若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)答案解析部分一、解答题1、解:过点M作MN⊥AB于N,设MN=x米.在Rt△AMN中,∵∠ANM=90°,∠MAN=30°,∴MA=2MN=2x,AN=MN=x.在Rt△BMN中,∵∠BNM=90°,∠MBN=45°,∴BN=MN=x,MB=MN=x.∵AN+BN=AB,∴x+x=300(+l),∴x=300,∴MA=2x=600,MB=x=300.故供水站M到小区A的距离是600米,到小区B的距离是300米. 2、解:由已知,得∠ECA=30°,∠FCB=60°,CD=90,EF∥AB,CD⊥AB于点D.∴∠A=∠ECA=30°,∠B=∠FCB=60°.在Rt△ACD中,∠CDA=90°,tanA=,∴AD=.在Rt△BCD中,∠CDB=90°,tanB=,∴DB=.∴AB=AD+BD=90+30=120.答:建筑物A、B间的距离为120米.3、解:过点D作DH⊥AN于H,过点E作FE⊥于DH于F,∵坡面DE=20米,山坡的坡度i=1:,∴EF=10米,DF=米,∵DH=DF+EC+=(+30)米,∠ADH=30°,∴AH=×DH=(10+)米,∴AN=AH+EF=(20+)米,∵∠B=45°,∴=BN=20米,∴AB=AN﹣BN=≈17米,答:条幅的长度是17米. 4、解:过点B作BD⊥AP于D,由已知条件得:AB=20×2=40,∠P=75°﹣30°=45°,在Rt△ABD中,∵AB=40,∠A=30,∴BD=AB=20,在R t△BDP中,∵∠P=45°,∴PB=BD=≈28.3(海里).答:此时海监船与黄岩岛P的距离BP的长约为28.3海里.5、解:如图:过P作PM⊥AB于M,则∠PMB=∠PMA=90°,∵∠PBM=90°﹣45°=45°,∠PAM=90°﹣60°=30°,AP=20海里,∴PM=AP=10海里,AM=cos30°AP=海里,∴∠BPM=∠PBM=45°,∴PM=BM=10海里,∴AB=AM+BM=(10+)海里,∴BP==海里,即小船到B码头的距离是海里,A、B两个码头间的距离是(10+)海里. 6、【答案】解:过点E作EF⊥BC于点F,过点E作EN⊥AB于点N,∵建筑物AB后有一座假山,其坡度为i=1:,∴设EF=x,则FC=x,∵CE=20米,∴x2+(x)2=400,解得:x=10,则FC=m,∵BC=25m,∴BF=NE=(25+)m,∴AB=AN+BN=NE+EF=10+25+=(35+)m,答:建筑物AB的高为(35+)m.【考点】解直角三角形的应用-坡度坡角问题,解直角三角形的应用-仰角俯角问题【解析】【分析】首先过点E作EF⊥BC 于点F,过点E作EN⊥AB于点N,再利用坡度的定义以及勾股定理得出EF、FC的长,求出AB的长即可.7、【答案】解:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,∠C=60°,AD=30,则tanC=,∴CD==10,∴BC=30+10.答:该船与B港口之间的距离CB的长为:(30+10)海里.【考点】解直角三角形的应用-方向角问题【解析】【解答】作AD⊥BC于D,根据题意求出∠ABD=45°,得到AD=BD=30 ,求出∠C=60°,根据正切的概念求出CD的长,得到答案.【分析】作AD⊥BC于D,根据题意求出∠ABD=45°,得到AD=BD=30,求出∠C=60°,根据正切的概念求出CD的长,得到答案.8、【答案】解:过点C作CD⊥AB于D,∴AD=CD•cot45°=CD,BD=CD•cot30°= CD,∵BD+AD=AB=250(+1)(米),即CD+CD=250(+1),∴CD=250,250米>200米.答:在此路段修建铁路,油库C是不会受到影响【考点】解直角三角形的应用-方向角问题【解析】【分析】根据题意,在△ABC中,∠ABC=30°,∠BAC=45°,AB=250(+1)米,是否受到影响取决于C点到AB的距离,因此求C点到AB的距离,作CD⊥AB于D点.此题考查了解直角三角形及勾股定理的应用,用到的知识点是方向角,关键是根据题意画出图形,作出辅助线,构造直角三角形,“化斜为直”是解三角形的基本思路,常需作垂线(高),原则上不破坏特殊角(30°、45°、60°).9、【答案】解:他的这种坐姿不符合保护视力的要求,理由:如图2所示:过点B作BD⊥AC于点D,∵BC=30cm,∠ACB=53°,∴sin53°= = ≈0.8,解得:BD=24,cos53°= ≈0.6,解得:DC=18,∴AD=22﹣18=4(cm),∴AB= = = <,∴他的这种坐姿不符合保护视力的要求.【考点】解直角三角形的应用【解析】【分析】根据锐角三角函数关系得出BD,DC的长,进而结合勾股定理得出答案.此题主要考查了解10、【答案】解:设DH=x米,∵∠CDH=60°,∠H=90°,∴CH=DH•sin60°= x,∴BH=BC+CH=2+x,∵∠A=30°,∴AH= BH=2 +3x,∵AH=AD+DH,∴2 +3x=20+x,解得:x=10﹣,∴B H=2+ (10﹣)=10 ﹣1≈16.3(米).答:立柱BH的长约为.【考点】解直角三角形的应用【解析】【分析】设DH=x米,由三角函数得出= x,得出BH=BC+CH=2+ x,求出AH= BH=2 +3x,由AH=AD+DH得出方程,解方程求出x,即可得出结果.本题考查了解直角三角形的应用;由三角函数求出CH和AH是解决问题的关键.11、【答案】解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在直角△ADF 中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE= = =10 (m),∴BC=BE﹣CE=70﹣10 ≈70﹣17.32≈52.7(m).答:障碍物B,C两点间的距离约为.【考点】解直角三角形的应用-仰角俯角问题【解析】【分析】如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解直角△AFD得到DF的长度;通过解直角△DCE得到CE的长度,则BC=BE﹣CE.本题考查了解直角三角形﹣仰角俯角问题.要求学生能借助仰角构造直角三角形并解直角三角形.12、【答案】解:延长AD交BC的延长线于G,作DH⊥BG于H,如图所示:在Rt△DHC中,∠DCH=60°,CD=4,则CH=CD•cos∠DCH=4×cos60°=2,DH=CD•sin∠DCH=4×sin60°=2 ,∵DH⊥BG,∠G=30°,∴HG= = =6,∴CG=CH+HG=2+6=8,设AB=xm,∵AB⊥BG,∠G=30°,∠BCA=45°,∴BC=x,BG= = = x,∵BG﹣BC=CG,∴ x﹣x=8,解得:x≈11(m);答:电线杆的高为11m.【考点】解直角三角形的应用-仰角俯角问题,解直角三角形的应用-方向角问题【解析】【分析】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.延长AD交BC的延长线于G,作DH⊥BG于H,由三角函数求出求出CH、DH的长,得出CG,设AB=xm,根据正切的定义求出BG,得出方程,解方程即可.13、【答案】解:过A作AE⊥MN,垂足为E,过C作CF⊥MN,垂足为F设ME=x,Rt△AME中,∠MAE=45°,∴AE=ME=x,Rt△MCF中,MF=x+0.2,CE= = (x+0.2),∵BD=AE+CF,∴x+ (x+0.2)=30∴x≈11.0,即AE=11.0,∴MN=11.0+1.7=12.7≈13.【考点】解直角三角形的应用【解析】【分析】首先分析图形:根据题意构造直角三角形;本题涉及到两个直角三角形,应利用其公共边构造三角关系,进而可求出答案.二、综合题14、【答案】(1)解:过点B作BE⊥AC于点E,在Rt△AEB中,AB=60m,sinA=,BE=ABsinA=60×=30,cosA=,∴AE=60×=30m,在Rt△CEB中,∠ACB=∠CBD﹣∠A=75°﹣30°=45°,∴BE=CE=30m∴点B到AC的距离为30m.(2)解:过点B作BE⊥AC于点E,在Rt△AEB中,AB=60m,sinA=,BE=ABsinA=60×=30,cosA=,∴AE=60×=30m,在Rt△CEB中,∠ACB=∠CBD﹣∠A=75°﹣30°=45°,∴BE=CE=30m,∴AC=AE+CE=(30+30)m,在Rt△ADC中,sinA=,则CD=(30+30)×=(15+15)m.【考点】解直角三角形的应用【解析】【解答】过点B作BE⊥AC于点E,在直角三角形AEB中,利用锐角三角函数定义求出AE的长,在直角三角形CEB中,利用锐角三角函数定义求出BE与CE的长,由AE+CE求出AC的长,即可求出CD的长.【分析】此题考查了构造直角三角形利用三角函数求线段长的知识点.15、【答案】(1)解:由题意可得:tan50°= ≈1.2,解得:AC=24,∵∠BDC=45°,∴DC=BC=20m,∴AB=AC﹣BC=24﹣20=4(m),答:建筑物BC的高度为4m;(2)解:设DC=BC=xm,根据题意可得:tan50°= = ≈1.2,解得:x=25,答:建筑物BC的高度为25m【考点】解直角三角形的应用-仰角俯角问题【解析】【分析】(1)直接利用tan50°= ,进而得出AC的长,求出AB的长即可;(2)直接利用tan50°= ,进而得出BC的长求出答案.此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键.16、【答案】(1)解:作BH⊥AF于H,如图,在Rt△ABF中,∵sin∠BAH=,∴BH=800•sin30°=400,∴EF=BH=400m(2)解:在Rt△CBE中,∵sin∠CBE= ,∴CE=200•sin45°=100 141.4,∴CF=CE+EF=141.4+400≈541(m).答:AB段山坡高度为400米,山CF的高度约为541米【考点】解直角三角形的应用-坡度坡角问题【解析】【分析】(1)作BH⊥AF于H,如图,在Rt△ABF中根据正弦的定义可计算出BH的长,从而得到EF的长;(2)先在Rt△CBE中利用∠CBE的正弦计算出CE,然后计算CE和EF的和即可.本题考查了解直角三角形的应用﹣坡度与坡角问题:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i═tanα.17、【答案】(1)解:∵教学楼B点处观测到旗杆底端D的俯角是30°,∴∠ADB=30°,在Rt△ABD中,∠BAD=90°,∠ADB=30°,AB=4m,∴AD= = =4 (m),答:教学楼与旗杆的水平距离是4 m.(2)解:∵在Rt△ACD中,∠ADC=90°,∠CAD=60°,AD=4 m,∴CD=AD•tan60°=4 × =12(m),答:旗杆CD的高度是12m.【考点】解直角三角形的应用-仰角俯角问题【解析】【分析】(1)根据题意得出∠ADB=30°,进而利用锐角三角函数关系得出AD的长;(2)利用(1)中所求,结合CD=AD•tan60°求出答案.此题主要考查了解直角三角的应用,正确应用锐角三角函数关系是解题关键.18、【答案】(1)解:如图所示:延长BA,过点C作CD⊥BA延长线与点D,由题意可得:∠CBD=30°,BC=120海里,则DC=60海里,故cos30°= = ,解得:AC=40 ,答:点A到岛礁C的距(2)解:如图所示:过点A′作A′N⊥BC于点N,可得∠1=30°,离为40 海里.∠BA′A=45°,A′N=A′E,则∠2=15°,即A′B平分∠CBA,设AA′=x,则A′E= x,故CA′=2A′N=2× x= x,∵ x+x=40 ,∴解得:x=20(﹣1),答:此时“中国海监50”的航行距离为20(﹣1)海里.【考点】解直角三角形的应用-方向角问题【解析】【分析】(1)根据题意得出:∠CBD=30°,BC=120海里,再利用cos30°= ,进而求出答案;(2)根据题意结合已知得出当点B在A′的南偏东75°的方向上,则A′B平分∠CBA,进而得出等式求出答案.此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.。
2017年广东省初中毕业生学业考试数学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 5的相反数是( )A. .5 C2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。
2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×××3.已知,则的补角为( )A. B. C. D.4.如果2是方程的一个根,则常数k的值为( ).2 C5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( ).90 C6.下列所述图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆7.如题7图,在同一平面直角坐标系中,直线与双曲线相交于A、B两点,已知点A的坐标为(1,2),则点B的坐标为( )A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2)题7图8.下列运算正确的是( )A. B.C. D.9.如题9图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为( )°°°°10.如题10图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①;②;③;④,其中正确的是( )A.①③B.②③C.①④D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式: .12.一个n边形的内角和是,那么n= .13.已知实数a,b在数轴上的对应点的位置如题13图所示,则 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 .15.已知,则整式的值为 .16.如题16图(1),矩形纸片ABCD中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按题16图(3)操作:沿过点F的直线折叠,使点C落在EF上的点H 处,折痕为FG,则A、H两点间的距离为 .三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:.18.先化简,再求值,其中.19.学校团委组织志愿者到图书馆整理一批新进的图书。
初中数学新课标考试模拟试题(一)一、选择题(每小题3分,共45分)1、新课程的核心理念是()A.联系生活学数学B.培养学习数学的爱好C.一切为了每一位学生的发展 D、进行双基教学2、教学是数学活动的教学,是师生之间、学生之间()的过程。
A.交往互动B.共同发展C.交往互动与共同发展3、教师要积极利用各种教学资源,创造性地使用教材,学会()。
A.教教材B.用教材教 C、教课标 D、教课本4、根据《数学课程标准》的理念,解决问题的教学要贯穿于数学课程的全部内容中,不再单独出现()的教学。
A.概念 B.计算 C.应用题 D、定义5、“三维目标”是指知识与技能、()、情感态度与价值观。
A.理解与掌握B.过程与方法C.科学与探究 D、继承与发展6、《数学课程标准》中使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的()的动词。
A.过程性目标 B.知识技能目标7、建立成长记录是学生开展()的一个重要方式,它能够反映出学生发展与进步的历程。
A.自我评价 B.相互评价 C.多样评价 D、小组评价8、学生的数学学习活动应是一个()的过程。
A、生动活泼的主动的和富有个性B、主动和被动的生动活泼的C、生动活泼的被动的富于个性9、“用数学”的含义是()A.用数学学习B.用所学数学知识解决问题C.了解生活数学 D、掌握生活数学10、《新课程标准》对“基本理念”进行了很大的修改,过去的基本理念说:“人人学有价值的数学,人人获得必须的数学,不同人在数学上得到不同的发展。
”,现在的《新课标》改为: ( )A.人人都能获得良好的数学教育,不同的人在数学上得到不同的发展B.人人都获得教育,人人获得良好的教育C.人人学有用的数学,人人获得有价值的教育D.人人获得良好的数学教育11、《新课标》强调“从双基到四基”的转变,四基是指:()A. 基础知识、基本技能、基本方法和基本过程B. 基础知识、基本经验、基本过程和基本方法C. 基础知识、基本技能、基本思想和基本活动经验D. 基础知识、基本经验、基本思想和基本过程12、《新课标》强调“从两能到四能”的转变,“四能”是指()A. 分析问题、解决问题的能力;发现问题和讨论问题的能力。
激发兴趣 培养习惯 塑造品格学而思联赛团队2016全国初中数学联合竞赛试题(初二组)第一试一、选择题(本题满分42分,每小题7分)1.用[]x 表示不超过x 的最大整数,把[]x x -称为x 的小数部分.已知t =,a 是t 的小数部分,b 是t -的小数部分,则112b a-= ( ) .A12 .B.C 1 .D2.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案有 ( ) .A 9种 .B 10种 .C 11种 .D 12种 3.如图,P 为ABC ∆内一点,070,BAC ∠=0120,BPC ∠=BD 是ABP ∠的平分线,CE 是ACP ∠的平分线,BD 与CE 交于F ,则BFC ∠= ( ).A 085 .B 090 .C 095 .D 01004.记11n S n =++则20162016S =( ) .A 20162017 .B 20172016 .C 20172018 .D 201820175.点D 、E 、F 分别在ABC ∆的三边BC 、AB 、AC 上,且AD 、BF 、CE 相交于一点M ,若5,AB AC BE CF += 则AMMD= ( ) .A 72 .B 3 .C 52.D 2 6.设,,,a b c d 都是正整数,且5234,,319,a b c d a c ==-= 则2b ca d-= ( ) .A 15 .B 17 .C 18 .D 20二、填空题(本题满分28分,每小题7分)1.如图,已知四边形ABCD 的对角互补,且,15BAC DAC AB ∠=∠=,12.AD = 过顶点CA激发兴趣 培养习惯 塑造品格学而思联赛团队作CE AB ⊥于,E 则AEBE= .2.已知整数,,a b c 满足不等式22222112820,a b c ab b c +++<++则a b c +-= ____.3.若质数p 、q 满足:340,111,q p p q --=+<则pq 的最大值为 .4.将5个1、5个2、5个3、5个4、5个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过2.考虑每列中各数之和,设这5个和的最小值为M ,则M 的最大值为 .第二试一、(本题满分20分)如图,ABCD 为平行四边形,E 为BC 的中点,DF AE ⊥于F ,H 为DF 的中点.证明:CH DF ⊥.D激发兴趣 培养习惯 塑造品格学而思联赛团队二、(本题满分25分)设互不相等的非零实数,,a b c 满足:222,a b c b c a+=+=+ 求22222a b c b c a ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 的值.三、(本题满分25分)已知,a b 为正整数,求22324M a ab b =---能取到的最小正整数值.。
专题02 钟表角度计算的常见题型举例解析【专题综述】表针转动一周就是一个周角,即3600,时针12小时转动一周,所以时针1小时转过了0030360121=⨯,1分针转过了005.030601=⨯;分针60分钟转动1周,所以分针1分钟转过了006360601=⨯;相同时间,分针转过的角度是时针转过的角度的12倍。
钟表角度的计算较难理解,不易找到求解途径和方法,因此,钟表角度的计算除了要理解掌握好以上一些要点外,有时还要借助方程的知识,才能使复杂问题迎刃而解。
【方法解读】一、求时针与分针所成角的度数例1 求10点24分时,时针与分针所成的角解:10点24分,时针转过了︒=⨯︒+⨯︒312245.01030,分针转过︒=⨯︒144246,时针与分针所成的角为 ︒=︒-︒168144312.学5科*网 【解读】利用时针和分针转动时角度变化的特点来求解,时针1小时转过了︒=︒⨯30360121,1分针转过了︒=︒⨯5.030601;分针60分钟转动1周,所以分针1分钟转过了︒=︒⨯6360601. 【举一反三】如图是一块手表早上8时的时针、分针的位置图,那么分针与时针所成的角的度数是( )A. 60°B. 80°C. 120°D. 150°【来源】2017-2018学年七年级数学北师大版上册 第4章基本平面图形 单元测试题 【答案】C二、时针与分针重合时求时间例2 在7点与8点之间的什么时刻,时针与分针重合?解:设7点过x 分钟时,时针与分针重合,根据题意可得方程 x x 65.0730=+⨯解得11238=x , 即7点过11238分钟时,时针与分针重合. 【解读】时针与分针重合,即时针与分针转过的角度相等,结合时针和分针转动时角度变化的特点以及构造方程来求解. 【举一反三】我们知道,钟表的时针与分针每隔一定的时间就会重合一次,请利用所学知识确定,时针与分针从上一次重合到下一次重合,间隔的时间是______ 小时.【来源】山东省滨州市惠民县2017-2018学年七年级上学期期末数学试题 【答案】1211【解析】试题解析:设间隔的时间为x 小时, 可得:(60-5)x=60, 解得:x=1211. 即再过1211小时时针与分针再次重合, 故答案为: 1211.三、时针与分针成一直线时求时间.例3 在8点与9点之间的什么时刻,时针与分针成一直线?【解读】时针与分针成一直线,即时针转过的角度与分针转过的角度之差为︒180,结合时针和分针转动时角度变化的特点及构造方程来求解. 【举一反三】上午九点时分针与时针互相垂直,再经过 分钟后分针与时针第一次成一条直线. 【来源】暖春三月,贴心开学测 初一数学第九套 【答案】11416【解析】分针每分钟转动6°,时针每分钟转动0.5°,设再经过a 分钟后分针与时针第一次成一条直线, 则有6a+90-0.5a=180,解得a=11416.学3科*网 四、时针与分针所成的角为90︒时求时间例4 在4点与5点之间的什么时刻,时针与分针所成的角为90︒?【解读】时针与分针所成角为90︒,结合时针和分针转动时角度变化的特点及构造方程来求解. 【举一反三】钟面角是指时钟的时针与分针所成的角,如果时间从下午2点整到下午4点整,钟面角为90°的情况有( )A .有一种B .有二种C . 有三种D .有四种【来源】2015-2016学年江苏省苏州工业园区七年级上学期期末考试数学试卷(带解析) 【答案】D . 【解析】试题解析:设n=分,m=点,则钟面角为 5.53030 5.5()()n m m n ︒⨯-︒⨯︒⨯-⎧⎨︒⨯⎩,分钟在前,时针在前,将m=2代入上式,得n 1=27311,n 2=60-5511=54611, 将m=3代入上式,得n 3=32811,n 4=0.4:00时,钟面角为30°×4=120°≠90°. 故选D .【强化训练】1.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是_____________. 【来源】2015年人教版初中数学九年级上23.1图形的旋转练习题(带解析) 【答案】90º【解析】本题主要考查了钟面角.根据时针12小时走360°,时针旋转的旋转角=360°×时间差÷12.解:∵时针从上午的8时到11时共旋转了3个格,每相邻两个格之间的夹角是30°, ∴时针旋转的旋转角=30°×3=90°.2.从 4 点开始,经过________________ 分钟,时钟的时针和分针在 4 点至 5 点之间第一次重合. 【来源】【全国百强校】广东省深圳市深圳中学2016-2017学年七年级上学期期末考试数学试题 【答案】24011【解析】设再经过x 分钟,时针与分针第一次重合,时针每小时走30度角,分针每分钟走6度角, 4点时时针与分针夹角为120度,所以60x30+120=6x. x =24011.3.李欣同学下午5:30放学离校,此刻时钟上时针与分针的夹角大小应为________ . 【来源】湖北省武汉市开发区第一初级中学2017-2018学年七年级12月月考数学试题 【答案】15°4.如图,钟表8时30分时,时针与分针所成的角的度数为( )A .30°B .60°C .75°D .90°【来源】2015-2016学年山东省东营市广饶县乐安中学七年级上期中数学试卷(带解析) 【答案】C . 【解析】试题分析:8时30分时,时针指向8与9之间,分针指向6.钟表12个数字,每相邻两个数字之间的夹角为30°,所以8时30分时分针与时针的夹角是2×30°+15°=75°.故答案选C . 5.小明每天晚上10:00回家,这时分针与时针所成的角的度数为( ) A.60° B.90° C.30° D.45° 【来源】2011年广东省徐闻县第一中学初一第一学期期末考试数学卷 【答案】A【解析】分析:晚上10:00整,时针指向10,分针指向12.钟表12个数字,每相邻两个数字之间的夹角为30°,因此晚上10:00整分针与时针的夹角正好是2个数字.解答:解:∵每相邻两个数字之间的夹角为30°,∴晚上10:00分针与时针所成的角的度数2×30°=60°.故选A.学`科4网6.下午2点30分时(如图),时钟的分针与时针所成角的度数为()A. 90°B. 105°C. 120°D. 135°【来源】广东省深圳高级中学初中部2017-2018学年第一学期期末模拟测试七年级数学试卷【答案】B7.一天,妈妈问儿子今天打球时间有多长。
广东省深圳市宝安区八年级上学期期末数学试卷一、选择题(12*3=36分)1.下列各数中,无理数的是()A.B.C.D.3.14152.在军事演习中,利用雷达跟踪某一“敌方”目标,需要确定该目标的()A.方向 B.距离 C.大小 D.方向与距离3.一次函数的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.在直角坐标系中,点A(a,3)与点B(﹣4,b)关于y轴对称,则a+b的值是()A.﹣7 B.﹣1 C.1 D.75.已知x=1,y=2是方程ax+y=5的一组解,则a的值是()A.﹣3 B.﹣2 C.3 D.76.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m7.某特警队为了选拔“神枪手”,甲、乙、丙、丁四人进人射击比赛,每人10次射击成绩的平均数都是9.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.42,S丁2=0.45,则四人中成绩最稳定的是()A.甲B.乙C.丙D.丁8.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=40°,则∠EPF的度数是()A.25°B.65°C.75°D.85°9.下列命题中,假命题的是()A.同旁内角相等,两直线平行B.等腰三角形的两个底角相等C.同角(等角)的补角相等D.三角形的一个外角大于任何一个与它不相邻的内角10.2015年亚洲杯足球冠军联赛恒大队广州主场,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5600元.其中小组赛球票每张500元,淘汰赛每张800元,问小李预定了小组赛和淘汰赛的球票各多少张?设小李预定了小组赛球票x张,淘汰赛球票y张,可列方程组()A.B.C.D.11.如图,长方形ABCD的边AB=1,BC=2,AP=AC,则点P所表示的数是()A.5 B.﹣2.5 C.D.12.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图4所示,已知开始1小时的行驶速度是60千米/时,那么1小时以后的速度是()A.70千米/时B.75千米/时C.105千米/时D.210千米/时二、填空题(3*4=12分)13.9的算术平方根是.14.如图,已知函数y=ax+b和y=kx的图象交于点P,根据图象可得,二元一次方程组的根是.15.去年“双11”购物节的快递量暴增,某快递公司要在街道旁设立一个派送还点,向A、B两居民区投送快递,派送点应该设在什么地方,才能使它到A、B的距离之和最短?快递员根据实际情况,以街道为x 轴,建立了如图所示的平面直角坐标系,测得坐标A(﹣2,2)、B(6,4),则派送点的坐标是.16.如图,△ABC中,AB=6,BC=8,AC=10,把△ABC沿AP折叠,使边AB与AC重合,点B落在AC 边上的B′处,则折痕AP的长等于.三、解答题17.计算(1)(2).18.(1)(2).19.迎接学校“元旦”文艺汇演,2015~2016学年度八年级某班的全体同学捐款购买了表演道具,经过充分的排练准备,最终获得了一等奖.班长对全体同学的捐款情况绘制成下表:捐款金额5元10元15元20元捐款人数10人15人5人由于填表时不小心把墨水滴在了统计表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的30%,结合上表回答下列问题:(1)该班共有名同学;(2)该班同学捐款金额的众数是元,中位数是元.(3)如果把该班同学的捐款情况绘制成扇形统计图,则捐款金额为20元的人数所对的扇形圆心角为度.20.如图,四边形ABCD中,点F是BC中点,连接AF并延长,交于DC的延长线于点E,且∠1=∠2.(1)求证:△ABF≌△ECF;(2)若AD∥BC,∠B=125°,求∠D的度数.21.列方程解应用题:小张第一次在商场购买A、B两种商品各一件,花费60元;第二次购买时,发现两种商品的价格有了调整:A商品涨价20%,B商品降价10%,购买A、B两种商品各一件,同样花费60元.求A、B两种商品原来的价格.22.某专营商场销售一种品牌电脑,每台电脑的进货价是0.4万元.图中的直线l1表示该品牌电脑一天的销售收入y1(万元)与销售量x(台)的关系,已知商场每天的房租、水电、工资等固定支出为3万元.(1)直线l1对应的函数表达式是,每台电脑的销售价是万元;(2)写出商场一天的总成本y2(万元)与销售量x(台)之间的函数表达式:;(3)在图的直角坐标系中画出第(2)小题的图象(标上l2);(4)通过计算说明:每天销售量达到多少台时,商场可以盈利.23.如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).(1)求对角线AB所在直线的函数关系式;(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;(3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OABC的面积相等时,求点P的坐标.广东省深圳市宝安区八年级上学期期末数学试卷参考答案一、选择题(12*3=36分)1.下列各数中,无理数的是()A.B.C.D.3.1415【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是无理数,选项正确;B、=5是整数,是有理数,选项错误;C、是分数,是有理数,选项错误;D、3.1415是有限小数,是有理数,选项错误.故选A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.在军事演习中,利用雷达跟踪某一“敌方”目标,需要确定该目标的()A.方向 B.距离 C.大小 D.方向与距离【考点】坐标确定位置.【分析】直接利用点的坐标确定位置需要知道其方向与距离进而得出答案.【解答】解:利用雷达跟踪某一“敌方”目标,需要确定该目标的方向与距离.故选:D.【点评】此题主要考查了点的坐标确定位置,正确利用点的位置确定方法是解题关键.3.一次函数的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数图象与系数的关系.【分析】由k=>0,可知图象经过第一、三象限,又b=﹣1<0,直线与y轴负半轴相交,图象经过第四象限,由此得解即可.【解答】解:∵y=x﹣1,∴k=>0,图象经过第一、三象限,b=﹣1<0,直线与y轴负半轴相交,图象经过第四象限,即一次函数y=x﹣1的图象经过第一、三、四象限,不经过第二象限.故选B.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.4.在直角坐标系中,点A(a,3)与点B(﹣4,b)关于y轴对称,则a+b的值是()A.﹣7 B.﹣1 C.1 D.7【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答即可.【解答】解:由题意得,a=4,b=3,则a+b=7,故选:D.【点评】本题考查的是关于x、y轴对称点的坐标特点,关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5.已知x=1,y=2是方程ax+y=5的一组解,则a的值是()A.﹣3 B.﹣2 C.3 D.7【考点】二元一次方程的解.【分析】根据解方程解的定义,将x=1,y=2代入方程ax+y=5,即可求得a的值.【解答】解:根据题意,将x=1,y=2代入方程ax+y=5,得:a+2=5,解得:a=3,故选:C.【点评】本题考查了二元一次方程的解,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.6.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m【考点】勾股定理的应用.【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=6m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.【解答】解:∵△ABC是直角三角形,BC=6m,AC=10m∴AB===8(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=8+6=14(米).故选:C.【点评】本题考查的是勾股定理的应用,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系7.某特警队为了选拔“神枪手”,甲、乙、丙、丁四人进人射击比赛,每人10次射击成绩的平均数都是9.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.42,S丁2=0.45,则四人中成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定【解答】解:∵S甲2=0.63,S乙2=0.51,S丙2=0.42,S丁2=0.45,∴S甲2>S乙2>S2丁>S2丙,∴成绩最稳定的是丙.故选:C.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=40°,则∠EPF的度数是()A.25°B.65°C.75°D.85°【考点】平行线的性质.【分析】由题可直接求得∠BEF,然后根据两直线平行,同旁内角互补可知∠DFE,根据角平分线的性质可求得∠EFP,最后根据三角形内角和求出∠EPF.【解答】解:∵EP⊥EF,∴∠PEF=90°,∵∠BEP=40°,∴∠BEF=∠PEF+∠BEP=130°,∵AB∥CD,∴∠EFD=180°﹣∠BEF=50°,∵FP平分∠EFD,∴∠EFP=0.5×∠EFD=25°,∴∠P=180°﹣∠PEF﹣∠EFP=65°;故选:B.【点评】本题考查了平行线的性质、三角形内角和定理、角平分线的定义;熟记:两直线平行,同旁内角互补;求出∠EFD的度数是解决问题的突破口.9.下列命题中,假命题的是()A.同旁内角相等,两直线平行B.等腰三角形的两个底角相等C.同角(等角)的补角相等D.三角形的一个外角大于任何一个与它不相邻的内角【考点】命题与定理.【分析】利用平行线的判定、等腰三角形的性质、补角的定义及三角形的外角的性质分别判断后即可确定正确的选项.【解答】解:A、同旁内角互补,两直线平行,故错误,是假命题;B、等腰三角形的两个底角相等,正确,是真命题;C、同角(等角)的补角相等,正确,为真命题;D、三角形的一个外角大于任何一个与它不相邻的内角,正确,为真命题.故选A.【点评】本题考查了命题与定理的知识,解题的关键是能够了解平行线的判定、等腰三角形的性质、补角的定义及三角形的外角的性质,难度不大.10.2015年亚洲杯足球冠军联赛恒大队广州主场,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5600元.其中小组赛球票每张500元,淘汰赛每张800元,问小李预定了小组赛和淘汰赛的球票各多少张?设小李预定了小组赛球票x张,淘汰赛球票y张,可列方程组()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设小李预定了小组赛和淘汰赛的球票各x张,y张,根据10张球票共5600元,列方程组求解.【解答】解:设小李预定了小组赛和淘汰赛的球票各x张,y张,由题意得,,故选C【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.11.如图,长方形ABCD的边AB=1,BC=2,AP=AC,则点P所表示的数是()A.5 B.﹣2.5 C.D.【考点】实数与数轴.【分析】根据勾股定理求出长方形ABCD的对角线AC的长,即为AP的长,进而求出点P所表示的数.【解答】解:∵长方形ABCD的边AB=1,BC=2,∴AC==,∴AP=AC=,∴点P所表示的数为﹣.故选D.【点评】本题考查了实数与数轴,利用勾股定理求出长方形ABCD的对角线AC的长是解题的关键.12.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图4所示,已知开始1小时的行驶速度是60千米/时,那么1小时以后的速度是()A.70千米/时B.75千米/时C.105千米/时D.210千米/时【考点】一次函数的应用.【分析】直接利用函数图象得出汽车行驶3小时一共行驶210km,再利用开始1小时的行驶速度是60千米/时,进而得出1小时后的平均速度.【解答】解:由题意可得:汽车行驶3小时一共行驶210km,则一小时后的平均速度为:(210﹣60)÷2=75(km/h),故选:B.【点评】此题主要考查了一次函数的应用,根据图象得出正确信息是解题关键.二、填空题(3*4=12分)13.9的算术平方根是3.【考点】算术平方根.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.14.如图,已知函数y=ax+b和y=kx的图象交于点P,根据图象可得,二元一次方程组的根是.【考点】一次函数与二元一次方程(组).【分析】由图可知:两个一次函数的交点坐标为(﹣2,﹣1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣2,﹣1),即x=﹣2,y=﹣1同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为:.【点评】此题考查一次函数与方程组问题,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.15.去年“双11”购物节的快递量暴增,某快递公司要在街道旁设立一个派送还点,向A、B两居民区投送快递,派送点应该设在什么地方,才能使它到A、B的距离之和最短?快递员根据实际情况,以街道为x轴,建立了如图所示的平面直角坐标系,测得坐标A(﹣2,2)、B(6,4),则派送点的坐标是(,0).【考点】轴对称-最短路线问题;坐标确定位置.【分析】可先找点A关于x轴的对称点C,求得直线BC的解析式,直线BC与x轴的交点就是所求的点.【解答】解:作A关于x轴的对称点C,则C的坐标是(﹣2,﹣2).设BC的解析式是y=kx+b,则,解得:,则BC的解析式是y=x﹣.令y=0,解得:x=.则派送点的坐标是(,0).故答案是(,0).【点评】本题考查了对称的性质以及待定系数法求函数的解析式,正确确定派送点的位置是关键.16.如图,△ABC中,AB=6,BC=8,AC=10,把△ABC沿AP折叠,使边AB与AC重合,点B落在AC 边上的B′处,则折痕AP的长等于3.【考点】翻折变换(折叠问题).【分析】首先证明∠B=90°,设PB=PB′=x,在RT△PB′C中利用勾股定理求出x,再在RT△APB中利用勾股定理求出AP即可.【解答】解:∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2,∴∠B=90°∵△APB′是由APB翻折,∴AB=AB′=6,PB=PB′,∠B=∠AB′P=∠PB′C=90°设PB=PB′=x,在RT△PB′C中,∵B′C=AC﹣AB=4,PC=8﹣x,∴x2+42=(8﹣x)2,∴x=3,∴AP===3,故答案为3.【点评】本题考查勾股定理的逆定理、勾股定理、翻折不变性等知识,证明∠B=90°是解题的关键,属于2016届中考常考题型.三、解答题17.计算(1)(2).【考点】实数的运算;零指数幂.【分析】(1)直接利用二次根式乘法运算法则结合零指数幂的性质化简求出答案;(2)首先化简二次根式,进而合并求出答案.【解答】解:(1)=+2+1=+3;(2)=3﹣2﹣1=﹣1.【点评】此题主要考查了实数运算以及二次根式的化简,正确化简二次根式是解题关键.18.(1)(2).【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把①代入②得:x+4x﹣6=14,解得:x=5,把x=5代入①得:y=7,则方程组的解为;(2),①×3+②得:11x=﹣11,即x=﹣1,把x=﹣1代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.19.迎接学校“元旦”文艺汇演,2015~2016学年度八年级某班的全体同学捐款购买了表演道具,经过充分的排练准备,最终获得了一等奖.班长对全体同学的捐款情况绘制成下表:捐款金额5元10元15元20元捐款人数10人15人5人由于填表时不小心把墨水滴在了统计表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的30%,结合上表回答下列问题:(1)该班共有50名同学;(2)该班同学捐款金额的众数是10元,中位数是12.5元.(3)如果把该班同学的捐款情况绘制成扇形统计图,则捐款金额为20元的人数所对的扇形圆心角为86.4度.【考点】众数;扇形统计图;中位数.【分析】(1)由于知道捐款金额为10元的人数为全班人数的36%,由此即可求出该班共有多少人;(2)首先利用(1)的结果计算出捐15元的同学人数,然后利用中位数、众数的定义即可求出捐款金额的众数和中位数;(3)由于捐款金额为20元的人数为12人,由此求出捐款金额为20元的人数是总人数的百分比,然后乘以360°就知道扇形的圆心角.【解答】解:(1)∵18÷36%=50,∴该班共有50人;(2)∵捐15元的同学人数为50﹣(7+18+12+3)=10,∴学生捐款的众数为10元,又∵第25个数为10,第26个数为15,∴中位数为(10+15)÷2=12.5元;(3)依题意捐款金额为20元的人数所对应的扇形圆心角的度数为360°×=86.4°.故答案为:50,10,12.5,86.4.【点评】此题考查了一组数据的众数、中位数和扇形统计图等知识,解题的关键是从统计表中整理出有关解题信息,难度不大.20.如图,四边形ABCD中,点F是BC中点,连接AF并延长,交于DC的延长线于点E,且∠1=∠2.(1)求证:△ABF≌△ECF;(2)若AD∥BC,∠B=125°,求∠D的度数.【考点】全等三角形的判定与性质.【分析】(1)根据AAS即可判定△ABF≌△ECF.(2)利用平行四边形对角相等即可证明.【解答】(1)证明:在△ABF和△ECF中,,∴△ABF≌△ECF(AAS).(2)解:∵∠1=∠2(已知),∴AB∥ED(内错角相等,两直线平行),∵AD∥BC(已知),∴四边形ABCD是平行四边形(两组对边平行的四边形是平行四边形),∴∠D=∠B=125°(平行四边形的对角相等).【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质,利用平行四边形的性质证明角相等是解题的关键.属于2016届中考常考题型.21.列方程解应用题:小张第一次在商场购买A、B两种商品各一件,花费60元;第二次购买时,发现两种商品的价格有了调整:A商品涨价20%,B商品降价10%,购买A、B两种商品各一件,同样花费60元.求A、B两种商品原来的价格.【考点】二元一次方程组的应用.【分析】设A种商品原来的价格为x元,B种商品原来的价格为y元,根据题意列出两个二元一次方程,解方程组求出x和y的值即可.【解答】解:设A种商品原来的价格为x元,B种商品原来的价格为y元,根据题意可得:,整理得:,由①×1.2﹣②得.答:A商品原来的价格为20元,B商品价格为40元.【点评】本题考查了二元一次方程组的应用,解题的关键是读懂题意,找出之间的数量关系列出二元一次方程组,此题难度不大.22.某专营商场销售一种品牌电脑,每台电脑的进货价是0.4万元.图中的直线l1表示该品牌电脑一天的销售收入y1(万元)与销售量x(台)的关系,已知商场每天的房租、水电、工资等固定支出为3万元.(1)直线l1对应的函数表达式是y=0.8x,每台电脑的销售价是0.8万元;(2)写出商场一天的总成本y2(万元)与销售量x(台)之间的函数表达式:y2=0.4x+3;(3)在图的直角坐标系中画出第(2)小题的图象(标上l2);(4)通过计算说明:每天销售量达到多少台时,商场可以盈利.【考点】一次函数的应用.【分析】(1)由函数图象知,y与x成正比例函数关系且过(5,4),待定系数法可求得直线l1对应的函数表达式,再根据每台电脑售价=每天销售收入÷销售量可得;(2)根据:每天总成本=电脑的总成本+每天的固定支出,可列函数关系式;(3)根据(2)中函数关系式,确定两点(0,3),(5,5),作射线即可;(4)根据:商场每天利润=电脑的销售收入﹣每天的总成本,列出函数关系式,根据题意得到不等式、解不等式即可.【解答】解:(1)设y=kx,将(5,4)代入,得k=0.8,故y=0.8x,每台电脑的售价为:=0.8(万元);(2)根据题意,商场每天的总成本y2=0.4x+3;(3)如图所示,(3)商场每天的利润W=y﹣y2=0.8x﹣(0.4x+3)=0.4x﹣3,当W>0,即0.4x﹣3>0时商场开始盈利,解得:x>7.5.答:每天销售量达到8台时,商场可以盈利.【点评】本题主要考查一次函数的实际应用,熟悉一次函数解析式的求法、图象的画法及根据实际问题列函数关系式是一次函数的基础.23.如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).(1)求对角线AB所在直线的函数关系式;(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;(3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OABC的面积相等时,求点P的坐标.【考点】一次函数综合题.【分析】(1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;(2)由相似三角形的性质找到BM的长度,再结合OM=OB﹣BM得出OM的长,根据勾股定理即可得出线段AM的长;(3)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标.【解答】解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),∴AO=CB=4,OB=AC=8,∴A点坐标为(0,4),B点坐标为(8,0).设对角线AB所在直线的函数关系式为y=kx+b,则有,解得:,∴对角线AB所在直线的函数关系式为y=﹣x+4.(2)∵四边形AOBC为长方形,且MN⊥AB,∴∠AOB=∠MNB=90°,又∵∠ABO=∠MBN,∴△AOB∽△MNB,∴.∵AO=CB=4,OB=AC=8,∴由勾股定理得:AB==4,∵MN垂直平分AB,∴BN=AN=AB=2.===,即MB=5.OM=OB﹣MB=8﹣5=3,由勾股定理可得:AM==5.(3)∵OM=3,∴点M坐标为(3,0).又∵点A坐标为(0,4),∴直线AM的解析式为y=﹣x+4.∵点P在直线AB:y=﹣x+4上,∴设P点坐标为(m,﹣m+4),点P到直线AM:x+y﹣4=0的距离h==.△PAM的面积S△PAM=AM•h=|m|=S OABC=AO•OB=32,解得m=±,故点P的坐标为(,﹣)或(﹣,).【点评】本题考查了坐标系中点的意义、相似三角形的判定及性质、勾股定义、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A、B点的坐标;(2)由相似三角形的相似比找出BM的长度;(3)结合点到直线的距离、三角形和长方形的面积公式找到关于m的一元一次方程.本题属于中等题,难度不大,(1)小问容易得出结论;(2)没有直接找OM长度,而是利用相似三角形找出BM的长度,此处部分学生可能会失分;(3)难度不大,运算量不小,这里尤其要注意点P有两个.广东省深圳市龙岗区八年级(上册)期末数学试卷一、选择题(每小题3分,共36分)1.数学,,π,,0.中无理数的个数是( )A.1 B.2 C.3 D.42.下列长度的线段不能构成直角三角形的是( )A.8,15,17 B.1.5,2,3 C.6,8,10 D.5,12,133.如图,笑脸盖住的点的坐标可能为( )A.(5,2)B.(3,﹣4)C.(﹣4,﹣6)D.(﹣1,3)4.点M(2,1)关于x轴对称的点的坐标是( )A.(1,﹣2)B.(﹣2,1)C.(2,﹣1)D.(﹣1,2)5.下列各式中,正确的是( )A.=±4 B.±=4 C.=﹣3 D.=﹣46.若函数y=(k﹣1)x|k|+b+1是正比例函数,则k和b的值为( )A.k=±1,b=﹣1 B.k=±1,b=0 C.k=1,b=﹣1 D.k=﹣1,b=﹣17.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )A.B.C.D.8.下列命题中,不成立的是( )A.两直线平行,同旁内角互补B.同位角相等,两直线平行C.一个三角形中至少有一个角不大于60度D.三角形的一个外角大于任何一个内角9.为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查.那么最终买什么水果,下面的调查数据中最值得关注的是( )A.中位数B.平均数C.众数 D.加权平均数10.2016年“龙岗年货博览会”在大运中心体育馆展销,小丽从家出发前去购物,途中发现忘了带钱,于是打电话让妈妈马上从家里送来,同时小丽也往回走,遇到妈妈后聊了一会儿,接着继续前往大运中心体育馆.设小丽从家出发后所用时间为t,小丽与体育馆的距离为S,下面能反映S与t的函数关系的大致图象是( )A. B.C.D.11.如图,∠x的两条边被一直线所截,用含α和β的式子表示∠x为( )A.α﹣β B.β﹣α C.180°﹣α+βD.180°﹣α﹣β12.如图,把一个等腰直角三角形放在间距是1的横格纸上,三个顶点都在横格上,则此三角形的斜边长是( )A.3 B. C.2D.2二、填空题(每小题3分,共12分)13.16的平方根是__________.14.数据3,4,6,8,x,7的众数是7,则数据4,3,6,8,2,x的中位数是__________.15.观察下列各式:=﹣1,=,=2﹣…请利用你发现的规律计算:(+++…+)×(+)=__________.16.如图,在矩形ABCD中,AB=3,BC=4,现将点A、C重合,使纸片折叠压平,折痕为EF,那么重叠部分△AEF的面积=__________.三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.计算:﹣||﹣4+.18.解方程组:.19.每年9月举行“全国中学生数学联赛”,成绩优异的选手可参加“全国中学生数学冬令营”,冬令营再选拔出50名优秀选手进入“国家集训队”.第31界冬令营已于2015年12月在江西省鹰谭一中成功举行.现将脱颖而出的50名选手分成两组进行竞赛,每组25人,成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)请你将表格补充完整:平均数中位数众数方差一组74 __________ __________ 104二组__________ __________ __________ 72(2)从本次统计数据来看,__________组比较稳定.。
2016年某某省某某市思源实验学校中考数学模拟试卷(三)一、选择题.(本大题满分42分,每小题3分)1.2016的倒数是()A.B.﹣C.2016 D.﹣20162.计算a2•a3,正确结果是()A.a5B.a6C.a8D.a93.数据3,﹣1,0,2,﹣1的中位数是()A.﹣1 B.0 C.2 D.34.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为()A.44×105×105×106×1055.若等腰三角形有两条边的长度为2和5,则此等腰三角形的周长为()A.9 B.12 C.9或12 D.106.如图中几何体的主视图是()A.B.C.D.7.若分式的值为0,则x的值为()A.﹣2 B.2 C.4 D.2和﹣28.如图,点D、E分别在AB、AC上,且DE∥BC,∠A=30°,∠B=100°,则∠AED的度数是()A.30° B.100°C.130°D.50°9.如图,CD为⊙O的直径,弦AB⊥CD于E,CE=2,AE=3,则△ACB的面积为()A.3 B.5 C.6 D.810.在如图的正方形网格中,sin∠AOB的值为()A.B.2 C.D.11.在平面直角坐标系中,点P(2,5)与点Q关于x轴对称,则点Q的坐标是()A.(﹣2,5)B.(2,﹣5)C.(﹣2,﹣5)D.(5,2)12.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛,则恰好选中甲、乙两位同学打第一场比赛的概率是()A.B.C.D.13.已知菱形ABCD的两条对角线AC、BD的长分别为6和8,则边长CD的长为()A.6 B.8 C.14 D.514.若函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而减小,则m 的取值X围是()A.m<﹣3 B.m<0 C.m>﹣3 D.m>0二、填空题.(本大题满分16分,每小题4分)15.分解因式:2x2﹣8=.16.不等式4+2x>0的解集是.17.如图,AC=BC,∠ACD=120°,则∠A的度数为.18.如图,在梯形ABCD中,AB∥DC,DE∥CB,梯形的周长为28,△ADE周长为20,则DC=.三、解答题.(本大题满分62分)19.(1)计算:|﹣3|﹣(﹣2)3×2﹣2+(﹣2)2(2)化简:(+)÷.20.“五•一”黄金周期间,某某市某旅行社接待一日游和三日游的旅客共1600人,收取旅游费144万元,其中一日游每人收费400元,三日游每人收费1200元.该旅行社接待的一日游和三日游旅客各多少人?21.学校为了调查学生对教学的满意度,随机抽取了部分学生作问卷调查:用“A”表示“很满意“,“B”表示“满意”,“C”表示“比较满意”,“D”表示“不满意”,如图甲、乙是工作人员根据问卷调查统计资料绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:(1)本次问卷调查,共调查了多少名学生?(2)将图甲中“B”部分的图形补充完整;(3)如果该校有学生1000人,请你估计该校学生对教学感到“不满意”的约有多少人?22.已知如图,从20米高的甲楼A望乙楼顶C处的仰角是30°,望乙楼底D处的俯角是45°,求乙楼的高度(精确到0.1米,≈1.414,≈1.732).23.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.24.如图,直线y=kx+b分别交y轴、x 轴于A(0、2)、B(4、0))两点,抛物线y=﹣x2+bx+c 过A、B两点.(1)求直线和抛物线的解析式;(2)设N(x、y)是(1)所得抛物线上的一个动点,过点N作直线MN垂直x轴交直线AB 于点M,若点N在第一象限内.试问:线段MN的长度是否存在最大值?若存在,求出它的最大值及此时x的值;若不存在,请说明理由;(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.2016年某某省某某市思源实验学校中考数学模拟试卷(三)参考答案与试题解析一、选择题.(本大题满分42分,每小题3分)1.2016的倒数是()A.B.﹣C.2016 D.﹣2016【考点】倒数.【分析】直接利用倒数的定义分析得出答案.【解答】解:∵2016×=1,∴2016的倒数是,故选A.2.计算a2•a3,正确结果是()A.a5B.a6C.a8D.a9【考点】同底数幂的乘法.【分析】根据同底数幂的乘法进行计算即可.【解答】解:a2•a3=a2+3=a5,故选A.3.数据3,﹣1,0,2,﹣1的中位数是()A.﹣1 B.0 C.2 D.3【考点】中位数.【分析】先把数据按从小到大排列:﹣1,﹣1,0,2,3共有5个数,最中间一个数为0,根据中位数的定义求解.【解答】解:把数据按从小到大排列:﹣1,﹣1,0,2,3共有5个数,最中间一个数为0,所以这组数据的中位数为0.故选B.4.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为()A.44×105×105×106×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】×106.故选:C.5.若等腰三角形有两条边的长度为2和5,则此等腰三角形的周长为()A.9 B.12 C.9或12 D.10【考点】等腰三角形的性质;三角形三边关系.【分析】因为已知长度为2和5两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:①当5为底时,其它两边都为2,∵2+2<5,∴不能构成三角形,故舍去,当5为腰时,其它两边为2和5,5、5、2可以构成三角形,周长为12.故选B.6.如图中几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】几何体的主视图是从正面看所得到的图形即可.【解答】解:从正面看从左往右正方形的个数依次为2,1.故选D.7.若分式的值为0,则x的值为()A.﹣2 B.2 C.4 D.2和﹣2【考点】分式的值为零的条件.【分析】根据分式值为0的条件:分子=0且分母≠0,求得x的值即可.【解答】解:∵分式的值为0,∴x2﹣4=0且x+2≠0,∴x=2,故选B.8.如图,点D、E分别在AB、AC上,且DE∥BC,∠A=30°,∠B=100°,则∠AED的度数是()A.30° B.100°C.130°D.50°【考点】平行线的性质;三角形内角和定理.【分析】根据平行线的性质得出∠ADE=∠B=100°,根据三角形内角和定理求出即可.【解答】解:∵DE∥BC,∠B=100°,∴∠ADE=∠B=100°,∵∠A=30°,∴∠AED=180°﹣∠A﹣∠ADE=50°,故选D.9.如图,CD为⊙O的直径,弦AB⊥CD于E,CE=2,AE=3,则△ACB的面积为()A.3 B.5 C.6 D.8【考点】垂径定理.【分析】根据垂径定理求出AB,根据三角形的面积公式求出即可.【解答】解:∵CD为⊙O的直径,弦AB⊥CD,AE=3,∴AB=2AE=6,∴△ACB的面积为×AB×CE=×6×2=6,故选C.10.在如图的正方形网格中,sin∠AOB的值为()A.B.2 C.D.【考点】锐角三角函数的定义;勾股定理.【分析】找出以∠AOB为内角的直角三角形,根据正弦函数的定义,即直角三角形中∠AOB 的对边与斜边的比,就可以求出.【解答】解:如图,作EF⊥OB,则EF=2,OF=1,由勾股定理得,OE=,∴sin∠AOB=,故选:D.11.在平面直角坐标系中,点P(2,5)与点Q关于x轴对称,则点Q的坐标是()A.(﹣2,5)B.(2,﹣5)C.(﹣2,﹣5)D.(5,2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),据此即可求得点P(2,5)关于x轴对称的点的坐标.【解答】解:∵点P(2,5)与点Q关于x轴对称,∴点Q的坐标是(2,﹣5).故选:B.12.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛,则恰好选中甲、乙两位同学打第一场比赛的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】此题需要两步完成,所以采用树状图法或者采用列表法都比较简单,求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:列表得:甲乙丙丁/ 甲、乙甲、丙甲、丁甲乙乙、甲/ 乙、丙乙、丁丙丙、甲丙、乙/ 丙、丁丁丁、甲丁、乙丁、丙/∴所有等可能性的结果有12种,其中恰好选中甲、乙两位同学的结果有2种,∴恰好选中甲、乙两位同学的概率为:=,故选A.13.已知菱形ABCD的两条对角线AC、BD的长分别为6和8,则边长CD的长为()A.6 B.8 C.14 D.5【考点】菱形的性质.【分析】根据菱形的对角线互相垂直平分,求出两对角线的一半的长度,再利用勾股定理列式计算即可得解.【解答】解:如图,设对角线AC、BD相交于点O,∵AC=6,BD=8,∴DO=4,CO=3,∵菱形的对角线互相垂直,∴CD==5,故选D.14.若函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而减小,则m 的取值X围是()A.m<﹣3 B.m<0 C.m>﹣3 D.m>0【考点】反比例函数的性质.【分析】根据函数图象的性质得到关于k的不等式m+3>0,通过解该不等式来求m的值.【解答】解:∵函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而减小,∴m+3>0,解得 m>﹣3.故选:C.二、填空题.(本大题满分16分,每小题4分)15.分解因式:2x2﹣8= 2(x+2)(x﹣2).【考点】因式分解-提公因式法.【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).16.不等式4+2x>0的解集是x>﹣2 .【考点】解一元一次不等式.【分析】先移项,再把x的系数化为1即可.【解答】解:移项得,2x>﹣4,把x的系数化为1得,x>﹣2.故答案为:x>﹣2.17.如图,AC=BC,∠ACD=120°,则∠A的度数为60°.【考点】等腰三角形的性质.【分析】首先根据外角的度数求得其邻补角的度数,然后得到等边三角形,从而求得其内角的度数.【解答】解:∵∠ACD=120°,∴∠ACB=60°,∵AC=BC,∴△ABC为等边三角形,∴∠A=60°,故答案为:60°.18.如图,在梯形ABCD中,AB∥DC,DE∥CB,梯形的周长为28,△ADE周长为20,则DC= 4 .【考点】梯形;平行四边形的判定与性质.【分析】首先证明四边形DCBE为平行四边形,再根据平行四边形的性质和已知数据即可求出DC的长.【解答】解:∵DE∥CB,AB∥DC,∴四边形DCBE为平行四边形,∴DC=EB,DE=BC,∵梯形ABCD的周长=AE+BE+AD+CD=28,∴梯形的周长﹣△ADE周长═AE+BE+AD+CD﹣AD﹣AE﹣DE=BE+CD=2CD=8,∴DC=4,故答案为:4.三、解答题.(本大题满分62分)19.(1)计算:|﹣3|﹣(﹣2)3×2﹣2+(﹣2)2(2)化简:(+)÷.【考点】实数的运算;分式的混合运算;负整数指数幂.【分析】(1)原式第一项利用绝对值的代数意义化简,第二项利用乘方的意义及负指数幂法则计算,最后一项利用二次根式的性质计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=3+8×+12=3+2+12=17;(2)原式=•=.20.“五•一”黄金周期间,某某市某旅行社接待一日游和三日游的旅客共1600人,收取旅游费144万元,其中一日游每人收费400元,三日游每人收费1200元.该旅行社接待的一日游和三日游旅客各多少人?【考点】二元一次方程组的应用.【分析】设该旅行社接待的一日游和三日游旅客各为x人和y人,根据等量关系建立方程,求解即可.【解答】解:设该旅行社接待的一日游和三日游旅客各为x人和y人.依题意得:,解得:,答:该旅行社接待的一日游和三日游旅客各为600人和1000人.21.学校为了调查学生对教学的满意度,随机抽取了部分学生作问卷调查:用“A”表示“很满意“,“B”表示“满意”,“C”表示“比较满意”,“D”表示“不满意”,如图甲、乙是工作人员根据问卷调查统计资料绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:(1)本次问卷调查,共调查了多少名学生?(2)将图甲中“B”部分的图形补充完整;(3)如果该校有学生1000人,请你估计该校学生对教学感到“不满意”的约有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据C小组的频数和其所占的百分比求得总人数即可;(2)用调查的人数乘以B小组所占的百分比即可求得B组的频数;(3)用总人数乘以不满意人数所占的百分比即可.【解答】解:(1)由条形统计图知:C小组的频数为40,由扇形统计图知:C小组所占的百分比为20%,故调查的总人数为:40÷20%=200人;(2)B小组的人数为:200×50%=100人,(3)1000×(1﹣50%﹣25%﹣20%)=50人,故该校对教学感到不满意的人数有50人.22.已知如图,从20米高的甲楼A望乙楼顶C处的仰角是30°,望乙楼底D处的俯角是45°,求乙楼的高度(精确到0.1米,≈1.414,≈1.732).【考点】解直角三角形的应用-仰角俯角问题.【分析】本题是一个直角梯形的问题,可以通过点A作AE⊥CD于点E,把求CD的问题转化求CE的长.首先在Rt△ADE中求得AE的长,进而可在Rt△ACE中,利用三角函数求出CE 的长.【解答】解:过点A作AE⊥CD,垂足为E,∵AB⊥BD,CD⊥BD,∴四边形ABDE是矩形,∴DE=AB=20米,在Rt△ADE中,∠DAE=45°,DE=20米,∴AE=20米,在Rt△ACE中,CE=AE•tan30°=米,∴CD=CE+ED=+20=20(+1)≈31.5(米),答:乙楼的高度约为31.5米.23.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.【考点】全等三角形的判定与性质;等腰三角形的判定.【分析】(1)根据AC⊥BC,BD⊥AD,得出△ABC与△BAD是直角三角形,再根据AC=BD,AB=BA,得出Rt△ABC≌Rt△BAD,即可证出BC=AD,(2)根据Rt△ABC≌Rt△BAD,得出∠CAB=∠DBA,从而证出OA=OB,△OAB是等腰三角形.【解答】证明:(1)∵AC⊥BC,BD⊥AD,∴∠ADB=∠ACB=90°,在Rt△ABC和Rt△BAD中,∵,∴Rt△ABC≌Rt△BAD(HL),∴BC=AD,(2)∵Rt△ABC≌Rt△BAD,∴∠CAB=∠DBA,∴OA=OB,∴△OAB是等腰三角形.24.如图,直线y=kx+b分别交y轴、x 轴于A(0、2)、B(4、0))两点,抛物线y=﹣x2+bx+c 过A、B两点.(1)求直线和抛物线的解析式;(2)设N(x、y)是(1)所得抛物线上的一个动点,过点N作直线MN垂直x轴交直线AB 于点M,若点N在第一象限内.试问:线段MN的长度是否存在最大值?若存在,求出它的最大值及此时x的值;若不存在,请说明理由;(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.【考点】二次函数综合题.【分析】(1)由直线y=kx+b分别交y轴、x 轴于A(0、2)、B(4、0))两点,抛物线y=﹣x2+bx+c过A、B两点,利用待定系数法即可求得直线和抛物线的解析式;(2)假设x=t时,线段MN的长度是否存在最大值,可得M(t,﹣t+2),N(t,﹣t2+t+2),则可得MN=(﹣t2+t+2)﹣(﹣t+2)=﹣t2+4t=﹣(t﹣2)2+4,然后由二次函数的最值问题,求得答案;(3)根据平行四边形的性质求解即可求得答案.【解答】解:(1)∵直线y=kx+b分别交y轴、x 轴于A(0、2)、B(4、0))两点,∴,解得:.∴直线为:y=﹣x+2,…将x=0,y=2代入y=﹣x2+bx+c得:c=2,…将x=4,y=0代入y=﹣x2+bx+2,得:0=﹣16+4b+2,解得:b=,∴抛物线的解析式为:y=﹣x2+x+2;…(2)存在.假设x=t时,线段MN的长度是否存在最大值,由题意易得:M(t,﹣t+2),N(t,﹣t2+t+2),…∴MN=(﹣t2+t+2)﹣(﹣t+2)=﹣t2+4t=﹣(t﹣2)2+4,…∴当t=2时,MN有最大值4;…6 分(3)由题意可知,D的可能位置有如图三种情形.…当D在y轴上时,设D的坐标为(0,a)由AD=MN得|a﹣2|=4,解得a1=6,a2=﹣2,∴D为(0,6)或D(0,﹣2);…当D不在y轴上时,由图可知D为D1N与D2M的交点,∵直线D1N的解析式为:y=﹣x+6,直线D2M的解析式为:y=x﹣2,由两方程联立解得D为(4,4).…综上可得:所求的D为(0,6),(0,﹣2)或(4,4).。
一、选择题1.(0分)[ID :67647]下列计算中,错误的是( ) A .(2)(3)236-⨯-=⨯= B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--=2.(0分)[ID :67635]下列说法正确的是( ) A .近似数1.50和1.5是相同的 B .3520精确到百位等于3600 C .6.610精确到千分位D .2.708×104精确到千分位 3.(0分)[ID :67631]据报通,国家计划建设港珠澳大桥,估解该项工程总报资726亿元,用科学记数法表示726亿正确的是 A .B .C .D .4.(0分)[ID :67621]下列有理数大小关系判断正确的是( ) A .11910⎛⎫-->- ⎪⎝⎭B .010>-C .33-<+D .10.01->-5.(0分)[ID :67613]正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B6.(0分)[ID :67610]下列有理数的大小比较正确的是( ) A .1123< B .1123->- C .1123->- D .1123-->-+ 7.(0分)[ID :67603]下列各组数中,互为相反数的是( ) A .(﹣3)2和﹣32B .(﹣3)2和32C .(﹣2)3和﹣23D .|﹣2|3和|﹣23|8.(0分)[ID :67601]下列结论错误的是( ) A .若a ,b 异号,则a ·b <0,ab <0 B .若a ,b 同号,则a ·b >0,a b>0 C .a b -=a b-=-a bD .a b--=-ab9.(0分)[ID :67595]若a ,b 互为相反数,则下面四个等式中一定成立的是( )A .a+b=0B .a+b=1C .|a|+|b|=0D .|a|+b=0 10.(0分)[ID :67588]若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12B .2或-12C .-2或12D .-2或-1211.(0分)[ID :67582]下列说法中正确的是( ) A .a -表示的数一定是负数 B .a -表示的数一定是正数 C .a -表示的数一定是正数或负数D .a -可以表示任何有理数12.(0分)[ID :67562]已知有理数a ,b 满足0ab ≠,则||||a b a b+的值为( ) A .2±B .±1C .2±或0D .±1或013.(0分)[ID :67576]计算 -2的结果是( )A .0B .-2C .-4D .414.(0分)[ID :67575]据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元 15.(0分)[ID :67571]计算(-2)2018+(-2)2019等于( ) A .-24037B .-2C .-22018D .22018二、填空题16.(0分)[ID :67758]把67.758精确到0.01位得到的近似数是__.17.(0分)[ID :67754]绝对值小于2的整数有_______个,它们是______________. 18.(0分)[ID :67742]一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.19.(0分)[ID :67729]全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.20.(0分)[ID :67716]若230x y ++-= ,则x y -的值为________.21.(0分)[ID :67714]按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件所有x 的值是___.22.(0分)[ID :67713]数轴上A 、B 两点所表示的有理数的和是 ________.23.(0分)[ID :67712]截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____.24.(0分)[ID :67711]若有理数a ,b 满足()26150a b -+-=,则ab =__________. 25.(0分)[ID :67749]如果点A 表示+3,将A 向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.26.(0分)[ID :67746]点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位长度到达点B ,则这两点所表示的数分别是____________和___________.27.(0分)[ID :67704](1)圆周率π=3.141 592 6…,取近似值3.142,是精确到____位; (2)近似数2.428×105精确到___位;(3)用四舍五入法把3.141 592 6精确到百分位是____,近似数3.0×106精确到____位.三、解答题28.(0分)[ID :67923]把4-,4.5,0,12-四个数在数轴上分别表示出来,再用“<”把它们连接起来.29.(0分)[ID :67920]计算: (1)()()3122021π--+---; (2)()41151123618⎛⎫---+÷⎪⎝⎭. 30.(0分)[ID :67902]计算: (1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.C2.C3.A4.A5.B6.B7.A8.D9.A10.A11.D12.C13.A14.C15.C二、填空题16.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数17.3;-101等【分析】当一个数为非负数时它的绝对值是它本身;当这个数是负数时它的绝对值是它的相反数【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数它们是0±1共有3个故答案为(118.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键19.【解析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值大于10时n是正数;当原数的绝对20.【分析】先利用绝对值的非负性求出xy的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性21.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一22.-1【解析】由数轴得点A表示的数是﹣3点B表示的数是2∴AB两点所表示的有理数的和是﹣3+2=﹣1故答案为-123.7×106【分析】根据科学记数法形式:a×10n其中1≤a<10n为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是24.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab的值再把ab的值代入ab中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=25.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可26.-4【解析】试题27.(1)千分(2)百(3)314十万【分析】(1)根据精确到哪位就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位就三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【分析】根据有理数的运算法则逐一判断即可. 【详解】(2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误; ()()2399--=--=,故D 选项正确;故选C . 【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.2.C解析:C 【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位. 【详解】A 、近似数1.50和1.5是不同的,A 错B 、3520精确到百位是3500,B 错 D 、2.708×104精确到十位. 【点睛】本题考察相似数的定义和科学计数法.3.A解析:A 【解析】 【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,据此判断即可. 【详解】726亿=7.26×1010. 故选A .本题考查了用科学记数法表示较大的数,一般形式为a ×10n ,其中1≤|a |<10,确定a 与n 的值是解题的关键.4.A解析:A 【分析】先化简各式,然后根据有理数大小比较的方法判断即可. 【详解】 ∵1199⎛⎫--=⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->--⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=,∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>, ∴10.01-<-,故选项D 不正确. 故选:A . 【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.5.B解析:B 【分析】由题意可知转一周后,A 、B 、C 、D 分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点. 【详解】当正方形在转动第一周的过程中,1对应的点是A ,2所对应的点是B ,3对应的点是C ,4对应的点是D ,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D ,故答案选B. 【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.6.B解析:B根据有理数大小的比较方法逐项判断即得答案.【详解】解:A、1123>,故本选项大小比较错误,不符合题意;B、因为1122-=,1133-=,1123>,所以1123->-,故本选项大小比较正确,符合题意;C、因为1122-=,1133-=,1123>,所以1123-<-,故本选项大小比较错误,不符合题意;D、因为1122--=-,1133-+=-,1123-<-,所以1123--<-+,故本选项大小比较错误,不符合题意.故选:B.【点睛】本题考查了有理数的大小比较和有理数的绝对值,属于基础题型,掌握比较大小的方法是解题的关键.7.A解析:A【分析】各项中两式计算得到结果,即可作出判断.【详解】A、(﹣3)2=9,﹣32=﹣9,互为相反数;B、(﹣3)2=32=9,不互为相反数;C、(﹣2)3=﹣23=﹣8,不互为相反数;D、|﹣2|3=|﹣23|=8,不互为相反数,故选:A.【点睛】此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.8.D解析:D【解析】根据有理数的乘法和除法法则可得选项A、B正确;根据有理数的除法法则可得选项C正确;根据有理数的除法法则可得选项D原式=ab,选项D错误,故选D.9.A 解析:Aa ,b 互为相反数0a b ⇔+= ,易选B. 10.A解析:A 【分析】由绝对值性质可知x 和y 均有两种可能取值,再根据x+y>0排除不可能取值,代入求值即可. 【详解】由x 7=可得x=±7,由y 5=可得y=±5, 由x+y>0可知:当x=7时,y=5;当x=7时,y=-5, 则x y 75122-=±=或, 故选A 【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑.11.D解析:D 【分析】直接根据有理数的概念逐项判断即可. 【详解】解:A. a -表示的数不一定是负数,当a 为负数时,-a 就是正数,故该选项错误; B. a -表示的数不一定是正数,当a 为正数时,-a 就是负数,故该选项错误; C. a -表示的数不一定是正数或负数,当a 为0时,-a 也为0,故该选项错误; D. a -可以表示任何有理数,故该选项正确. 故选:D . 【点睛】此题主要考查有理数的概念,熟练掌握有理数的概念是解题关键.12.C解析:C 【分析】根据题意得到a 与b 同号或异号,原式利用绝对值的代数意义化简即可得到结果. 【详解】 ∵0ab ≠,∴当0a >,0b <时,原式110=-=; 当0a >,0b >时,原式112=+=; 当0a <,0b <时,原式112=--=-; 当0a <,0b >时,原式110=-+=. 故选:C . 【点睛】本题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.13.A解析:A【详解】解:因为|-2|-2=2-2=0,故选A.考点:绝对值、有理数的减法14.C解析:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.C解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.二、填空题16.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数解析:76.【分析】根据要求进行四舍五入即可.【详解】解:把67.758精确到0.01位得到的近似数是67.76.故答案是:67.76.【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.17.3;-101等【分析】当一个数为非负数时它的绝对值是它本身;当这个数是负数时它的绝对值是它的相反数【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数它们是0±1共有3个故答案为(1解析:3; -1,0,1等.【分析】当一个数为非负数时,它的绝对值是它本身;当这个数是负数时,它的绝对值是它的相反数.【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数,它们是0,±1,共有3个.故答案为(1). 3; (2). -1,0,1等.【点睛】本题考查了绝对值,熟悉掌握绝对值的定义是解题的关键.18.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键解析:2-【分析】根据3A B'=可得点A'为12,再根据A与A'以C为折点对折,即C为A,A'中点即可求解.【详解】解:翻折后A'在B右侧,且3A B'=.所以点A'为12,∵A与A'以C为折点对折,则C为A,A'中点,即1216:22C-=-.【点睛】本题考查数轴上两点间的距离,得到C为A,A'中点是解题的关键.19.【解析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值大于10时n是正数;当原数的绝对解析:71.610⨯【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.16000000 =71.610⨯.20.【分析】先利用绝对值的非负性求出xy 的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可.【详解】解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =,∴235-=--=-x y ,故答案为: 5.-【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.21.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一解析:131或26或5或45. 【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.22.-1【解析】由数轴得点A表示的数是﹣3点B表示的数是2∴AB两点所表示的有理数的和是﹣3+2=﹣1故答案为-1解析:-1【解析】由数轴得,点A表示的数是﹣3,点B表示的数是2,∴ A,B两点所表示的有理数的和是﹣3+2=﹣1,故答案为-1.23.7×106【分析】根据科学记数法形式:a×10n其中1≤a<10n为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是解析:7×106【分析】根据科学记数法形式:a×10n,其中1≤a<10,n为正整数,即可求解.【详解】解:7000000科学记数法表示为:7×106.故答案为:7×106.【点睛】本题考查科学记数法,解决本题的关键是把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.[科学记数法形式:a×10n,其中1≤a<10,n为正整数.24.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab的值再把ab的值代入ab中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=解析:90【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a,b 的值,再把a、b的值代入ab中即可解出本题.【详解】解:依题意得:|a-6|=0,(b-15)2=0,∴a-6=0,b-15=0,∴a=6,b=15,∴ab=90.故答案是:90.【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0.25.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可解析:-1【分析】根据向右为正,向左为负,根据正负数的意义列式计算即可.【详解】根据题意得,终点表示的数为:3-7+3=-1.故答案为-1.【点睛】本题考查了数轴,正负数在实际问题中的应用,在本题中向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.26.-4【解析】试题解析:-4【解析】试题两点的距离为8,则点A、B距离原点的距离是4,∵点A,B互为相反数,A在B的右侧,∴A、B表示的数是4,-4.27.(1)千分(2)百(3)314十万【分析】(1)根据精确到哪位就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位就解析:(1)千分 (2)百 (3)3.14 十万【分析】(1)根据精确到哪位,就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位,就是对它后边的一位进行四舍五入以及科学记数法的精确方法解答即可.【详解】解:(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到千分位;(2)近似数2.428×105中,2.428的小数点前面的2表示20万,则这一位是十万位,因而2.428的最后一位8应该是在百位上,因而这个数是精确到百位;(3)用四舍五入法把3.141 592 6精确到百分位是3.14,近似数3.0×106精确到十万位.故答案为: (1)千分; (2)百; (3)3.14、十万.【点睛】本题考查了近似数,掌握确定近似数精确的位数和科学记数法的精确方法是解答本题的关键.三、解答题28. 数轴表示见解析,140 4.52-<-<<. 【分析】先根据数轴的定义将这四个数表示出来即可,再根据数轴上的表示的数,左边的总小于右边的用“<”将它们连接起来即可得.【详解】将这四个数在数轴上分别表示出来如下所示:则140 4.52-<-<<. 【点睛】本题考查了数轴,熟练掌握数轴的定义是解题关键. 29.(1)18-;(2)-17. 【分析】(1)原式第一项利用绝对值代数意义进行化简,第二项利用负整数指数幂的运算法则进行计算,第三项利用零指数幂的运算法则进行化简,最后进行加减运算即可得到答案;(2)原式先计算有理数的乘方,再把除法转化为乘法去括号进行乘法运算,最后进行加减运算即可得到答案. 【详解】解:(1)()()30122021π--+--- =1118-- =18-; (2)()41151123618⎛⎫---+÷⎪⎝⎭ =115118236⎛⎫--+⨯ ⎪⎝⎭=115118+1818236-⨯⨯-⨯ =1-9+6-15=-17. 【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键. 30.(1)0;(2)1-.【分析】(1)原式先把除法转换为乘法,再逆用乘法分配律进行计算即可得到答案; (2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【详解】解:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭ 45355171271234⎛⎫=⨯--⨯+⨯ ⎪⎝⎭ 4535571271212=-⨯-⨯+ 43517712⎛⎫=--+⨯ ⎪⎝⎭ 5012=⨯ 0=;(2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭ ()98427427⎛⎫-⨯+-⨯- ⎝=⎪⎭98=-+1=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.。
2013年初中毕业生学业考试模拟试题数学说明:1.全卷共 4 页,满分120 分,考试时间 100分钟; 2. 答案务必填写在答卷相应位置上,否则无效。
一、选择题(每小题3分,共30分)1. -31的倒数是( )A -3B 3C -31D 312. 下列运算中,正确的是( )A x 3-x 2=xB (x -y) 2=x 2-y 2C x 2·x 3=x 6D (x 3)2=x 63. 用配方法解方程时,方程x 2-2x -3=0变形正确的是( )A (x -1)2=2B (x -1)2=4C (x -1)2=1D (x -1)2=74. 函数y=21x 中,自变量x 的取值范围是:( )A x > 2B x <2C x ≠ 2D x ≠ -2 5. 不等式2-3x ≥2x -8的非负整数解有:( )A 1 个B 2个C 3个D 4个6. 在围棋盒中有4颗黑色棋子和a 颗白色棋子,随机地取出一颗棋子,如果它是白色棋子的概率是53,则a =( )A 6B 4C 3D 2 7. 如图,已知A B ∥CD,BE 平分∠ABC ,∠CDE =1500,则∠C 的度数是:( ) A 1000 B 1100 C 1200 D 1500 8. 如图,在△ABC 中,∠C =900,AD 是BC 边上的中线,BD =4,AD =25则tan ∠CAD 的值是( ) A 2 B 3 C 5 D 29. 如图,AB 是⊙O 的直径,弦C D ⊥AB ,垂足为E ,如果AB =10,CD =8,那么,sin ∠OCE=( ),A 34B 53C 54D 4310. 如图,两块相同的直角三角形完全重合在一起,∠A =300,AC =10,把上面一块绕直角顶点B 逆时针旋转到△A ′B ′C ′的位置,点C ′在AC 上,A ′C ′与AB 相交于点D ,则C ′D =( ) A 2.5 B 2 C 32 D235二、填空题(每小题4分,共24分) 11.分解因式:2x 2-8=12.化简:x 1-11-x =13.若关于x 的方程ax 2+2 (a+2)x+a=0有实数解,那么实数a 的取值范围是 . 14.不等式组⎩⎨⎧+≤〉-53412x x xx 的解集是 .15.如图,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠D 的大小是 .16如图,在矩形ABCD 中,AB =3,BC =4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为 .三.解答题(一)(每小题5分,共15分)17.计算:12-(-2013)0+(21)-1 +31- 18.已知一次函数y=2x+1的图象分别与坐标轴相交于A 、B 两点(如图所示)与反比例函数的图象相交于C 点,(1)写出A 、B 两点的坐标; (2)作CD ⊥x 轴,垂足为D ,如果OB 是△ACD是中位线,求反比例函数y=xk(k >0)的关系式.19.尺规作图:已知△ABC ,请用直尺和圆规作出△ABC 的外接圆O.(要求保留作图痕迹,不写作法.)三、解答题(二)(每小题8分,共24分)20.已知甲同学手中藏有三张分别标有数字21、41、1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片外形相同,现从甲、乙两人手中各任取一张卡片,并将它们的数字分别记为a 、b, (1)请你用树状图或列表法列出所有可能的结果;(2)现制定这样一个游戏规则,若所选出的a 、b 能使得方程ax 2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜,请问这样的游戏规则公平吗?请你用概率知识解释。
深圳市2016年初中毕业生学业考试数学试卷模拟试题(一)说明:1.全卷分二部分,第一部分为选择题,第二部分为非选择题,共4页。
考试时间90分钟,满分100分。
2.考生必须在答题卡上按规定作答;答题卡必须保持清洁,不能折叠。
3.答题前,请将姓名.考生号.考场等用规定的笔填涂在答题卡指定的位置上(将条形码粘贴好)。
4.本卷选择题1—12,每小题选出答案后,用2B铅笔将答题卡选择题答题区内对应题目的答案标号涂黑;非选择题13—23,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答...某机构对30万人的调查显示,沉迷于手机上网的初中生大约占第7题图..第二部分非选择题填空题(本题共4小题,每小题3分,共12分)913.=18.若a 是正整数,且a 满足⎪⎩⎪⎨⎧>--<-02a 312a 1,试解分式方程11x x a ax 3=++-19.我市某中学今年年初开学后打算招聘一名数学教师,对三名前来应聘的数学教师A 、B 、C 进行了考核,他们的笔试成绩和说课成绩(单位:分)分别用了两种方式进行了统计,如表一和图一:(1)请将表一和图一中的空缺部分补充完整. (2)应聘的最后一个程序是由该校的24名数学教师进行投票,三位应聘人的得票情况如图二(没有弃权票,该校的每位教师只能选一位应聘教师),请计算每人的得票数(得票数可是整数哟).(3)若每票计1分,该校将笔试、说课、得票三项测试得分按3:4:4的比例确定个人成绩,请计算三位应聘人的最后成绩,并根据成绩判断谁能应聘成功.20.作图与证明 (1)作图题:如图1,在网格图中做出将四边形ABCD 向左平移3格,再向上平移2格得到的四边形A ′B ′C ′D ′. (2)证明题:已知:如图2,在△ABC 中,BE=EC ,过点E 作ED ∥BA 交AC 与点G ,且AD ∥BC ,连接AE 、CD .求证:四边形AECD 是平行四边形.图一 图二21.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于40%.经试销发现,销售量y (件)与销售单价x (元)符合一次函数y=kx+b ,且x=80时,y=40;x=70时,y=50.(1)求一次函数y=kx+b 的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?22.已知⊙O 的半径为4,BC 为⊙O 的弦,060=∠OBC ,P 是射线AO 上的一动点,连结CP . (1)当点P 运动到如图1所示的位置时,34=∆PBC S ,求证:CP 是⊙O 的切线;(2)如图2,当点P 在直径AB 上运动时,CP 的延长线与⊙O 相交于点Q ,试问PB 为何值时,CBQ ∆是等腰三角形?23.抛物线y=ax 2+bx +c(a≠0)的顶点为D (1,4),交x 轴于A 、B 两点,且经过点C (2,3) (1)求抛物线的解析式,(2)如图13,M 为线段O 、B 之间一动点,N 为y 轴正半轴上一动点,是否存在使M 、C 、D 、N 四点围成的四边形周长最小.若存在,求出这个最小值及M 、N 的坐标;若不存在,请说明理由, (3) 若P 是y 轴上的点,Q 是抛物线上的点,求:以P 、 Q 、 A 、B 为顶点构成平行四边形的点Q 的坐标.图1图2参考答案及评分意见第二部分 非选择题填空题(本题共4小题,每小题3分,共12分)解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,第20题7分,第21题8分,第22题9分,第23题9分,共52分) 17.解: 原式=1134+++ ………………1+2+1+1分=9. ………………………6分 (注:运算的第一步正确一项给1分.)18.解:∵⎪⎩⎪⎨⎧>--<-)()(20 (2)a 31 1......2a 1∴由(1)得,a>1∴由(2)得,a<3∴1<a<3………………………………………………… ....1分 ∵a 是正整数,∴a=2.…………………………………………………….2分 将a=2代入分式方程得11x x22x 3=++-………………3分 去分母,方程两边同时乘以()()1x 22x +-得()()()()1x 22x 22x x 1x 3+-=-++……………………..4分整理得:-5x =………………………………………..…..5分 经检验,原分式方程的解是-5x =.…………………....6分19.解:(1)90,注:每个正确答案1分.(2)24×33.3%=7.992,24×41.7%=10.008,24×25%=6…………………..3分 根据实际意义可得,A 得8票,B 得10票,C 得6票.……………………4分 (3)因为3+4+4=10,由题可得,A 的最后成绩为:7.6310481049010385=⨯+⨯+⨯B 的最后成绩为:5.64104101048010395=⨯+⨯+⨯(对两个或以下,得1分)C 的最后成绩为:4.6310461048510390=⨯+⨯+⨯……………6分∵63.4<63.7<64.5∴B 能应聘成功.………………………………………………………..………7分 20.(1)解:如图所示:………………………3分(2)证明:∵ED ∥BA ,且AD ∥BC ,∴四边形BEDA 是平行四边形, ………………………4分 ∴AD=BE , ………………………5分 ∵BE=EC ,∴AD=EC , ………………………6分 ∵AD ∥BC ,∴四边形AECD 是平行四边形. ………………………7分图一21.解:(1)60≤x ≤60(1+40%),∴60≤x ≤84, ………………………1分 由题得:解之得:k=﹣1,b=120, ………………………2分∴一次函数的解析式为y=﹣x+120(60≤x ≤84). ………………………3分 (2)销售额:xy=x (﹣x+120)元;成本:60y=60(﹣x+120).………………………4分 ∴W=xy ﹣60y ,=x (﹣x+120)﹣60(﹣x+120), =(x ﹣60)(﹣x+120),=﹣x 2+180x ﹣7200,=﹣(x ﹣90)2+900, ………………………6分∴W=﹣(x ﹣90)2+900,(60≤x ≤84),当x=84时,W 取得最大值,最大值是:﹣(84﹣90)2+900=864(元).………………7分 即销售价定为每件84元时,可获得最大利润,最大利润是864元.………………………8分22.解:(1)∵060=∠OBC ,OC OB =,∴OBC ∆是等边三角形.∴060=∠COB . ·······································1分 ∵CP 与⊙O 相切, ∴090=∠OCP .∴003090=∠-=∠COP CPO …………2分 又∵⊙O 的半径为4,∴4==OC OB .∴82==OC OP . ∴448=-=-=OB OP PB . ························3分 (2)①过点C 作1CP OB ⊥,垂足为1P ,延长1CP 交⊙O 于1Q , ∵AB ⊙O 是的直径, ∴⋂⋂=1BQ BC ,∴1BQ BC =,…………4分 ∴1CBQ △是等腰三角形.…………5分由(1)可知OBC ∆是等边三角形,∴011P B BC cos 6042=∙=⨯=2 .…………6分 ②解:过O 作BC OD ⊥,垂足为D ,延长DO 交⊙O 于2Q ,2CQ 与AB 交于2P , ∵O 是圆心, ∴2DQ 是BC 的垂直平分线. ∴22BQ CQ = ∴2CBQ ∆是等腰三角形. …………7分∵060=∠COB ,∴023021=∠=∠COB B CQ .∵2DQ 平分22,OQ OC B CQ =∠,∴02215=∠=∠OCQ O CQ .∵OBC ∆是等边三角形,1CP OB ⊥, ∴013021=∠=∠OCB OCP . ∴0002112P CP PCO OCQ 301545∠=∠+∠=+=. ∴12CPP △是等腰直角三角形. ·········································································· 8分∴121PP CP ==∴2321212+=+=B P P P B P . ······································································ 9分 23.23.(本小题满分9分)解:(1)设抛物线的表达式为:4)1(2+-=x a y将C (2,3)代入,解得:a=-1∴抛物线的表达式为:322++-=x x y ……(2分)(2)作D (1,4)关于y 轴对称点G (-1,4),C (2,3)关于x 轴对称点H (2,-3),∵CD 是一个定值,∴要使四边形MCDN 的周长最小, 只要使DN +MN +MC 最小即可 由图形的对称性,可知,DN +MN +MC =GN +NM +HM只有当GH 为一条直线段时,GN +NM +HM可求得: CD 2=,GH 58=∴四边形MCDN 的周长最小为582+ ……(6(3)若AB 为平行四边形的边, ∵AB=4, AB ∥PQ 且AB =PQ, ①当点Q 在y 轴的右侧时,4=Q x ,又∵点Q 在抛物线上, ∴5-=Q y ,∴)5,4(1-Q ………7分②当点Q 在y 轴的左侧时,4-=Q x ,又∵点Q 在抛物线上, ∴21-=Q y ,∴2Q (4,21)--……8分若AB 为平行四边形的对角线,如图,过Q 作QF ⊥x 轴,垂足为F ,∵四边形PAQB 为平行四边形, ∴QFA POB ∆≅∆,∴AF=OB=1 ∴Q x 2=,又∵点Q 在抛物线上,∴Q y 3=,∴3Q (2,3) …………9综上:符合要求的点Q 的坐标为:)5,4(1-Q ,2Q (4,21)--,3Q (2,3)(注:(3)没有求解过程只直接给出结果且三个点坐标全对可给1分 其它解法只要合理,参照给分.)GDE。
2016年广东省初中毕业生学业考试数 学一、选择题(本大题10小题,每小题3分,共30分) 1、-2的绝对值是( )A 、2B 、-2C 、12D 、1-2答案:A考点:绝对值的概念,简单题。
解析:-2的绝对值是2,故选A 。
2、如图1所示,a 和b 的大小关系是( ) 图1 A 、a <b B 、a >b C 、a=b D 、b =2a 答案:A考点:数轴,会由数轴上点的位置判断相应数的大小。
解析:数轴上从左往右的点表示的数是从小往大的顺序,由图可知b >a ,选A 。
3、下列所述图形中,是中心对称图形的是( )A 、直角三角形B 、平行四边形C 、正五边形D 、正三角形 答案:B考点:中心对称图形与轴对称图形。
解析:直角三角形既不是中心对称图形也不轴对称图形,正五边形和正三角形是轴对称图形,只有平行四边是中心对称图形。
4、据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜旅客约27700000人,将27700000用科学计数法表示为( )A 、70.27710⨯ B 、80.27710⨯ C 、72.7710⨯ D 、82.7710⨯ 答案:C考点:本题考查科学记数法。
解析:科学记数的表示形式为10na ⨯形式,其中1||10a ≤<,n 为整数,27700000=72.7710⨯。
故选C 。
5、如图,正方形ABCD 的面积为1,则以相邻两边 中点连接EF 为边的正方形EFGH 的周长为( )baABD C GFEA 、2B 、22C 、21+D 、221+ 答案:B考点:三角形的中位线,勾股定理。
解析:连结BD ,由勾股定理,得BD =2,因为E 、F 为中点,所以,EF =22,所以,正方形EFGH 的周长为22。
6、某公司的拓展部有五个员工,他们每月的工资分别是3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数为( )A 、4000元B 、5000元C 、7000元D 、10000元 答案:B考点:考查中位数的概念。
2015-2016学年广东省深圳市龙岗区八年级(上)期末数学试卷、选择题(每小题 3分,共36分)A . 1B. 2C. 3D. 42. (3分)下列长度的线段不能构成直角三角形的是( )A . 8, 15, 17 B. 1.5, 2, 3C. 6, 8, 10 D . 5, 12, 13 3. (3分)如图,笑脸盖住的点的坐标可能为()A . (5, 2)B . (3, -4) C. (- 4, - 6) D. (- 1 , 3)4. (3分)点M (2, 1)关于x 轴对称的点的坐标是( )A. (1, - 2)B. (- 2, 1)C. (2, - 1)D.( - 1, 2)5. (3分)下列各式中,正确的是( )A . VT&=- 4 B. ±VT^=4 C .为 _ 事=-3 D . J (一 4)~~= - 4 A.中位数 B.平均数 C.众数 D.加权平均数10. (3分)2016年龙岗年货博览会”在大运中心体育馆展销,小丽从家出发前去购物,途中发现忘了带钱,于是打电话让妈妈马上从家里送来, 同时小丽也往回走,遇到妈妈后聊了 一会儿,接着继续前往大运中心体育馆.设小丽从家出发后所用时间为 t,小丽与体育馆的距离为S,下面能反映S 与t 的函数关系的大致图象是()勇扼,°・3中无理数的个数是(6. A.7. I k l(3分)右函数 y= (k - 1) xk= 土 1, b= - 1 B. k= 土 1, b=0 ((3 分)在 Rt△ ABC 中,Z C=90 °,D W4+b+1是正比例函数,贝U k 和b 的值为() 36T(3分)下列命题中,不成立的是( A.两直线平行,同旁内角互补 B .同位角相等,两直线平行C. 一个三角形中至少有一个角不大于D. 三角形的一个外角大于任何一个内角 A. B. 12 25C. 8.60度么最终买什么水果,下面的调查数据中最值得关注的是(班长对全班学生爱吃哪几种水果作了民意调查.)A.1.(3分)数学11. (3分)如图,/ X 的两条边被一直线所截,用含 a 和6的式子表示/ X 为(A . a _ 3 B. 3- a C. 180 - a+ 3D. 180 - a~ 312. (3分)如图,把一个等腰直角三角形放在间距是1的横格纸上,三个顶点都在横格上,则此三角形的斜边长是( )、填空题(每小题 3分,共12分)13. (3分)16的平方根是.14. (3分)数据3, 4, 6, 8, x, 7的众数是7,贝U 数据4, 3, 6, 8, 2, x 的中位数是 15. (3分)观察下列各式: 日—V2+1你发现的规律计算:(1 .1.1. - 1 (++ _+,, + ______ _________2+V?妮+2 V2016 +V201516. (3分)如图,在矩形 ABCD 中,AB=3 , BC=4,现将点A 、C 重合,使纸片折叠压平,折痕为EF,那么重叠部分三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分) _.1'木历’志=2柄..请利用A . 3B . V10C . ^2D . 2龙△ AEF 的面积=17.(5分)计算:遍- |昨商-40"鹿.19. (7分)每年9月举行 全国中学生数学联赛”,成绩优异的选手可参加 全国中学生数学冬令营”,冬令营再选拔出50名优秀选手进入 国家集训队”.第31界冬令营已于2015年12 月在江西省鹰谭一中成功举行.现将脱颖而出的 50名选手分成两组进行竞赛,每组 25人,成绩整理并绘制成如下的统计图:18. (6分)解方程组:Q 5x+0.7y=35 jc+O. 4y=40二铝(1)请你将表格补充完整:平均数一组74二组 —中位数 众数 方差104 72(2)从本次统计数据来看, 组比较稳定.请你根据以上提供的信息解答下列问题:20.(8分)已知:如图,/ C= / 1 ,』2和』D互余,BE ± FD于点G.求证:AB // CD.21.(8分)双十一”当天,某淘宝网店做出优惠活动,按原价应付额不超过200元的一律9折优惠,超过200元的,其中200元按9折算,超过200元的部分按8折算.设某买家在该店购物按原价应付x元,优惠后实付y元.(1)当x> 200时,试写出y与x之间的函数关系式(如果是一次函数,请写成y=kx+b的形式);(2)该买家挑选的商品按原价应付300元,求优惠后实付多少元?22.(9分)如图,11反映了甲离开A地的时间与离A地的距离的关系12反映了乙离开A地的时间与离开A地距离之间的关系,根据图象填空:(1)当时间为0时,甲离A地千米;(2)当时间为时,甲、乙两人离A地距离相等;(3)图中P点的坐标是;(4) 11对应的函数表达式是:S1=;(5)当t=2时,甲离A地的距离是千米;(6)当S=28时,乙离开A地的时间是时.23.(9分)如图,在直角坐标系中,矩形OABC的顶点。
(解析版)2016年中考数学模拟试卷广东省深圳市一、选择题12012 ).﹣的相反数是(C2012BDA2012..﹣..﹣2 ).由七个大小相同的正方体组成的几何体如图所示,则它的左视图是(AC BD....3 2012330“””“,深圳市民中心附近几座地标,日年.地球一小时月提高节能,倡导低碳性建筑物都相继熄灭.据深圳供电局统计,在短短一小时里,深圳耗电量比上周六同时段相33900339002个有效数字)(用科学记数法表示为(结果保留比减少了千瓦时,将)4334 10DC3310A3.3103.4 B3.410 ×.×××...42016 ?).(深圳模拟)下列运算正确的是(336222 =4a4aa=7aB 3a3aA﹣+﹣..2333232D3aaC3a4a==12a4a?÷).(.5 .某商场试销一种新款衬衫,一周内销信情况如表所示:38 39 40 41 42 43 型号(厘米)83036282550数量(件)商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最具有意义的是)(A B C D .方差.中位数.众数.平均数68001200元,后来由于该商品积压,商店准备打折元,.某种商品的进价为出售时标价为5% )销售,但要保证利润率不低于,则至多可打(A6 B7 C8 D9 折.折折折...28/ 17451=20°°,那角的直角三角板的两个顶点放在直尺的对边上.如果∠.如图,把一块含有2 )么∠的度数是(A30 B25 C20 D15 °°°°....8.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘4 )停止后,指针所指区域内的数字之和为的概率是(CDA B ....9 ).下列不等式变形正确的是(AabacbcBab2a2b <﹣>,得﹣.由.由>>,得Cabab Daba2b2﹣,得﹣,得>﹣><.由﹣>.由2bxca0y=axb0c10②①;()的图象如图所示,有下列四个结论:+≠+.已知二次函数<24ac0abc00b ④③)>,其中正确的个数有(;﹣ +﹣><;A1 B2 C3 D4 个个个...个.11 ).已知下列命题:(②①等腰梯形的对角线相等;对角线互相平分的四边形是平行四边形;④③内错角相等.其中假命题有.对角线互相垂直的四边形是菱形;A1 B2 C3 D4 个个..个..个12ABCDAB=BDEFABADAE=DFBF.连接.点、中,上,且分别在、.如图,在菱形DEGCGBDH .下列结论:与相交于点,连接与相交于点28/ 22 CG=BG=6GFSAEDDFBAF=2DF③②①.;;,则若△≌△BCDG四边形)其中正确的结论(D ABC ①②③②③①②①③..只有.只有.只有二、填空题:2 2a8=13..分解因式:﹣14OxAByCD为第一象、轴的正半轴于点.如图,以原点两点,交为圆心的圆交,轴于ODAB=20OCD= °°.限内⊙上的一点,若∠,则∠15m的值.填在如图各正方形中的四个数之间都有相同的规律,根据这种规律,.是16AOBCAOBC对,反比例函数.如图,在平面直角坐标系中有一正方形经过正方形ABCk 24.角线的交点,半径为(﹣)的圆内切于△,则的值为三、解答题28/ 317..计算:18.解方程:19”“从文学、艺术、科普和其我最喜爱的课外读物.某中学为了解学生的课外阅读情况,就并根据调查结果制作了尚不完整的频数,它四个类别进行了抽样调查(每位同学仅选一项)分布表:频率类别频数(人数)0.42 m 文学0.11 22 艺术n 66 科普28 其他 1 合计n=1 m=;()表中,2 )在这次抽样调查中,最喜爱阅读哪类读物的学生最少?(41200 名学生中最喜爱阅读科普读物的学生有多少人?()根据以上调查,试估计该校20OABOA,与大圆为圆心的两个同心圆中,,且与小圆相交于点.如图,在以经过圆心BACDCOACB ..小圆的切线,且相交于点与大圆相交于点平分∠1BC 所在直线与小圆的位置关系,并说明理由;()试判断2ACADBC 之间的数量关系,并说明理由.)试判断线段(、、3AB=8BC=10 ,求大圆与小圆围成的圆环的面积.()若,21ABCDADBCB=90AB=7AD=9BC=12°,在线段∥,中,已知,∠,.如图,在梯形,BCEDEEFDEABF .,交直线⊥上任取一点,连接于点,作1FBCE 的长;(重合,求)若点与2FABAF=CECE 的长.()若点在线段上,且,求28/ 414022销售后获利情况如表一家蔬菜公司收购到某种绿色蔬菜准备加工后进行销售,吨,.所示:精加工后销售销售方式粗加工后销售20001000每吨获利(元)155受但两种加工不能同时进行.已知该公司的加工能力是:每天能精加工吨,吨或粗加工季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.140112吨蔬菜,则公司应安排几天精加工,几天粗加工?)如果要求(天刚好加工完2)如果先进行精加工,然后进行粗加工.(Wm①之间的函数关系式;元与精加工的蔬菜吨数试求出销售利润14010②则加工这批蔬菜若要求在不超过吨蔬菜全部加工完后进行销售,天的时间内,将最多获得多少利润?此时如何分配加工时间?20C0By23y=x1bxcxA,.如图,已知知抛物线)和点轴交于点++,与,与轴交于点((3).﹣1)求抛物线的解析式;(yG G121H0,(点轴的左侧)(,﹣在).问在抛物线上是否存在点(()如图己知点),G=SS的坐标;若不存在,请说明理由;?若存在,求出点使得GHAGHC△△OC0FE32Dx2的中点,连)如图(),抛物线上点),在(轴上的正投影为点是(﹣,PEBDFBDDFPEPF=的长.∠,求线段接,为线段上的一点,若∠28/ 52016年广东省深圳市中考数学模拟试卷参考答案与试题解析一、选择题12012 )的相反数是(.﹣C2012DA2012B...﹣.﹣相反数.【考点】根据相反数的定义,只有符号不同的两个数叫做互为相反数解答.【分析】20122012 .的相反数是【解答】解:﹣D .故选aa即可得出正确答的相反数是﹣【点评】本题考查了相反数的定义,根据相反数的定义:案,是基础题,比较简单.2 ).由七个大小相同的正方体组成的几何体如图所示,则它的左视图是(B CDA ....简单组合体的三视图.【考点】找到从左面看所得到的图形即可.【分析】3 个正方形,第二列有一个正方形.解:从左面看可得到第一列为【解答】D .故选本题考查了三视图的知识,左视图是从物体的左面看得到的视图.【点评】28/ 63 2012330““””,深圳市民中心附近几座地标月提高节能,倡导低碳地球一小时,日年.性建筑物都相继熄灭.据深圳供电局统计,在短短一小时里,深圳耗电量比上周六同时段相33900339002个有效数字)(用科学记数法表示为(结果保留比减少了)千瓦时,将4334 10 D10C 3310A3.3103.4 B3.4×××.×...科学记数法与有效数字.【考点】n1a10nna10的,≤【分析】科学记数法的表示形式为|×为整数.确定|的形式,其中<339005n=51=4 .有值是易错点,由于﹣位,所以可以确定0 的数字起,后面所有的数字都是有效数字.有效数字的计算方法是:从左边第一个不是a10 的多少次方无关.有关,与用科学记数法表示的数的有效数字只与前面的44103.433900=3.3910.≈【解答】解:××D .故选【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.4 ).下列运算正确的是(336222 4aa=7aB 3a3aA=4a﹣.+﹣.2332323 =4aC3a4aa=12a3a D?÷)..(整式的混合运算.【考点】A 、原式合并同类项得到结果,即可作出判断;【分析】B 、原式合并同类项得到结果,即可作出判断;C 、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;D 、原式先计算乘方运算,再计算除法运算得到结果,即可作出判断.3 =7aA,错误;、原式【解答】解:2 aB=,正确;、原式﹣5 C=12a,错误;、原式336 =9aD=4aa,错误,÷、原式B故选此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.【点评】/ 75 .某商场试销一种新款衬衫,一周内销信情况如表所示:38 39 40 41 42 43 型号(厘米)8 2550302836数量(件)商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最具有意义的是)(A B C D .方差.平均数.众数.中位数统计量的选择.【考点】根据题意可知最畅销的应为众数,本题得以解决.【分析】解:由题意可知,【解答】最畅销的型号应该是销售量最多的型号,故对商场经理来说最具有意义的是众数,B .故选本题考查统计量的选择,解题的关键是明确题意,找出满足所求问题的条件.【点评】68001200元,后来由于该商品积压,出售时标价为.某种商品的进价为商店准备打折元,5% )销售,但要保证利润率不低于,则至多可打(A6 B7 C8 D9 折..折折..折一元一次不等式的应用.【考点】8001200x5%≥折,根据保持利润率不低于﹣,可列出不等式:×【分析】本题可设打5%800x 的值即可得出打的折数.×,解出8008001200x5%,×≥×﹣【解答】解:设可打折,则有7x.≥解得7折.即最多打B.故选:计算折数时本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,【点评】10.注意要除以1=20745°°,那角的直角三角板的两个顶点放在直尺的对边上.如果∠.如图,把一块含有2)的度数是(么∠28/ 8D15 C20 25A30 B°°°°....平行线的性质.【考点】本题主要利用两直线平行,内错角相等作答.【分析】解:根据题意可知,两直线平行,内错角相等,【解答】1=3,∴∠∠32=45°,+∵∠∠2=451°∠∴∠+ 1=20°,∵∠2=25°.∴∠B.故选:直尺的对边需要注意隐含条件,本题主要考查了两直线平行,内错角相等的性质,【点评】45°的利用.平行,等腰直角三角板的锐角是8.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘4)的概率是(停止后,指针所指区域内的数字之和为B CDA....几何概率.【考点】2即可求出针头扎在阴影区域分别求出两圆中【分析】根据几何概率的定义,所占的面积,内的概率.1222,【解答】解:指针指向()中的概率是,指针指向()中的概率是28/ 9=4 .指针所指区域内的数字之和为的概率是×B .故选【点评】此题考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.两步完成的= 第一步事件的概率与第二步事件的概率的积.事件的概率9 ).下列不等式变形正确的是(AabacbcBab2a2b <﹣>>,得.由.由>,得﹣Cabab Daba2b2 ﹣>,得,得﹣>.由>﹣<﹣.由不等式的性质.【考点】根据不等式的基本性质分别进行判定即可得出答案.【分析】Aabacbcc0A 选项错误;.由,当>解:,不等号的方向改变.故,得<>【解答】Bab2a2bB选项正,得﹣,不等式两边乘以同一个负数,不等号的方向改变,故.由<﹣>确;CababC,不等式两边乘(或除以)同一个负数,不等号的方向改变;故,得﹣.由>﹣>选项错误;Daba2b2D选项,得﹣﹣,不等式两边同时减去一个数,不等号方向不改变,故<.由>错误.B .故选0”“是很特殊的一个数,因此,解答不等式的此题主要考查了不等式的基本性质.【点评】00 ””““的陷阱.不等式的基本性质:存在与否,以防掉进问题时,应密切关注1 )不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2 )不等式两边乘(或除以)同一个正数,不等号的方向不变.(3 )不等式两边乘(或除以)同一个负数,不等号的方向改变.(2bxca0b10y=ax0c②①;.已知二次函数<++)的图象如图所示,有下列四个结论:(≠24ac0abcb00 ④③)>;﹣>;﹣+<,其中正确的个数有(28/ 1043 DBA1 2 C个.个个...个二次函数图象与系数的关系.【考点】0ba0y ①正确;,而对称轴在<轴左侧,即【分析】由抛物线开口向下知道,因此判断<0yc②正确;>轴的交点在正半轴得到,因此可以判断由抛物线与2 04acxb③正确;>由图象与﹣轴有两个交点得到以,因此可以判断cb0x=1y=a④错.﹣,所以判断时,对应的函数值由图象可知当>﹣+0bba0ya①,<同号,即,而对称轴在轴左侧,∴<【解答】解:、∵抛物线开口向下,∴正确;0cy②,正确;>∵抛物线与轴的交点在正半轴,∴2 b04acx③,正确;>轴有两个交点,∴﹣∵图象与0bcx=1y=a④,错误.+∵由图象可知当﹣﹣时,对应的函数值>C.故选本题考查二次函数的字母系数与图象位置之间的关系.【点评】11).已知下列命题:(②①等腰梯形的对角线相等;对角线互相平分的四边形是平行四边形;④③内错角相等.其中假命题有.对角线互相垂直的四边形是菱形;4 C3D BA1 2个.个个.个..命题与定理.【考点】等腰梯形的性质及平行线的性质分别判断后利用平行四边形的判定、菱形的判定、【分析】即可确定正确的选项.①对角线互相平分的四边形是平行四边形,正确,是真命题;【解答】解:28/ 11②等腰梯形的对角线相等,正确,是真命题;③对角线互相垂直的平行四边形是菱形,错误,为假命题;④两直线平行,内错角相等故错误,是假命题.2 个,其中假命题有B .故选【点评】本题考查了命题与定理的知识,解题的关键是了解平行四边形的判定、菱形的判定、等腰梯形的性质及平行线的性质,难度不大.12ABCDAB=BDEFABADAE=DFBF.连接.点、、上,且.如图,在菱形分别在中,DEGCGBDH .下列结论:相交于点与与,连接相交于点2AF=2DFBG=6GF=CGAEDDFBS ③②①.;;,则若△≌△BCDG四边形)其中正确的结论(A B C D ①②③②③①③①②..只有.只有.只有【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质;平行线分线段成比例.ABDSASAEDDFB ”①“;【分析】易证△证明△为等边三角形,根据≌△CDGBGE=60=BCDBBGC=DGC=60°②°.因此∠∠∠、、,四点共圆,从而得点证明∠过、CNGDNCCMGBMCBMCDNS=S,,⊥于证明△.点,作≌△⊥于所以CMGNBCDG四边形四边形易求后者的面积.FFPAEP ③点.∥作过点于FPAE=DFDA=13FPBE=16=FGBGBG=6GF .::根据题意有:,即:::,则ABCDAB=AD ①.∵解:为菱形,∴【解答】AB=BDABD 为等边三角形.∵,∴△A=BDF=60 °.∠∴∠AE=DFAD=BD ,又∵,28/ 12AEDDFB ;∴△≌△BGE=BDGDBF=BDGGDF=60=BCD °②,+∠∠∵∠∠∠∠+BGDBCD=180 °,+即∠∠BCDG 四点共圆,∴点、、、BGC=BDC=60DGC=DBC=60 °°.∠,∠∠∴∠BGC=DGC=60 °.∴∠∠CCMGBMCNGDN .过点,作于⊥⊥于CM=CN ,∴,∵CBMCDNHL )≌△∴△,(S=S .∴CMGNBCDG四边形四边形S=2S ,CMG△CMGN四边形CGM=60 °,∵∠CM=CGGM=CG ,,∴2CG S=2S=2CG=CG×.×∴×CMG△CMGN四边形FFPAEP ③点.∥于过点作AF=2FD ,∵FPAE=DFDA=13 ,∴:::AE=DFAB=AD ,,∵BE=2AE ,∴FPBE=16=FGBG ,∴:::BG=6GF .即D .故选28/ 13不规则图形的面平行线分线段成比例、【点评】此题综合考查了全等三角形的判定和性质、积计算方法等知识点,综合性较强,难度较大.二、填空题:2 a2132a2a28=.﹣.分解因式:(﹣+))(提公因式法与公式法的综合运用.【考点】2,再对余下的多项式利用平方差公式继续分解.【分析】先提取公因式28 2a﹣【解答】解:2 =2a4),(﹣2a2a=2).+(﹣)(22a2a).)(+故答案为:﹣(一个多项式有公因式首先提取公【点评】本题考查了用提公因式法和公式法进行因式分解,因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.DCBxAy14O为第一象轴于轴的正半轴于点为圆心的圆交、两点,交.如图,以原点,65DAB=20OCD=O°°.限内⊙,则∠上的一点,若∠圆周角定理;坐标与图形性质.【考点】OCD=DOBDAB=20°∠【分析】根据∠的度数,再利用等腰三角形的性质得出∠,得出∠CDO,进而求出答案.DAB=20DO°,【解答】,∵∠解:连接28/ 14DOB=40°,∴∠40=50COD=90°°°,﹣∴∠CO=DO,∵OCD=CDO,∠∴∠2=65180OCD=50°°°.﹣)÷∴∠(65.故答案为:CDOOCD=是解决∠【点评】此题主要考查了圆周角定理以及等腰三角形的性质,得出∠问题的关键.158 15m.的值是.填在如图各正方形中的四个数之间都有相同的规律,根据这种规律,规律型:数字的变化类.【考点】nabcd,根、【分析】设第、个正方形中的四个数(从左上角开始按逆时针排列)为、nnnn22n2cc=4n ”“,依此规律即可解决问题.的变化规律++据给定的数据找出nn nabcd,【解答】解:设第、个正方形中的四个数(从左上角开始按逆时针排列)为、、nnnn 观察,发现规律:a=0a=2a=4 …,,∵,,312a=2n1 );﹣∴(n b=2b=4b=6 …,∵,,,321b=2n ;∴n d=4d=6d=8 …,,∵,,312d=2n1 );∴(+n c=8240=bdac=22=462=bdcc=44=684=bda …???,﹣﹣,,×﹣×∵﹣═×﹣﹣,32321132312122n2=4n=bcda ?.﹣+∴+nnnn a=2n1=10n=6 .令(﹣),解得:n28/ 152 2=15826c=46.+×+×∴6 158.故答案为:解题的关键是求出正方形中右下角数的变化本题考查了规律型中的数字的变化类,【点评】22c=4n2n”“.本题属于中档题,难度不大,解题的关键是根据给定的数据,找出的规律++n变化规律是关键.AOBC16AOBC对.如图,在平面直角坐标系中有一正方形,反比例函数经过正方形42ABC4k .﹣,则的值为角线的交点,半径为()的圆内切于△三角形的内切圆与内心;待定系数法求反比例函数解析式;正方形的性质.【考点】AD=BD=DO=CDNO=DNHQ=QEHC=CE,进而根据【分析】根据正方形的性质得出,,,42ABCCDDO的长,再利用勾股定﹣,得出)的圆内切于△的长,从而得出半径为(DNk 的值.的长进而得出理得出DDDMAOMDNBON ;作⊥⊥,过点,于点解:设正方形对角线交点为【解答】于点QHEQHQE .设圆心为,连接,切点为、、AOBCAOBC 对角线的交点,∵在正方形中,反比例函数经过正方形AD=BD=DO=CDNO=DNHQ=QEHC=CE ,∴,,,QHACQEBCACB=90 °,⊥,,∠⊥HQEC 是正方形,∴四边形42ABC ,﹣∵半径为()的圆内切于△DO=CD,∴222 HC=QCHQ,∵+222 2=QC2HQ=24,)×(∴﹣22 44=32QC=48,﹣∴(﹣)QC=44,∴﹣28/ 16=22CD=444 ,+(﹣)﹣∴DO=2,∴2222=8NO=DN =DO2,(+∵)2 =82NO,∴2 NO=4,∴NO=4DN,∴×xy=k=4.即:4.故答案为:【点评】此题主要考查了正方形的性质以及三角形内切圆的性质以及待定系数法求反比例函CDDNNO=4 是解决问题的关键.的长度,进而得出×数解析式,根据已知求出三、解答题17..计算:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【考点】本题需先根据实数运算的步骤和法则分别进行计算,再把所得结果合并即可.【分析】= ,【解答】解:原式=.在解题时要注意运算顺序和公式的综合应用以及结果本题主要考查了实数的运算,【点评】的符号是本题的关键.18.解方程:解分式方程.【考点】28/ 172xx2),两边同时乘最简公分母可把分式+﹣)(【分析】观察方程可得最简公分母是:(方程化为整式方程来解答.2x2x),)(【解答】解:方程两边同乘以(+﹣2 4=x2xx22),()(﹣﹣)+得(+ x=3.解得x=3是原方程的解.经检验:1”“,把分式方程转化为整式方程求解.【点评】()解分式方程的基本思想是转化思想2)解分式方程一定注意要验根.(19”“从文学、艺术、科普和其我最喜爱的课外读物.某中学为了解学生的课外阅读情况,就并根据调查结果制作了尚不完整的频数(每位同学仅选一项),它四个类别进行了抽样调查分布表:频率类别频数(人数)0.42 m 文学0.11 22 艺术n 66 科普28 其他 1合计841n=0.33 m=;)表中,(2 )在这次抽样调查中,最喜爱阅读哪类读物的学生最少?(41200 名学生中最喜爱阅读科普读物的学生有多少人?()根据以上调查,试估计该校频数(率)分布表;用样本估计总体.【考点】1 )首先求出总人数,利用艺术类的频数与频率进而求出答案;【分析】(21 )中所求,即可得出答案;()利用(310.33 即可得出答案.()中所求,利用总数乘以)利用(1220.11=200 ,)由题意可得:÷【解答】解:(m=2000.42=84 ,×则n==0.33 ,840.33 ;故答案为:,28/ 182 )由题意可得:最喜爱阅读艺术类读物的学生最少;(3120012000.33=396 (人).)(×名学生中最喜爱阅读科普读物的学生有:mn 的值是解题关键.,【点评】此题主要考查了频数与频率,正确得出20OABOA,与大圆.如图,在以经过圆心为圆心的两个同心圆中,,且与小圆相交于点BACDCOACB .,且相交于点与大圆相交于点.小圆的切线平分∠1BC 所在直线与小圆的位置关系,并说明理由;()试判断2ACADBC 之间的数量关系,并说明理由.、(、)试判断线段3AB=8BC=10 ,求大圆与小圆围成的圆环的面积.)若,(直线与圆的位置关系;扇形面积的计算.【考点】1OEBCBC是小圆的切线,即与小圆的关系是相切.垂直【分析】()只要证明即可得出2RtOADRtOEBEB=AD,从而得到三者△△≌()利用全等三角形的判定得出,从而得出的关系是前两者的和等于第三者.3 )根据大圆的面积减去小圆的面积即可得到圆环的面积.(1BC 所在直线与小圆相切.【解答】解:()理由如下:OOEBCE ;过圆心⊥作,垂足为ACABO ,∵经过圆心是小圆的切线,OAAC ;∴⊥COACBOEBC ,又∵平分∠⊥,OE=OA ,∴BC 所在直线是小圆的切线.∴28/ 192ACAD=BC .)(+理由如下:OD .连接ACOABCOE ,于点切小圆,于点∵切小圆CE=CA ;∴RtOADRtOEB 中,△∵在△与,RtOADRtOEBHL ),≌(△∴△EB=AD ;∴BC=CEEB ,+∵BC=ACAD .∴+3BAC=90AB=8cmBC=10cm °,,(,)∵∠AC=6cm ;∴BC=ACAD ,∵+AD=BCAC=4cm ,∴﹣2222 ODS=ODOAOA=πππ),﹣﹣∵圆环的面积为:(())(222 =ADODOA,﹣又∵22=16S=4cmππ).∴(①本题考查了切线的判定,全等三角形的判定等知识点.要证某线是圆的切线,【点评】②所证切线与圆的已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可,交点不明确,可以过圆心作该直线的垂线段,证明垂线段的长等于半径.21ABCDADBCB=90AB=7AD=9BC=12°,在线段.如图,在梯形中,已知,∥,∠,,BCEDEEFDEABF .上任取一点,连接,作⊥,交直线于点28/ 201FBCE 的长;与(重合,求)若点2FABAF=CECE 的长.(上,且)若点,求在线段相似三角形的判定与性质;矩形的判定与性质;梯形.【考点】1ABECBECE ;(【分析】求出)根据题意画出图形,得出矩形,即可求出2DDMBCMABMDAD=BM=9AB=DM=7,⊥是矩形,推出于(,)过,得出四边形作CM=129=3AF=CE=aBF=7aEM=a3BE=12aBFE=DEM,∠﹣,,设,则,求出∠﹣﹣,∠﹣=a B=DMEFBEEMD即可.∠,得出比例式,证△,求出∽△B1F重合时,)当解:(和【解答】EFDE,⊥∵DEBC,∵⊥B=90°,∵∠BCAB,⊥∴DEAB,∥∴ADBC,∵∥ABED是平行四边形,∴四边形AD=EF=9,∴9=3CE=BCEF=12;﹣∴﹣MDMBC2D,⊥(作)过于B=90°,∵∠BCAB,⊥∴DMAB,∥∴ADBC,∵∥ABMD 是矩形,∴四边形9=3CM=12AD=BM=9AB=DM=7,,﹣∴,BE=123EM=aaBF=7AF=CE=aa,﹣﹣﹣设,则,,28/ 21FEC=B=DMB=90 °,∠∵∠∠FEBDEM=90BFEFEB=90 °°,∴∠++∠,∠∠BFE=DEM ,∴∠∠B=DME ,∵∠∠FBEEMD ,∴△∽△= ,∴=,∴a=5a=17 ,,FABAB=7 ,∵点上,在线段AF=CE=17 (舍去),∴CE=5 .即【点评】本题考查了直角梯形性质,矩形的性质和判定,相似三角形的性质和判定等知识点,主要考查学生综合运用性质进行推理和计算的能力,题目比较典型,是一道比较好的题目.22140吨,准备加工后进行销售,.一家蔬菜公司收购到某种绿色蔬菜销售后获利情况如表所示:精加工后销售粗加工后销售销售方式20001000每吨获利(元)515吨,但两种加工不能同时进行.吨或粗加工受已知该公司的加工能力是:每天能精加工季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.112140 吨蔬菜,则公司应安排几天精加工,几天粗加工?)如果要求天刚好加工完(2 )如果先进行精加工,然后进行粗加工.(28/ 22Wm ①之间的函数关系式;试求出销售利润元与精加工的蔬菜吨数10140②吨蔬菜全部加工完后进行销售,则加工这批蔬菜天的时间内,将若要求在不超过最多获得多少利润?此时如何分配加工时间?一次函数的应用.【考点】1=12=140,粗加工吨数精加工吨数粗加工天数本题等量关系为:精加工天数++【分析】(,)列出方程组求解即可.2m①来表示粗加工吨数,)(根据精加工吨数和粗加工吨数的等量关系,用精加工吨数Wm 之间的关系,与在列出mWW ②最大值.根据题意要求先确定并求出的取值范围,然后表示1xy 天进行粗加工,)设应安排解:(天进行精加工,【解答】,根据题意得,解得48 天进行粗加工.答:应安排天进行精加工,2m140m ①)吨,根据题意得:(吨,则粗加工()﹣精加工W=2000m1000140m )(+﹣=1000m140000 ;+10 ②天的时间内将所有蔬菜加工完,∵要求在不超过10 ,+∴≤5 m≤解得:50m,≤∴≤k=10000W=1000m140000,又∵在一次函数中,+>mW 的增大而增大,随∴m=5W=10005140000=145000.时,∴当+×最大55=1,∴精加工天数为÷514015=9.﹣)÷粗加工天数为(14500091元.天进行粗加工,可以获得最多利润为∴安排天进行精加工,28/ 23【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用和一次函数的应用,解题关键在于看清题意,找到正确的等量关系,列出方程式,最后解出答案.2bxcxA1y=x230ByC0,.如图,已知知抛物线,+轴交于点+)和点与(轴交于点,与(3 ).﹣1 )求抛物线的解析式;(21H01G Gy轴的左侧),).),己知点问在抛物线上是否存在点(在,﹣(点()如图(S=SG 的坐标;若不存在,请说明理由;使得?若存在,求出点GHAGHC△△32DxE20FOC 的中点,连),抛物线上点,在是轴上的正投影为点),((﹣)如图(DFPBDEPF=BDFPE 的长.,∠接为线段,求线段上的一点,若∠二次函数综合题.【考点】2bxcxA10ByC01y=x,++)和点与轴交于点轴交于点,与(【分析】()由抛物线,(3 ),利用待定系数法即可求得二次函数的解析式;﹣2GHACGHACGH的解析式,根据交(与)分别从与∥不平行去分析,注意先求得直线点问题即可求得答案,小心不要漏解;3DFPBEFDP,由相似三角形的对)利用待定系数法求得直线∽△的解析式,即可证得△(应边成比例,即可求得答案.1,【解答】解:()由题意得:,解得:22x3 y=x;+﹣∴抛物线的解析式为:2 )解法一:(28/ 24GGmnn=3HGC 不存在.(﹣,设,时,△假设在抛物线上存在点),显然,当n3 ①时,当>﹣S=m S=,﹣+﹣可得+,GHCGHA△△S=S ,∵GHAGHC△△mn1=0 ,+∴+,由,解得:或Gy 轴的左侧,在∵点G);∴(﹣,4n3 ②时,当﹣<﹣≤S=S=m ,﹣﹣﹣可得,GHCGHA△△S=S ,∵GHAGHC△△3mn1=0 ,﹣﹣∴,由,解得:或Gy 轴的左侧,∵点在G14 ).∴,﹣(﹣G14G ).,﹣∴存在点(﹣)或(﹣,解法二:AGHACCGH①①的距离相等,∥时,点如图,当到,点S=S,∴GHAGHC△△AC3y=3x,﹣可得的解析式为ACGHGHy=3x1,∵∥,得的解析式为﹣1G4);∴(﹣,﹣28/ 25GHAC ②②不平行时,,当与如图ACGH 的距离相等,,到直线∵点GHACM).过线段(∴直线的中点,﹣GHy=x1 ,∴直线﹣的解析式为﹣G),(﹣∴,GG14 ).∴存在点)或(﹣,,﹣(﹣3)解法一:(0E2③),(﹣如图,,∵D2,∴的横坐标为﹣D在抛物线上,∵点D23),∴,﹣(﹣OCF中点,∵是0F),(∴,﹣y=xDF,的解析式为:﹣∴直线xQ20),(则它与,轴交于点PDFDFPEPFQBD=QB=QDQDBBPEFPD=FPD=180°,∠,∠++∠+∠∠∠+则,得∠∠PDFEPF=,∠∵∠BPE=DFP,∴∠∠PBEFDP,∽△∴△,∴DP=PB ?,得:DP=BD= PB,+∵PB=,∴PBD 的中点,即是DE ,连接28/ 26BD=PE=RtDBE .∴在△中,解法二:ABDCBDP ′,为等腰梯形,取可知四边形的中点= F=OBPCD′,()+PFCDAB ′,∥∥EF=DF= EF,连接,可知EF=FP=FD ′,即FEPFPD ′′,即△相似△EPF=FPD=FDP ′′′,∠∠即∠EPFEPF ′重合,和∠即∠PP ′重合,即和PBC 中点,为BD=BDE PE=为直角三角形).(△28/ 27直线与二次函数的交点问题以及三角此题考查了待定系数法求二次函数的解析式,【点评】形面积问题的求解等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想、分类讨论思想与方程思想的应用28/ 28。
广东省深圳市2016年中考数学三模试卷(解析版)一、选择题(共12小题,每小题3分,满分36分)1.的倒数是()A.﹣2 B. C.2 D.2.据相关报道,截止到今年四月,我国已完成5.78万个农村教学点的建设任务.5.78万可用科学记数法表示为()A.5.78×103 B.57.8×103 C.0.578×104D.5.78×1043.在下列四种图形变换中,本题图案不包含的变换是()A.位似B.旋转C.轴对称D.平移4.下列运算正确的是()A.a2+a3=a5B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1 D.(2a3﹣a2)÷a2=2a﹣15.小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.则向上的一面的点数大于4的概率为()A.B.C.D.6.甲、乙、丙、丁四名射击运动员参加了预选赛,他们射击成绩的平均环数及方差s2如表所示.如果选出一个成绩较好且状态稳定的运动员去参赛,那么应选()A.甲B.乙C.丙D.丁7.若,则xy的值为()A.5 B.6 C.﹣6 D.﹣88.如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.设AP=x,△PBE的面积为y.则能够正确反映y与x之间的函数关系的图象是()A. B.C.D.9.已知下列命题:①同位角相等;②若a>b>0,则;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.其中正确的命题有()A.1个B.2个C.3个D.4个10.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°11.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b12.已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为()A.B.C.D.二、填空题(共4小题,每小题3分,满分12分)13.因式分解:xy2﹣4xy+4x=.14.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD:DB=1:2,AE=2,则AC=.15.如图,反比例函数y=的图象与经过原点的直线相交于点A、B,已知A的坐标为(﹣2,1),则点B的坐标为.16.如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,…依次作下去,图中所作的第n个四边形的周长为.三、解答题(共7小题,满分52分)17.计算:.18.化简求值: +÷a,其中a=﹣2.19.2012年6月5日是“世界环境日”,南宁市某校举行了“绿色家园”演讲比赛,赛后整理参赛同学的成绩,制作成直方图(如图).(1)分数段在范围的人数最多;(2)全校共有多少人参加比赛?(3)学校决定选派本次比赛成绩最好的3人参加南宁市中学生环保演讲决赛,并为参赛选手准备了红、蓝、白颜色的上衣各1件和2条白色、1条蓝色的裤子.请用“列表法”或“树形图法”表示上衣和裤子搭配的所有可能出现的结果,并求出上衣和能搭配成同一种颜色的概率.20.如图,正方形ABCD的边长为1cm,AC是对角线,AE平分∠BAC,EF⊥AC于F.(1)求证:BE=EF.(2)求tan∠EAF的值.21.市园林处为了对一段公路进行绿化,计划购买A,B两种风景树共900棵.A,B两种树的相关信息如下表:若购买A种树x棵,购树所需的总费用为y元.(1)求y与x之间的函数关系式;(2)若购树的总费用不超过82 000元,则购A种树不少于多少棵?(3)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A,B两种树各多少棵?此时最低费用为多少?22.如图所示,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1.(1)当a=﹣1,b=1时,求抛物线n的解析式;(2)四边形AC1A1C是什么特殊四边形,请写出结果并说明理由;(3)若四边形AC1A1C为矩形,请求出a,b应满足的关系式.23.如图①,在平面直角坐标系中,直线y=﹣x+与x轴交于C点,与y轴交于点E,点A在x轴的负半轴,以A点为圆心,AO为半径的圆与直线的CE相切于点F,交x轴负半轴于另一点B.(1)求⊙A的半径;(2)连BF、AE,则BF与AE之间有什么位置关系?写出结论并证明.(3)如图②,以AC为直径作⊙O1交y轴于M,N两点,点P是弧MC上任意一点,点Q是弧PM的中点,连CP,NQ,延长CP,NQ交于D点,求CD的长.2016年广东省深圳市中考数学三模试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.的倒数是()A.﹣2 B. C.2 D.【考点】倒数.【分析】根据倒数的定义,直接解答即可.【解答】解:的倒数是﹣2.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.据相关报道,截止到今年四月,我国已完成5.78万个农村教学点的建设任务.5.78万可用科学记数法表示为()A.5.78×103 B.57.8×103 C.0.578×104D.5.78×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5.78万有5位整数,所以可以确定n=5﹣1=4.【解答】解:5.78万=57 800=5.78×104.故选D.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.在下列四种图形变换中,本题图案不包含的变换是()A.位似B.旋转C.轴对称D.平移【考点】几何变换的类型.【分析】观察本题中图案的特点,根据对称、平移、旋转、位似的定义作答.【解答】解:A、符合位似图形的定义,本题图案包含位似变换.错误;B、将图形绕着中心点旋转40°的整数倍后均能与原图形重合,本题图案包含旋转变换.错误;C、有9条对称轴,本题图案包含轴对称变换.错误;D、图形的方向发生了改变,不符合平移的定义,本题图案不包含平移变换.正确.故选:D.【点评】考查图形的四种变换方式:对称、平移、旋转、位似.对称有轴对称和中心对称,轴对称的特点是一个图形绕着一条直线对折,直线两旁的图形能够完全重合;中心对称的特点是一个图形绕着一点旋转180°后与另一个图形完全重合,它是旋转变换的一种特殊情况.平移是将一个图形沿某一直线方向移动,得到的新图形与原图形的形状、大小和方向完全相同.旋转是指将一个图形绕着一点转动一个角度的变换.位似的特点是几个相似图形的对应点所在的直线交于一点.观察时要紧扣图形变换特点,认真判断.4.下列运算正确的是()A.a2+a3=a5B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1 D.(2a3﹣a2)÷a2=2a﹣1【考点】整式的除法;合并同类项;幂的乘方与积的乘方;平方差公式.【分析】A.根据合并同类项法则判断;B.根据积的乘方法则判断即可;C.根据平方差公式计算并判断;D.根据多项式除以单项式判断.【解答】解:A.a2与a3不能合并,故本项错误;B.(﹣2a2)3=﹣8a6,故本项错误;C.(2a+1)(2a﹣1)=4a2﹣1,故本项错误;D.(2a3﹣a2)÷a2=2a﹣1,本项正确,故选:D.【点评】本题主要考查了积的乘方运算、平方差公式以及多项式除以单项式和合并同类项,熟练掌握运算法则是解题的关键.5.小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.则向上的一面的点数大于4的概率为()A.B.C.D.【考点】概率公式.【分析】让骰子中大于4的数个数除以数的总个数即为所求的概率.【解答】解:根据等可能条件下的概率的公式可得:小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则向上的一面的点数大于4的概率为.故选B.【点评】用到的知识点为:概率等于所求情况数与总情况数之比.6.甲、乙、丙、丁四名射击运动员参加了预选赛,他们射击成绩的平均环数及方差s2如表所示.如果选出一个成绩较好且状态稳定的运动员去参赛,那么应选()A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【分析】先比较平均数,乙丙的平均成绩好且相等,再比较方差即可解答. 【解答】解:由图可知,乙、丙的平均成绩好, 由于S 2乙<S 2丙,故丙的方差大,波动大. 故选B .【点评】本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7.若,则xy 的值为( )A .5B .6C .﹣6D .﹣8【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列出方程求出x 、y 的值,代入所求代数式计算即可.【解答】解:∵,∴,解得,∴xy=﹣2×3=﹣6. 故选C .【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.8.如图,P 是边长为1的正方形ABCD 对角线AC 上一动点(P 与A 、C 不重合),点E 在射线BC 上,且PE=PB .设AP=x ,△PBE 的面积为y .则能够正确反映y 与x 之间的函数关系的图象是( )A. B.C.D.【考点】动点问题的函数图象.【分析】过点P作PF⊥BC于F,若要求△PBE的面积,则需要求出BE,PF的值,利用已知条件和正方形的性质以及勾股定理可求出BE,PF的值.再利用三角形的面积公式得到y与x的关系式,此时还要考虑到自变量x的取值范围和y的取值范围.【解答】解:过点P作PF⊥BC于F,∵PE=PB,∴BF=EF,∵正方形ABCD的边长是1,∴AC==,∵AP=x,∴PC=﹣x,∴PF=FC=(﹣x)=1﹣x,∴BF=FE=1﹣FC=x,∴S△PBE=BE•PF=x(1﹣x)=﹣x2+x,即y=﹣x2+x(0<x<),∴y是x的二次函数(0<x<),故选A.【点评】本题考查了动点问题的函数图象,和正方形的性质;等腰直角三角形的性质;三角形的面积公式.对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.9.已知下列命题:①同位角相等;②若a>b>0,则;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.其中正确的命题有()A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】利用平行线的性质、不等式的性质、正方形的判定方法及多边形的内角等知识分别判断后即可确定正确的选项.【解答】解:①两直线平行,同位角相等,故错误;②若a>b>0,则,正确;③对角线相等且互相垂直的平行四边形才是正方形,故错误;④抛物线y=x2﹣2x与坐标轴有2个不同交点,故错误;⑤边长相等的多边形内角不一定都相等,故错误;正确的只有1个,故选A.【点评】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、不等式的性质、正方形的判定方法及多边形的内角等知识,难度不大.10.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°【考点】圆周角定理;平行线的性质.【分析】连接OC,由AO∥DC,得出∠ODC=∠AOD=70°,再由OD=OC,得出∠ODC=∠OCD=70°,求得∠COD=40°,进一步得出∠AOC,进一步利用圆周角定理得出∠B的度数即可.【解答】解:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选:D.【点评】此题考查平行线的性质,等腰三角形的性质,三角形的内角和,圆周角定理,正确作出辅助线是解决问题的关键.11.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b【考点】整式的加减;列代数式.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:2[a﹣b+(a﹣3b)]=4a﹣8b.故选B【点评】此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.12.已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为()A.B.C.D.【考点】二次函数的图象;反比例函数的图象.【分析】本题可先由反比例函数的图象得到字母系数k<﹣1,再与二次函数的图象的开口方向和对称轴的位置相比较看是否一致,最终得到答案.【解答】解:∵函数y=的图象经过二、四象限,∴k<0,由图知当x=﹣1时,y=﹣k>1,∴k<﹣1,∴抛物线y=2kx2﹣4x+k2开口向下,对称轴为x=﹣=,﹣1<<0,∴对称轴在﹣1与0之间,故选:D.【点评】此题主要考查了二次函数与反比例函数的图象与系数的综合应用,正确判断抛物线开口方向和对称轴位置是解题关键.属于基础题.二、填空题(共4小题,每小题3分,满分12分)13.因式分解:xy2﹣4xy+4x=x(y﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再根据完全平方公式进行二次分解.【解答】解:xy2﹣4xy+4x=x(y2﹣4y+4)=x(y﹣2)2.故答案为:x(y﹣2)2.【点评】本题考查了提公因式法,公式法分解因式.注意提取公因式后利用完全平方公式进行二次分解,分解要彻底.14.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD:DB=1:2,AE=2,则AC=6.【考点】平行线分线段成比例.【分析】根据DE∥BC,求证=,将已知数值代入即可求出EC,再将AE加EC即可得出答案.【解答】解:∵DE∥BC,∴=,∵=,AE=2,∴EC=4,∴AC=AE+EC=2+4=6.故答案为:6.【点评】此题主要考查学生对平行线分线段成比例这一知识点的理解和掌握,此题的关键是利用平行线分线段成比例求出EC,难度不大,是基础题.15.如图,反比例函数y=的图象与经过原点的直线相交于点A、B,已知A的坐标为(﹣2,1),则点B的坐标为(2,﹣1).【考点】反比例函数图象的对称性.【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:点A与B关于原点对称,则B点的坐标为(2,﹣1).【点评】本题考查反比例函数图象的中心对称性,较为简单,容易掌握.16.如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,…依次作下去,图中所作的第n个四边形的周长为.【考点】规律型:图形的变化类.【分析】根据正方形的性质以及勾股定理,先求出第一个、第二个、第三个四边形边长,从而发现规律,即可求出第n个四边形边长及周长.【解答】解:∵第一个四边形的边长为:==,周长为4×,第二个四边形的边长为:==()2,周长为4×()2,第三个四边形的边长为:==()3,周长是:4×()3,…∴第n个四边形的边长为()n,周长为4()n,故答案为:4()n.【点评】本题考查了正方形的性质以及勾股定理的应用,根据勾股定理求出每个四边形的边长,得出规律是解题关键.三、解答题(共7小题,满分52分)17.计算:.【考点】实数的运算.【分析】本题涉及绝对值、零指数幂、负指数幂3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式==.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.化简求值: +÷a,其中a=﹣2.【考点】分式的化简求值.【分析】先把分子分母因式分解和除法运算化为乘法运算,再约分后进行通分,然后进行同分母的减法运算得到原式=,再把a的值代入计算即可.【解答】解:原式=+•=﹣1==,当a=﹣2时,原式==﹣.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.19.2012年6月5日是“世界环境日”,南宁市某校举行了“绿色家园”演讲比赛,赛后整理参赛同学的成绩,制作成直方图(如图).(1)分数段在85~90范围的人数最多;(2)全校共有多少人参加比赛?(3)学校决定选派本次比赛成绩最好的3人参加南宁市中学生环保演讲决赛,并为参赛选手准备了红、蓝、白颜色的上衣各1件和2条白色、1条蓝色的裤子.请用“列表法”或“树形图法”表示上衣和裤子搭配的所有可能出现的结果,并求出上衣和能搭配成同一种颜色的概率.【考点】频数(率)分布直方图;列表法与树状图法.【分析】(1)由条形图可直接得出人数最多的分数段;(2)把各小组人数相加,得出全校参加比赛的人数;(3)利用“树形图法”,画出搭配方案,由此可求上衣和裤子能搭配成同一种颜色的概率.【解答】解:(1)由条形图可知,分数段在85~90范围的人数最多为10人,故答案为:85~90;(2)全校参加比赛的人数=5+10+6+3=24人;(3)上衣和裤子搭配的所有可能出现的结果如图所示,共有9种搭配方案,其中,上衣和裤子能搭配成同一种颜色的有3种,上衣和裤子能搭配成同一种颜色的概率为:=.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.如图,正方形ABCD的边长为1cm,AC是对角线,AE平分∠BAC,EF⊥AC于F.(1)求证:BE=EF.(2)求tan∠EAF的值.【考点】正方形的性质;角平分线的性质;解直角三角形.【分析】(1)根据角平分线上的点到角两边的距离相等,可得BE=EF;(2)根据勾股定理,计算正方形的对角线的长,减去AF的长求得CF的长,最后计算tan∠EAF的值.【解答】证明:(1)∵在正方形ABCD中,EF⊥AC,AB⊥BC,∴∠AFE=∠ABE=90°;∵AE平分∠BAC,∴∠BAE=∠FAE;又∵AE=AE,∴Rt△BAE≌Rt△FAE,故AB=AF,BE=FE.(2)∵正方形ABCD,∴在Rt△CEF中,∠ECF=45°,故FE=CF,∴BE=CF,∵正方形ABCD的边长为1 cm,对角线AC=cm,由(1)可得,BE=EF=CF=AC﹣AF=AC﹣AB=﹣1(cm),∴.【点评】本题主要考查正方形的性质以及全等三角形的判定,掌握正方形的四边相等、对角线平分每一对对角是解题的关键.21.市园林处为了对一段公路进行绿化,计划购买A,B两种风景树共900棵.A,B两种树的相关信息如下表:若购买A种树x棵,购树所需的总费用为y元.(1)求y与x之间的函数关系式;(2)若购树的总费用不超过82 000元,则购A种树不少于多少棵?(3)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A,B两种树各多少棵?此时最低费用为多少?【考点】一次函数的应用.【分析】(1)根据购树的总费用=买A种树的费用+买B种树的费用,化简后便可得出y与x 的函数关系式;(2)根据(1)得到的关系式,然后将所求的条件代入其中,然后判断出购买A种树的数量;(3)先用A种树的成活的数量+B种树的成活的数量≥树的总量×平均成活率来判断出x的取值,然后根据函数的性质判断出最佳的方案.【解答】解:(1)y=80x+100(900﹣x)=﹣20x+90000(0≤x≤900且为整数);(2)由题意得:﹣20x+90000≤82000,解得:x≥400,又因为计划购买A,B两种风景树共900棵,所以x≤900,即购A种树为:400≤x≤900且为整数.(3)92%x+98%(900﹣x)≥94%×90092x+98×900﹣98x≥94×900﹣6x≥﹣4×900x≤600∵y=﹣20x+90000随x的增大而减小.∴当x=600时,购树费用最低为y=﹣20×600+90000=78000(元).当x=600时,900﹣x=300,∴此时应购A种树600棵,B种树300棵.【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题.注意根据自变量的取值范围来判断所要求的解.22.如图所示,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1.(1)当a=﹣1,b=1时,求抛物线n的解析式;(2)四边形AC1A1C是什么特殊四边形,请写出结果并说明理由;(3)若四边形AC1A1C为矩形,请求出a,b应满足的关系式.【考点】二次函数综合题.【分析】(1)根据a=﹣1,b=1得出抛物线m的解析式,再利用C与C1关于点B中心对称,得出二次函数的顶点坐标,即可得出答案;(2)利用两组对边分别相等的四边形是平行四边形即可证明;(3)利用矩形性质得出要使平行四边形AC1A1C是矩形,必须满足AB=BC,即可求出.【解答】解:(1)当a=﹣1,b=1时,抛物线m的解析式为:y=﹣x2+1.令x=0,得:y=1.∴C(0,1).令y=0,得:x=±1.∴A(﹣1,0),B(1,0),∵C与C1关于点B中心对称,∴抛物线n的解析式为:y=(x﹣2)2﹣1=x2﹣4x+3;(2)四边形AC1A1C是平行四边形.理由:连接AC,AC1,A1C1,∵C与C1、A与A1都关于点B中心对称,∴AB=BA1,BC=BC1,∴四边形AC1A1C是平行四边形.(3)令x=0,得:y=b.∴C(0,b).令y=0,得:ax2+b=0,∴,∴,∴.要使平行四边形AC1A1C是矩形,必须满足AB=BC,∴,∴,∴ab=﹣3.∴a,b应满足关系式ab=﹣3.【点评】此题主要考查了平行四边形的性质以及矩形的性质和点的坐标关于一点中心对称的性质,灵活应用平行四边形的性质是解决问题的关键.23.如图①,在平面直角坐标系中,直线y=﹣x+与x轴交于C点,与y轴交于点E,点A在x轴的负半轴,以A点为圆心,AO为半径的圆与直线的CE相切于点F,交x轴负半轴于另一点B.(1)求⊙A的半径;(2)连BF、AE,则BF与AE之间有什么位置关系?写出结论并证明.(3)如图②,以AC为直径作⊙O1交y轴于M,N两点,点P是弧MC上任意一点,点Q是弧PM的中点,连CP,NQ,延长CP,NQ交于D点,求CD的长.【考点】圆的综合题;平行线的判定;全等三角形的判定与性质;勾股定理.【分析】(1)连接AF,如图①a,由直线EC的解析式可求出OE、OC的长,根据勾股定理可求出EC的长,然后根据切线长定理可求出EF的长,然后在Rt△AFC中运用勾股定理就可求出圆的半径.(2)连接OF,交AE于点H,如图①b,根据切线长定理可得EF=EO,EA平分∠FEO,根据等腰三角形的性质可得∠AHO=90°,由BO是⊙A的直径可得∠BFO=90°,从而得到∠BFO=∠AHO,即可得到BF∥AE.(3)连接QC、QM、MC、NC、MO1,如图②,易证△MCQ≌△DCQ,则有MC=DC.在Rt△MOO1中,运用勾股定理可求出MO的长,然后在Rt△MOC中,运用勾股定理就可求出MC,即可得到CD的长.【解答】解:(1)连接AF,如图①a.∵直线y=﹣x+与x轴交于C点,与y轴交于E点,∴点C的坐标为(2,0),点E的坐标为(0,),∴OC=2,OE=.∵∠EOC=90°,∴EC==.∵AO⊥OE,∴直线OE与⊙A相切于点O.又∵直线CE与⊙A相切于点F,∴∠AFC=90°,EF=OE=,∴FC=FE+EC=+=2.在Rt△AFC中,设AF=x,则AO=x,AC=x+2.根据勾股定理可得:x2+(2)2=(x+2)2,解得:x=1.∴⊙A的半径为1.(2)BF∥AE.证明:连接OF,交AE于点H,如图①b.∵EF、EO分别与⊙A相切于点F、O,∴EF=EO,EA平分∠FEO,∴EA⊥OF,即∠AHO=90°.∵BO是⊙A的直径,∴∠BFO=90°,∴∠BFO=∠AHO,∴BF∥AE.(3)连接QC、QM、MC、NC、MO1,如图②.∵AC是⊙O1的直径,AC⊥MN,∴,∴∠NQC=∠MNC.∵∠MQC+∠MNC=180°,∠DQC+∠NQC=180°,∴∠MQC=∠DQC.∵点Q是的中点,∴∠MCQ=∠PCQ.在△MCQ和△DCQ中,,∴△MCQ≌△DCQ(ASA),∴MC=DC.∵OA=1,OC=2,∴AC=3,AO1=,OO1=,在Rt△MOO1中,MO1=AO1=,OO1=,∴MO==.在Rt△MOC中,MC==,∴DC=.∴CD的长为.【点评】本题考查了圆周角定理、切线长定理、切线的性质、圆内接四边形的性质、全等三角形的判定与性质、平行线的判定、勾股定理等知识,而通过证明△MCQ≌△DCQ得到MC=DC 是解决第(3)小题的关键.The furthest distance in the worldIs not between life and deathBut when I stand in front of youYet you don't know thatI love you.The furthest distance in the worldIs not when I stand in front of youYet you can't see my loveBut when undoubtedly knowing the love from bothYet cannot be together.The furthest distance in the worldIs not being apart while being in loveBut when I plainly cannot resist the yearningYet pretending you have never been in my heart.The furthest distance in the worldIs not struggling against the tidesBut using one's indifferent heartTo dig an uncrossable riverFor the one who loves you.倚窗远眺,目光目光尽处必有一座山,那影影绰绰的黛绿色的影,是春天的颜色。
初中数学毕业会考模拟试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1. 移动互联网已经全面进入人们的日常生活.截至2015年4月,全国4G 用户总数达到1.68亿,其中1.62亿用科学记数法表示为( ) A. 1.68×104 B. 168×106 C. 1.68×108 D. 0.1628×1092. 计算a 10÷a 2(a ≠0)的结果是( )A. a 5B. a -5 C . a 8 D. a -83.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的年平均增长率为x ,则下列方程正确的是( )A. 1.4(1+x )=4.5B. 1.4(1+2x )=4.5C. 1.4(1+x )2=4.5D. 1.4(1+x )+1.4(1+x )2=4.54.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是( )5. 方程2x +1x -1=3的解是( )A. -45B. 45 C. -4 D. 46. 在-4,2,-1,3这四个数中,比-2小的数是( )A. -4B. 2C. -1D. 37.成绩(分) 35 39 42 44 45 48 50 人数2566876..A. 该班一共有40名同学B. 该班学生这次考试成绩的众数是45分C. 该班学生这次考试成绩的中位数是45分D. 该班学生这次考试成绩的平均数是45分8. 如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段AC 的长为( )第8题图A. 4B. 42C. 6D. 439. 一段笔直的公路AC 长20千米,途中有一处休息点B ,AB 长15千米.甲、乙两名长跑爱好者同时从点A 出发.甲以15千米/时的速度匀速跑至点B ,原地休息半小时后,再以10千米/时的速度匀速跑至终点C ;乙以12千米/时的速度匀速跑至终点C .下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y (千米)与时间x (小时)函数关系的图象是( )10. 如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 的图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能为( )二、填空题(本大题共4小题,每小题5分,满分20分)11. 如图,点A 、B 、C 在⊙O 上,⊙O 的半径为9,AB ︵的长为2π,则∠ACB 的大小是________.12. 不等式x -2≥1的解集是________.13. 按一定规律排列的一列数:21,22,23,25,28,213,…,若x 、y 、z 表示这列数中的连续三个数,猜测x 、y 、z 满足的关系式是________.14. 已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,则1a +1b=1;②若a =3,则b +c =9; ③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是________.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15. 计算:(-2016)0+3-8+tan45°.16. 解不等式:x3>1-x -36.四、(本大题共2小题,每小题8分,满分16分)17. 如图,平台AB 高为12米,在B 处测得楼房CD 顶部点D 的仰角为45°,底部点C 的俯角为30°,求楼房CD 的高度.(3≈1.7)18. 如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.五、(本大题共2小题,每小题10分,满分20分)19. 在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图①,当PQ∥AB时,求PQ长;(2)如图②,当点P在BC上移动时,求PQ长的最大值.20. 如图,河的两岸l 1与l 2相互平行,A 、B 是l 1上的两点,C 、D 是l 2上的两点.某人在点A 处测得∠CAB =90°,∠DAB =30°,再沿AB 方向前进20米到达点E (点E 在线段AB 上),测得∠DEB =60°,求C 、D 两点间的距离.六、(本题满分12分)21. 如图,已知反比例函数y =k 1x 与一次函数y =k 2x +b 的图象交于A (1,8),B (-4,m ).(1)求k 1、k 2、b 的值; (2)求△AOB 的面积;(3)若M (x 1,y 1)、N (x 2,y 2)是反比例函数y =k 1x 图象上的两点,且x 1<x 2,y 1<y 2,指出点M 、N 各位于哪个象限,并简要说明理由.22. 如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6).写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.23. 如图1,A,B分别在射线OM,ON上,且∠MON为钝角.现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图2,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和ABPQ的值.参考答案与试题解析1. C 【解析】大数的科学记数法的表示形式为a ×10n ,其中1≤a <10,n 的值等于原数的整数位数减1.含计数单位的数用科学记数法表示时,要把计数单位转化为数字.因为1亿=108,所以1.68亿=1.62×108.2. C 【解析】根据同底数幂的除法运算法则:“底数不变,指数相减”计算即可.a 10÷a 2=a 10-2=a 8.3. C 【解析】根据题意可知,2014年与2015年这两年的平均增长率均为x ,所以2014年的快递业务量为1.4(1+x ) 亿件,2015年的快递业务量1.4(1+x )(1+x )亿件,即1.4(1+x )2=4.5 亿件,故选C .4. C 【解析】该圆柱从正面看是一个宽与圆柱的底面直径相等,长与圆柱高相等的矩形.(注:该圆柱的主视图不包括水平桌面部分的主视图)5. D 【解析】将方程2x +1x -1=3去分母,得2x +1=3(x -1),去括号,得2x +1=3x -3,移项、合并同类项,得-x =-4.解得x =4.经检验x =4是原分式方程的根.6. A 【解析】把-4,2,1,3和-2在数轴上分别表示出来如解图,由数轴上左边的数总比右边的数小,即-4<-2,故选A.选项 逐项分析正误 A 把表格中的人数相加,得:2+5+6+6+8+7+6=40,所以该班一共有40名同学 √ B由表格可知,这7列数据中成绩45出现的次数最多,出现了8次,所以众数是45分 √C中位数是把这7列数据中的分数按照从小到大的顺序排列,位于最中间的两个数(第20,21个数)的平均数,所以中位数为45+452=45分√D 平均数为:35×2+39×5+42×6+44×6+45×8+48×7+50×640=44.425分≠45分×8. B 【解析】∵∠B =∠DAC ,∠C =∠C ,∴△ABC ∽△DAC .∴BC AC =ACDC ,即AC 2=BC ·DC .∵AD 是中线,BC =8,∴DC =12BC =4.∴AC 2=8×4,∴AC =4 2.9. A 【解析】由题意可知:甲所跑路程分为3个时段:开始1小时,以15千米/时的速度匀速由点A 跑至点B ,所跑路程为15千米;第1小时至第32小时休息,所跑路程不变;第32小时至第2小时,以10千米/时的速度匀速跑至终点C ,所跑路程为5千米,即甲累计所跑路程为20千米时,所用时间为2小时,并且甲开始1小时内的速度大于第32小时至第2小时之间的速度.因此选项A 、C 符合甲的情况.乙从点A 出发,以12千米/时的速度匀速一直跑至终点C ,所跑路程为20千米,所用时间为53小时,并且乙的速度小于甲开始的速度但大于甲第3时段的速度.所以选项A 、B 符合乙的情况.故选A.10. A 【解析】本题考查二次函数与一元二次方程的关系.根据一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象在第一象限相交于P 、Q 两点,观察图象可知一元二次方程ax 2+bx +c = x 的根为两个正根,即关于x 的一元二次方程ax 2+bx +c -x =0有两个正实数根,故函数y =ax 2+(b -1)x +c 的图象与x 轴交点的横坐标均为正数,故选A.11. 20° 【解析】如解图,连接OA 、OB ,由已知可得:l AB ︵=n πr 180=n π×9180=2π,解得n =40,即∠AOB =40°,∴∠ACB =12∠AOB =20°.12. x ≥3 【解析】移项,得x ≥1+2,合并同类项,得x ≥3.13. xy =z 【解析】观察这一列数可得:23=21·22,25=22·23,28=23·25,213=25·28,…,即从第三个数起每个数都等于前两个数之积 ,由x 、y 、z 表示这列数中的连续三个数,则有xy =z .序号 逐个分析正误 ① 若c ≠0,则a ≠0,b ≠0,对于a +b =ab 两边同除以ab ,可得1b +1a=1√ ② 若a =3,则3+b =3b ,则b =32,c =ab =92, b +c =32+92=6× ③ 若a =b =c ,则2c =c 2=c ,所以c =0,则a =b =0, 则abc =0 √ ④若a 、b 、c 中只有两个数相等,假设a =b ≠c ,则c =b 2=2b ,有b =2,则√a =2,c =4, 则a +b +c =8;若b =c ≠a ,a +c =ac =c ,由ac =c 可得a =1,由a +c =c ≠b ,可得a =0,矛盾;同理若a =c ≠b ,可得b =0,b =1,矛盾.故只能是a =b15. 解:原式=1+(-2)+1 =0. .........................(8分)16. 解:去分母得:2x >6-(x -3), .........(3分) 去括号得:2x >6-x +3,移项、合并同类项得:3x >9, 系数化为1得:x >3,所以,不等式的解集为x >3. .............(8分)17. 解:如解图,作BE ⊥CD 于点E ,则CE =AB =12.在Rt △BCE 中,BE =CE tan ∠CBE =12tan30°=12 3. ...........(3分)18. 解:(1)所求点D 及四边形ABCD 的另两条边AD 、CD 如解图所示; ........(4分) (2)所求四边形A ′B ′C ′D ′如解图所示. .................(8分)19. (1)解:∵OP ⊥PQ ,PQ ∥AB ,∴OP ⊥AB .在Rt △OPB 中,OP =OB ·tan ∠ABC =3·tan30°= 3. ............(3分) 如解图①,连接OQ ,在Rt △OPQ 中,PQ =OQ 2-OP 2=32-(3)2= 6. ..........(5分) (2)解:如解图②,连接OQ ,∵OP ⊥PQ , ∴△OPQ 为直角三角形, ∴PQ 2=OQ 2-OP 2=9-OP 2,∴当OP 最小时,PQ 最大,此时OP ⊥BC . ..........(7分) OP =OB·sin ∠ABC =3·sin30°=32.∴PQ 长的最大值为9-(32)2=332. ...........(10分)图① 图②20. 解:∵∠DEB =60°,∠DAB =30°,∴∠ADE =60°-30°=30°,∴∠DAB =∠ADE ,∴DE =AE =20, ........(3分)如解图,过点D 作DF ⊥AB 于点F ,则∠EDF =30°,∴在Rt △DEF 中,EF =12DE =10, .........(6分) ∴AF =20+10=30,∵DF ⊥AB ,∠CAB =90°,∴CA ∥DF ,又∵l 1∥l 2,∴四边形CAFD 是矩形,∴CD =AF =30,答:C 、D 两点间的距离为30米. ................(10分)21. (1)解:把A (1,8),代入y =k 1x ,得k 1=8,∴y =8x, 将B (-4,m )代放y =8x,得m =-2. ∵A (1,8),B (-4,-2)在y =k 2x +b 图象上,∴⎩⎪⎨⎪⎧k 2+b =8-4k 2+b =-2, 解得k 2=2,b =6. ................(4分)(2)解:设直线y =2x +6与x 轴交于点C ,当y =0时,x =-3,∴OC =3.∴S △AOB =S △AOC +S △BOC =12×3×8+12×3×2=15. ....................(8分) (3)解:点M 在第三象限,点N 在第一象限. ............(9分)理由:由图象知双曲线y =8x在第一、三象限内,因此应分情况讨论: ①若x 1<x 2<0,点M 、N 在第三象限分支上,则y 1>y 2,不合题意;②若0<x 1<x 2,点M 、N 在第一象限分支上,则y 1>y 2,不合题意;③若x 1<0<x 2,点M 在第三象限,点N 在第一象限,则y 1<0<y 2,符合题意. .....(11分) ∴点M 在第三象限,点N 在第一象限. ..........(12分)22. 解:(1)∵二次函数y =ax 2+bx 的图象经过点A (2,4)与B (6,0).∴⎩⎪⎨⎪⎧4=4a +2b 0=36a +6b ,解得,⎩⎪⎨⎪⎧a =-12b =3; ..............(5分) (2)如解图①,过点A 作x 轴的垂线,垂足为点D (2,0),连接CD ,过点C 作CE ⊥AD ,CF ⊥x 轴,垂足分别为点E ,点F ,则S △OAD =12OD ·AD =12×2×4=4, S △ACD =12AD ·CE =12×4×(x -2)=2x -4, S △BCD =12BD ·CF =12×4×(-12x 2+3x )=-x 2+6x , 则S =S △OAD +S △ACD +S △BCD =4+(2x -4)+(-x 2+6x )=-x 2+8x .∴S 关于x 的函数表达式为S =-x 2+8x (2<x <6). .........(10分)∵S =-(x -4)2+16,∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16. .......(12分)解图①【一题多解】解法一:由(1)知y =-12x 2+3x ,如解图②,连接AB , 则S =S △AOB +S △ABC ,其中S △AOB =12×6×4=12, 设直线AB 解析式为y 1=k 1x +b 1,将点A (2,4),B (6,0)代入,易得y 1=-x +6, 过C 作直线l ⊥x 轴交AB 于点D ,∴C (x ,-12x 2+3x ),D (x ,-x +6), ∴S △ABC =S △ADC +S △BDC =12·CD ·(x -2)+12·CD ·(6-x )=12·CD ·4=2CD , 其中CD =-12x 2+3x -(-x +6)=-12x 2+4x -6, ∴S △ABC =2CD =-x 2+8x -12,∴S =S △ABC +S △AOB =-x 2+8x -12+12=-x 2+8x =-(x -4)2+16(2<x <6),即S 关于x 的函数表达式为S =-x 2+8x (2<x <6),∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.解图②解法二:∵点C 在抛物线上y =-12x 2+3x 上, ∴点C (x ,-12x 2+3x ), 如解图③,过点A 作AD ⊥x 轴,垂足为点D ,过点C 作CE ⊥x 轴,垂足为点E ,则 点D 的坐标为(2,0),点E 的坐标为(x ,0),∴S =S △OAD +S 梯形ADEC +S △CEB =12×2×4+12(4-12x 2+3x )(x -2)+12(6-x )(-12x 2+3x )=-x 2+8x ,∵S =-x 2+8x =-(x -4)2+16(2<x <6),∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.23. (1)证明:∵点C ,D ,E 分别是OA ,OB ,AB 的中点,∴DE ∥OC ,且CE ∥OD ,∴四边形CEDO 是平行四边形,∴∠ECO =∠EDO ,又∵△OAP ,△OBQ 都是等腰直角三角形,∴∠PCO =∠QDO =90°,∴∠PCE =∠PCO +∠ECO =∠QDO +∠EDO =∠EDQ ,又∵PC =12AO =OC =DE ,CE =12BO =OD =DQ , ∴△PCE ≌△EDQ ; .................(5分)(2)①证明:如解图①,连接OR ,∵PR 与QR 分别为线段OA 与OB 的中垂线,∴AR =OR =BR ,∠ARC =∠ORC ,∠ORD =∠BRD ,在四边形OCRD 中,∠OCR =∠ODR =90°,∠MON =150°,∴∠CRD =30°,∴∠ARB =∠ARO +∠BRO =2∠CRO +2∠ORD =2∠CRD =60°. ............(9分) ∴∠ABR 为等边三角形;第23题解图①②解:如解图②,由(1)知EQ =PE ,∠DEQ =∠CPE ,∴∠PEQ =∠CED -∠CEP -∠DEQ =∠ACE -∠CEP -∠CPE =∠ACE -∠RCE =∠ACR =90°,即△PEQ 为等腰直角三角形,∵△ARB ∽△PEQ ,∴∠ARB =90°,∴在四边形OCRD 中,∠OCR =∠ODR =90°,∠CRD =12∠ARB =45°, ∴∠MON =360°-90°-90°-45°=135°,又∵∠AOP =45°,∴∠POD =180°,即P 、O 、B 三点共线,在△APB 中,∠APB =90°,E 为AB 中点,∴AB =2PE ,又∵在等腰直角△PEQ 中,PQ =2PE ,∴AB PQ =2PE 2PE= 2. ..........................(14分)。
广东省深圳市2016年初中数学毕业生学业考试模拟试题说明:1.全卷分二部分,第一部分为选择题,第二部分为非选择题,共 4页。
考试时间90分钟,满分100分。
2.考生必须在答题卡上按规定作答;答题卡必须保持清洁,不能折叠。
3.答题前,请将姓名.考生号.考场等用规定的笔填涂在答题卡指定的位置上(将条形码粘贴好)。
4.本卷选择题1—12,每小题选出答案后,用2B铅笔将答题卡选择题答题区内对应题目的答案标号涂黑;非选择题13—23,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内相应位置上,写在本卷或其他地方无效。
B. D..某机构对30万人的调查显示,沉迷于手机上网的初中生大约占y=第7题图.填空题(本题共4小题,每小题3分,共12分)913.=18.若a 是正整数,且a 满足⎪⎩⎪⎨⎧>--<-02a 312a 1,试解分式方程11x x a ax 3=++-19.我市某中学今年年初开学后打算招聘一名数学教师,对三名前来应聘的数学教师A 、B 、C 进行了考核,他们的笔试成绩和说课成绩(单位:分)分别用了两种方式进行了统计,如表一和图一:(1)请将表一和图一中的空缺部分补充完整. (2)应聘的最后一个程序是由该校的24名数学教师进行投票,三位应聘人的得票情况如图二(没有弃权票,该校的每位教师只能选一位应聘教师),请计算每人的得票数(得票数可是整数哟).(3)若每票计1分,该校将笔试、说课、得票三项测试得分按3:4:4的比例确定个人成绩,请计算三位应聘人的最后成绩,并根据成绩判断谁能应聘成功.20.作图与证明 (1)作图题:如图1,在网格图中做出将四边形ABCD 向左平移3格,再向上平移2格得到的四边形A′B′C′D′. (2)证明题:已知:如图2,在△ABC 中,BE=EC ,过点E 作ED∥BA 交AC 与点G ,且AD∥BC,连接AE 、CD . 求证:四边形AECD 是平行四边形.21.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于40%.经试销发现,销售量y (件)与销售单价x (元)符合一次函数y=kx+b ,且x=80时,y=40;x=70图一 图二时,y=50.(1)求一次函数y=kx+b 的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?22.已知⊙O 的半径为4,BC 为⊙O 的弦,060=∠OBC ,P 是射线AO 上的一动点,连结CP . (1)当点P 运动到如图1所示的位置时,34=∆PBC S ,求证:CP 是⊙O 的切线;(2)如图2,当点P 在直径AB 上运动时,CP 的延长线与⊙O 相交于点Q ,试问PB 为何值时,CBQ ∆是等腰三角形?23.抛物线y=ax 2+bx +c(a≠0)的顶点为D (1,4),交x 轴于A 、B 两点,且经过点C (2,3) (1)求抛物线的解析式,(2)如图13,M 为线段O 、B 之间一动点,N 为y 轴正半轴上一动点,是否存在使M 、C 、D 、N 四点围成的四边形周长最小.若存在,求出这个最小值及M 、N 的坐标;若不存在,请说明理由, (3) 若P 是y 轴上的点,Q 是抛物线上的点,求:以P 、 Q 、 A 、B 为顶点构成平行四边形的点Q 的坐标.图1图2参考答案及评分意见第一部分 选择题(本题共12小题,每小题3分,共36分)第二部分 非选择题填空题(本题共4小题,每小题3分,共12分)解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,第20题7分,第21题8分,第22题9分,第23题9分,共52分)17.解: 原式=1134+++ ………………1+2+1+1分=9. ………………………6分 (注:运算的第一步正确一项给1分.)18.解:∵⎪⎩⎪⎨⎧>--<-)()(20 (2)a 31 1......2a 1∴由(1)得,a>1∴由(2)得,a<3∴1<a<3………………………………………………… ....1分 ∵a 是正整数,∴a=2.…………………………………………………….2分 将a=2代入分式方程得11x x22x 3=++-………………3分 去分母,方程两边同时乘以()()1x 22x +-得()()()()1x 22x 22x x 1x 3+-=-++……………………..4分整理得:-5x =………………………………………..…..5分 经检验,原分式方程的解是-5x =.…………………....6分19.解:(1)90,注:每个正确答案1分.(2)24×33.3%=7.992,24×41.7%=10.008,24×25%=6…………………..3分 根据实际意义可得,A 得8票,B 得10票,C 得6票.……………………4分 (3)因为3+4+4=10,由题可得,A 的最后成绩为:7.6310481049010385=⨯+⨯+⨯B 的最后成绩为:5.64104101048010395=⨯+⨯+⨯(对两个或以下,得1分)C 的最后成绩为:4.6310461048510390=⨯+⨯+⨯……………6分∵63.4<63.7<64.5∴B 能应聘成功.………………………………………………………..………7分 20.(1)解:如图所示:………………………3分(2)证明:∵ED∥BA,且AD∥BC,∴四边形BEDA 是平行四边形, ………………………4分 ∴AD=BE, ………………………5分 ∵BE=EC,∴AD=EC, ………………………6分 ∵AD∥BC,∴四边形AECD 是平行四边形. ………………………7分21.解:(1)60≤x≤60(1+40%),∴60≤x≤84, ………………………1分 由题得:解之得:k=﹣1,b=120, ………………………2分∴一次函数的解析式为y=﹣x+120(60≤x≤84). ………………………3分 (2)销售额:xy=x (﹣x+120)元;成本:60y=60(﹣x+120).………………………4分 ∴W=xy﹣60y ,=x (﹣x+120)﹣60(﹣x+120), =(x ﹣60)(﹣x+120),=﹣x 2+180x ﹣7200,=﹣(x ﹣90)2+900, ………………………6分∴W=﹣(x ﹣90)2+900,(60≤x≤84),当x=84时,W 取得最大值,最大值是:﹣(84﹣90)2+900=864(元).………………7分 即销售价定为每件84元时,可获得最大利润,最大利润是864元.………………………8分22.解:(1)∵060=∠OBC ,OC OB =,∴OBC ∆是等边三角形. ∴060=∠COB . 1分 ∵CP 与⊙O 相切, ∴090=∠OCP .∴03090=∠-=∠COP CPO …………2分 又∵⊙O 的半径为4,∴4==OC OB .∴82==OC OP . ∴448=-=-=OB OP PB . 3分 (2)①过点C 作1CP OB ⊥,垂足为1P ,延长1CP 交⊙O 于1Q ,∵AB ⊙O 是的直径, ∴⋂⋂=1BQ BC ,∴1BQ BC =,…………4分 ∴1CBQ △是等腰三角形.…………5分由(1)可知OBC ∆是等边三角形,∴011P B BC cos 6042=∙=⨯=2 .…………6分 ②解:过O 作BC OD ⊥,垂足为D ,延长DO 交⊙O 于2Q ,2CQ 与AB 交于2P , ∵O 是圆心, ∴2DQ 是BC 的垂直平分线. ∴22BQ CQ = ∴2CBQ ∆是等腰三角形. …………7分∵060=∠COB ,∴023021=∠=∠COB B CQ .∵2DQ 平分22,OQ OC B CQ =∠,∴02215=∠=∠OCQ O CQ .∵OBC ∆是等边三角形,1CP OB ⊥, ∴013021=∠=∠OCB OCP . ∴0002112P CP PCO OCQ 301545∠=∠+∠=+=. ∴12CPP △是等腰直角三角形. 8分∴121PP CP ==∴2321212+=+=B P P P B P . 9分 23.23.(本小题满分9分)解:(1)设抛物线的表达式为:4)1(2+-=x a y 将C (2,3)代入,解得:a=-1∴抛物线的表达式为:322++-=x x y ……(2分) (2)作D (1,4)关于y 轴对称点G (-1,4), C (2,3)关于x 轴对称点H (2,-3),∵CD 是一个定值,∴要使四边形MCDN 的周长最小, 只要使DN +MN +MC 最小即可 由图形的对称性,可知, DN +MN +MC =GN +NM +HM只有当GH 为一条直线段时,GN +NM +HM 最小,……(5可求得: CD 2=,GH58=∴四边形MCDN 的周长最小为582+ ……(6分)(3)若AB 为平行四边形的边, ∵AB=4, AB ∥PQ 且AB =PQ, ①当点Q 在y 轴的右侧时,4=Q x ,又∵点Q 在抛物线上, ∴5-=Q y ,∴)5,4(1-Q ………7分②当点Q 在y 轴的左侧时,4-=Q x ,又∵点Q 在抛物线上, ∴21-=Q y ,∴2Q (4,21)--……8分若AB 为平行四边形的对角线,如图,过Q 作QF ⊥x 轴,垂足为F ,∵四边形PAQB 为平行四边形, ∴QFA POB ∆≅∆,∴AF=OB=1 ∴Q x 2=,又∵点Q 在抛物线上,∴Q y 3=,∴3Q (2,3) …………综上:符合要求的点Q 的坐标为:)5,4(1-Q ,2Q (4,21)--,3Q GDE(注:(3)没有求解过程只直接给出结果且三个点坐标全对可给1分其它解法只要合理,参照给分.)。