截长补短的技巧
- 格式:pdf
- 大小:227.33 KB
- 文档页数:3
截长补短技巧
截长补短是一种改进文章或文章段落的技巧,使其更加紧凑和有力。
下面是一些截长补短的技巧:
1. 删除冗余信息:仔细审查你的文章,删除不必要或重复的词语、句子或段落。
确保每个词语和句子都对于表达你的观点是必要的。
2. 简化句子结构:检查你的句子结构是否过于复杂。
尽量使用简洁明了的句子,避免使用过多从属从句或过长的修饰语。
3. 使用具体的词语:用具体的词语取代模糊或泛泛的描述。
这样可以提供更清晰、更具图像感的表达方式,并避免篇幅过长。
4. 缩减段落长度:确保每个段落只包含一个主要观点,并删除无关或重复的内容。
同时,考虑将较长的段落分成更小的段落,以增加可读性和易理解性。
5. 提供必要的背景信息:在撰写文章时,确保为读者提供必要的背景信息,以便他们能够理解你的论点。
然而,切勿陷入过多的细节或琐碎的描述。
6. 突出关键信息:通过使用强调、引用或编号等方式,突出文章中最重要的信息。
这样可以帮助读者更快地理解你的观点和重点。
7. 避免啰嗦和废话:尽量避免在文章中使用啰嗦的句子或废话。
去除不必要的修饰词和句子,使表达更加简洁明了。
8. 运用段落过渡语:使用合适的段落过渡语,将一个观点引出到下一个观点。
这样可以使文章整体更流畅,帮助读者更好地跟随你的思路。
通过运用以上截长补短的技巧,你可以让你的写作更加紧凑,使观点更加明确,提高文章的可读性和吸引力。
记得在修改文章时保持批判性思维和审美眼光,确保每个词语和句子都能够为文章增添价值。
截长补短法截长补短法是几何证明题中十分重要的方法。
通常来证明几条线段的数量关系。
截长补短法有多种方法。
截长法:(1)过某一点作长边的垂线(2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。
……补短法(1)延长短边。
(2)通过旋转等方式使两短边拼合到一起。
……例:B A在正方形ABCD中,DE=DF,DG⊥CE,交CA于G,GH⊥AF,交AD于P,交CE延长线于H,请问三条粗线DG,GH,CH的数量关系方法一(好想不好证)B A方法二(好证不好想)MB A例题不详解。
(第2页题目答案见第3、4页)FE(1)正方形ABCD中,点E在CD上,点F在BC上,∠EAF=45o。
求证:EF=DE+BF(1)变形a正方形ABCD中,点E在CD延长线上,点F在BC延长线上,∠EAF=45o。
请问现在EF、DE、BF又有什么数量关系?(1)变形b正方形ABCD中,点E在DC延长线上,点F在CB延长线上,∠EAF=45o。
请问现在EF、DE、BF又有什么数量关系?(1)变形cD正三角形ABC中,E在AB上,F在AC 上∠EDF=45o。
DB=DC,∠BDC=120o。
请问现在EF、BE、CF又有什么数量关系?(1)变形dFE正方形ABCD中,点E在CD上,点F 在BC上,∠EAD=15o,∠FAB=30o。
AD=3求∆AEF的面积(1)解:(简单思路)FE延长CD到点G,使得DG=BF,连接AG。
由四边形ABCD是正方形得∠ADG=∠ABF=90oAD=AB又DG=BF所以∆ADG≅∆ABF(SAS)∠GAD=∠FABAG=AF由四边形ABCD是正方形得∠DAB=90o=∠DAF+∠FAB=∠DAF+∠GAD=∠GAF所以∠GAE=∠GAF-∠EAF=90o-45o=45o∠GAE=∠FAE=45o又AG=AFAE=AE所以∆EAG≅∆EAF(SAS)EF=GE=GD+DE=BF+DE变形a解:(简单思路)EF= BF-DE在BC上截取BG,使得BG=DF,连接AG。
完整版)截长补短类辅助线作法截长补短类辅助线作法是解决三条线段之间数量关系问题的常用方法。
其中,“截长”是将最长的线段一分为二,使其中一条等于已知的较短线段之一,然后证明另一段与已知另一条线段的数量关系;“补短”是将一条较短的线段延长至与另一条较短的线段相等,然后证明延长后的线段与最长的线段的数量关系。
需要注意的是,截长补短类辅助线作法一般用于三条线段之间的数量关系问题,特别是当线段前的系数不是1时,可能会涉及到含特殊角的直角三角形。
在构造辅助线时,需要结合题目条件选择适当的方法,并不是所有题目都适用于截长和补短方法。
下面是一些例题的精讲:1.在图中,以D为顶点作一个边长为a的正三角形,连接AD、BD、CD,点E、F分别在AB、AC上,且AE=EF=FB,求△XXX的周长。
2.已知△ABC中,DP⊥BC,证明BD平分∠ABC,BC上有动点P;DP平分∠BDC时,求BD、CD、CP三者的数量关系。
3.已知△ABC中,D、E、F分别平分∠A、∠B、∠C,交于点P,试判断AD:DB、BE:EC、CF:FA的数量关系,并加以证明。
4.在△ABC中,AD是角平分线,点F、E分别在AC、AB上,且AF=DE,证明BF=CE。
5.在图中,以D为顶点作一个边长为a的正三角形,连接AD、BD、CD,点E、F分别在AB、AC上,且AE=EF=FB,求△XXX的周长。
6.已知正方形ABCD中,M为CD的中点,E为MC上一点,且∠AED=45°,证明AE=BD。
7.五边形ABCDE中,AD平分∠CDE,证明XXX。
8.在△ABC中,D是三角形外一点,且∠ACD=∠BCD,AB与CD交于点E,证明XXX。
9.如图1所示,AB、CD平行,AE、DE分别平分∠A、∠D,并交于点E。
过点E的直线分别交AM、DN于B、C。
1)当点B、C分别位于点AD的同侧时,猜想AD、AB、CD之间的存在的数量关系。
2)试证明你的猜想。
截长补短类协助线作法?“截长”就是将三条线段中最长的那条线段一分为二,使此中的一条线段等于已知的两条较短线段中的一条,而后证明此中的另一段与已知的另一条线段的数目关系;“补短”就是将三条线段中一条已知的较短的线段延伸至与另一条已知的较短的长度相等,而后证明延伸后的线段与最长的已知线段的数目关系.?注: 1、截长补短类协助线解决的一般是三条线段之间的数目关系问题,特别要注意线段前系数不是“ 1”的时候,一般会波及到含特别角的直角三角形2、详细在利用截长或许补短结构协助线时要联合题目条件选择适合的方法,并不是全部题目截长和补短都能够例题精讲1、如下图,是边长为的正三角形,是顶角为的等腰三角形,以为极点作一个的,点、分别在、上,求的周长.P.2、已知:如图,△ABC中,,BD均分∠ ABC,BC上有动点( 1) DP⊥BC时(如图 1),求证:;( 2) DP均分∠ BDC时(如图 2), BD、CD、 CP三者有何数目关系?3、已知中,,、分别均分和,、交于点,试判断、、的数目关系,并加以证明.4、( 2014 初二上期末昌平区)如图,AD是△ ABC的角均分线,点F,E 分别在边 AC, AB上,且.( 1)求证:;( 2)假如,研究线段AE, AF,FD之间知足的等量关系,并证明.5、如下图,是边长为的正三角是顶角为的等腰三角形,形,以为极点作一个的,点、分别在、上,求的周长.6、如下图,已知正方形ABCD 中, M 为 CD 的中点, E 为 MC 上一点,且.求证:.7、五边形 ABCDE 中,,,,求证:AD 均分∠ CDE.8、如图,在△ ABC中,,D是三角形外一点,且,.求证:9、(2012 初二上期中中关村中学)如图1 所示:,AE 、DE 分别均分和,并交于 E 点.过点E 的直线分别交AM 、DN 于B、C.(1)如图 2,当点 B、C 分别位于点 AD 的同侧时,猜想 AD 、 AB、 CD 之间的存在的数目关系: ____ _____.(2)试证明你的猜想 .(3)若点 B、 C 分别位于点 AD 的双侧时,试写出 AD 、AB 、CD 之间的关系,并选择一个写出证明过程 .10、(2012 初二上期中北达资源中学)(1)如图,四边形ABPC 中,,,,求证:.( 2)如图,四边形ABCD 中,,,P 为四边形ABCD 内一点,且,求证:.11、(2009 山东临沂中考)数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.∠AEF=90°,且EF 交正方形外角∠DCG 的均分线 CF 于点 F,求证: AE=EF.AB 的中点M ,连结ME ,则经过思虑,小明展现了一种正确的解题思路:取AM=EC ,易证△AME ≌△ ECF,因此 AE=EF .在此基础上,同学们作了进一步的研究:( 1)小颖提出:如图 2,假如把“点 E 是边 BC 的中点”改为“点 E 是边 BC上(除B,C 外)的随意一点”,其余条件不变,那么结论“ AE=EF”仍旧建立,你以为小颖的看法正确吗?假如正确,写出证明过程;假如不正确,请说明原因;(2)小华提出:如图 3,点 E 是 BC 的延伸线上(除 C 点外)的随意一点,其余条件不变,结论“AE=EF”仍旧建立.你以为小华的看法正确吗?假如正确,写出证明过程;假如不正确,请说明原因.12、( 2013 中考旭日二模)在平行四边形 ABCD 过点 E 作直线 EF,在 EF 上取一点 G,使得中,E 是AD 上一点,,连结AG .,( 1)如图1,当EF 与AB 订交时,若,求证:;( 2)如图2,当EF 与AB 订交时,若,请你直接写出线段EG、AG 、 BG 之间的数目关系(用含( 3)如图 3,当 EF 与 CD 订交时,且α的式子表示);,请你写出线段EG、AG 、BG之间的数目关系,并证明你的结论.13、(2015 初二上期末昌平区)为等腰直角三角形, , 点在边上(不与点、重合),以为腰作等腰直角,( 1)如图1,作于,求证:;( 2)在图 1 中,连结交于,求的值;( 3)如图2,过点作交的延伸线于点,过点作,交于点,连结.当点在边上运动时,式子的值会发生变化吗?若不变,求出该值;若变化请说明原因.随堂练习1、已知等腰,,的均分线交于,则.2、已知:如图,是正方形,,求证:.3、(2015 中考顺义一模)如图,△ABC中,,点P是三角形右外一点,且.( 1)如图 1,若,点 P 恰好在∠ ABC的均分线上,,求 PB的长;( 2)如图 2,若,研究 PA,PB, PC的数目关系,并证明;( 3)如图 3,若,请直接写出 PA,PB,PC的数目关系.课后作业1、如图,四边形 ABCD 中, AB ∥DC, BE、CE 分别均分∠ ABC 、∠ BCD ,且点E在AD 上.求证:.2、( 2013 黑龙江龙东地域中考)正方形 ABCD 的极点 A 在直线 MN 上,点 O 是对角线 AC 、BD 的交点,过点 O 作 OE⊥MN 于点 E,过点 B 作 BF⊥ MN 于点 F.(1)如图 1,当 O、B 两点均在直线 MN 上方时,易证: AF+BF=2OE (不需证明)(2)当正方形 ABCD 绕点 A 顺时针旋转至图 2、图 3 的地点时,线段 AF、BF、OE 之间又有如何的关系?请直接写出你的猜想,并选择一种状况赐予证明.3、( 2015 中考海淀一模)在菱形中,,点是对角线上一点,连结,,将线段绕点逆时针旋转并延伸获得射线,交的延伸线于点.( 1)依题意补全图形;( 2)求证:;( 3)用等式表示线段,,之间的数目关系:.4、(2014 黑龙江齐齐哈尔、大兴安岭、黑河中考)在等腰直角三角形ABC 中,∠BAC=90°,AB=AC ,直线 MN 过点 A 且 MN ∥ BC,过点 B 为一锐角极点作Rt△BDE,∠ BDE=90°,且点 D 在直线 MN 上(不与点 A 重合),如图 1, DE 与 AC 交于点 P,易证: BD=DP .(无需写证明过程)( 1)在图 2 中, DE 与 CA 延伸线交于点 P,BD=DP 能否建立?假如建立,请(完整版)截长补短类辅助线作法赐予证明;假如不建立,请说明原因;(2)在图 3 中, DE 与 AC 延伸线交于点 P,BD 与 DP 能否相等?请直接写出你的结论,无需证明.11 / 11。
截长补短模型专题解读【专题说明】“截长补短”是几何证明题中十分重要的方法,通常用来证明几条线段的数量关系,即若题目条件或结论中含有“a+b =c”的条件,需要添加辅助线时可以考虑“截长补短”的方法。
【方法技巧】常见类型及常规解题思路:① a b c ±= 可采取直接截长或补短,绕后进行证明。
或者化为类型②证明。
② a b kc ±= 可以将a b ±与c 构建在一个三角形中,然后证明这个三角形为特殊三角形,如等边三角形,等腰直角三角形,或一个角为30o 的直角三角形等。
截长法常规辅助线:(1)过某一点作长边的垂线(2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。
补短法常规辅助线:(1)延长短边。
(2)通过旋转等方式使两短边拼合到一起【典例分析】【典例1】模型分析当题目中出现线段的和差关系时,考虑用截长补短法,该类题日中常出现等腰三角形、角平分线等关键词句,采用截长补短法进行证明.问题:如图,在△ABC 中,AD 平分∠BAC 交BC 于点D ,且∠B =2∠C ,求证:AB +BD =AC . 截长法:在AC 上截取AE =AB ,连接DE ,证明CE =BD 即可.补短法:延长AB 至点F ,使AF =AC ,连接DF ,证明BF =BD 即可.请结合右边的证明结论.求证:AB +BD =AC .请结合右边的【模型分析】证明结论.求证:AB+BD=AC.【截长法】【补短法】【解答】证明:【截长法】在AC上截取AE=AB,连接DE,∵AD平分∠BAC,∴∠BAD=∠DAC,在△ABD和△AED中,,∴△ABD≌△AED(SAS),∴∠B=∠AED,BD=DE,又∠B=2∠C,∴∠AED=2∠C,而∠AED=∠C+∠EDC=2∠C,∴∠C=∠EDC,∴DE=CE,∴AB+BD=AE+CE=AC.证明:【补短法】延长AB到F,使BF=BD,连接DF,∵BF=BD,∴∠F=∠BDF,∴∠ABC=∠F+∠BDF=2∠F,且∠ABC=2∠C,∴∠C=∠F,且∠CAD=∠BAD,AD=AD,∴△ADF≌△ADC(AAS)∴AC=AF,∴AC=AF=AB+BF=AB+BD.【变式1】如图,Rt△ABC中,AC=BC,AD平分∠BAC交BC于点D,CE⊥AD交AD于F点,交AB于点E.求证:AD=2DF+CE.【解答】证明:在AF上截取FG=DF,连接CG,则DG=2DF,∵∠ACB=90°,∴∠DCF+∠ACF=90°,又∵CF⊥AD,∴∠ACF+∠CAF=90°,∴∠DCF=∠CAF,∵AD平分∠CAE,∴∠CAF=∠EAF,∵DF=FG,CF⊥DG,∴CD=CG,∴∠CDG=∠CGD,∵∠DGC=∠GAC+∠ACG,∠ADC=∠B+∠BAD,∴∠B=∠ACG,又∵AC=BC,∴△ACG≌△CBE(ASA),∴AG=CE,∴AD=AG+DG=CE+2DF.【变式2】如图,△ABC为等边三角形,D为△ABC外一点,连接AD,BD,CD,∠ADB =∠ADC=60°,求证:AD=BD+CD.【解答】证明:在DA上截取DE=DB,连接BE,如下图所示,∵∠ADB=60°,DE=DB,∴△ABD为等边三角形,∴∠EBD=60°,BE=BD,∵△ABC为等边三角形,∴∠ABC=60°,BA=BC,∴∠EBD﹣∠EBC=∠ABC﹣∠EBC,∴∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD,∴AD=AE+ED=CD+BD.【变式3】如图,△ABC内接于⊙O,AC=BC,CD是⊙O的一条弦,且=,过点A 作AP⊥CD,分别交CD,⊙O于点E,P,连接BP,若CD=6,△ABP的周长为13,求AE的长.【解答】解:在AE上截取AF=BP,连接CF,PC,∵AC=BC,∠CAF=∠CBP,∴△CAF≌△CBP,CF=CP,∵CD⊥P A,∴EF=PE,∴AE=AF+FE=PB+PE,∵AC=BC,∴=,∵=,∴=,∴AB=CD=6,∵△ABP的周长是13,∴AP+PB=7,∵AE=PE+PB,∴2AE=AP+PB,∴AE=.【变式4】如图,在△ABC中,AB=AC,在AB左侧作∠BDC=∠BAC=α,过点A作AE ⊥DC于点E.(1)当α=90°时,①求证:AE=DE;②若BD=AE=2,请求出△ABC的面积;(2)当α≠90°时,求证:BD+DE=EC.【解答】(1)①证明:过点B作BF⊥AE,交AE的延长线于点F,∵AE⊥CD,∴∠DEF=90°,又∵∠BDE=90°,∴四边形BDEF为矩形,∴DE=BF,∵∠BAC=90°,∴∠BAF+∠EAC=90°,又∵∠EAC+∠ACE=90°,∴∠BAF=∠ACE,又∵∠AEC=∠BF A=90°,AB=AC,∴△ABF≌△CAE(AAS),∴BF=AE,∴DE=AE;②解:∵四边形BDEF为矩形,BD=AE=2,∴BD=EF=2,DE=BF=AE=,∴AF=AE+EF=+2,∴BA2=BF2+AF2==8+4,∴S△ABC==;(2)证明:过点A作AF⊥BD,交BD的延长线于F,连接AD,设CD与AB交于点O,∵∠BDC=∠BAC,∠BOD=∠AOC,∴∠ACO=∠DOB,即∠ABF=∠ACE,又∵∠AEC=∠AFB=90°,AC=AB,∴△ACE≌△ABF(AAS),∴AE=AF,BF=CE,又∵AD=AD,∴Rt△ADE≌Rt△ADF(HL),∴DE=DF,∴CE=BF=BD+DF=BD+DE.【变式5】【问题背景】如图①,在边长为1的正方形ABCD中,点E为射线BC上的一个动点(与点B,C不重合),连接AE,过点E作EF⊥AE,与正方形ABCD的外角∠DCG的平分线交于点F.李老师指出,当点E为线段BC的中点时,AE=EF.【初步探索】(1)如图②,当点E在线段BC的延长线上时,其他条件不变,那么结论“AE=EF”是否仍然成立;【问题解决】(2)当点E在线段BC上时,设BE=x,△ECF的面积为y,求y与x之间的函数关系式;【拓展延伸】(3)如图③,将正方形ABCD放在平面直角坐标系xOy中,点O与点B重合,点C在x轴正半轴上,当点E运动到某一点时,点F恰好落在直线y=﹣2x+3上,求此时点E 的坐标.【解答】解:【问题背景】如图1,取AB的中点H,连接EH,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°=∠BCD,∵CF平分∠DCG,∴∠DCF=45°,∴∠ECF=135°,∵E是BC的中点,∴BH=BE=AH=CE,∴∠BHE=∠BEH=45°,∴∠AHE=∠ECF=135°,∵AE⊥EF,∴∠AEB+∠FEC=90°,∵∠AEB+∠BAE=90°,∴∠FEC=∠BAE,∴△AHE≌△ECF(ASA),∴AE=EF;【初步探索】(1)仍然成立,理由如下:如图2,在BA的延长线上取一点N,使AN=CE,连接NE.∵AB=BC,AN=CE,∴BN=BE,∴∠N=∠FCE=45°,∵四边形ABCD是正方形,∴AD∥BE,∴∠DAE=∠BEA,∴∠NAE=∠CEF,在△ANE和△ECF中,,∴△ANE≌△ECF(ASA),∴AE=EF;【问题解决】(2)如图3,在BA上截取BH=BE,连接HE,同理得:△AHE≌△ECF,∴y=S△AHE=AH•BE=x(1﹣x)=﹣x2+x(0≤x≤1);【拓展延伸】(3)如图4,在BA上截取BH=BE,连接HE,过点F作FM⊥x轴于M,设点E(a,0),∴BE=a=BH,∴HE=a,由(1)可得△AHE≌△ECF,∴CF=HE=a,∵CF平分∠DCM,∴∠DCF=∠FCM=45°,∵FM⊥CM,∴∠CFM=∠FCM=45°,∴CM=FM=a,∴BM=1+a,∴点F(1+a,a),∵点F恰好落在直线y=﹣2x+3上,∴a=﹣2(1+a)+3,∴a=,∴点E(,0).【典例2】如图1,在Rt△ABC中,AB=BC,点D,E,F分别在AB,BC,AC边上,且DE=EF,∠DEF=∠B,∠A=45°.(1)试猜想CF与BE之间的数量关系,并证明;(2)自主探究:如图2,若将已知条件中含45°的直角三角形换成含30°的直角三角形,其余条件不变,试探究BE和CF的关系.【解答】解:(1)CF与BE之间的数量关系为:CF=BE.理由:过点F作FH⊥BC于点H,如图,∵Rt△ABC中,AB=BC,∠A=45°,∴∠C=45°,∠B=90°.∵∠DEF=∠B,∴∠DEF=90°,∴∠DEB+∠FEH=90°.∵∠BDE+∠DEB=90°,∴∠BDE=∠FEH.在△BDE和△HEF中,,∴△BDE≌△HEF(AAS),∴BE=FH.∵FH⊥BC,∠C=45°,∴△FHC为等腰直角三角形,∴FC=FH,∴FC=BE;(2)CF与BE之间的数量关系为:CF=BE.理由:过点F作FH⊥BC于点H,如图,∵Rt△ABC中,∠A=30°,∴∠C=60°,∠B=90°.∵∠DEF=∠B,∴∠DEF=90°,∴∠DEB+∠FEH=90°.∵∠BDE+∠DEB=90°,∴∠BDE=∠FEH.在△BDE和△HEF中,,∴△BDE≌△HEF(AAS),∴BE=FH.∵FH⊥BC,∠C=60°,∴sin60°=,∴FC=FH,∴FC=BE.【变式1】如图,在△ABC中,∠ABC=45°,AD⊥BC于点D,点F是AC上一点,连接BF交AD于点E,且DE=CD,连接DF,若AF=4,DF=2,则BF的长为.【解答】解:如图,在BF上截取HF=AF,连接AH,∵∠ABC=45°,AD⊥BC,∴AD=BD,∠ADB=∠ADC=90°,在△BDE和△ADC中,,∴△BDE≌△ADC(SAS),∴∠EBD=∠CAD,∵∠BED=∠AEF,∴∠AFE=∠BDE=90°,∴∠AHF=∠HAF=45°,∴AH=AF,∴∠BAH=∠DAF,∠AHB=135°,∠AEF=∠BED,∠AFE=∠BDE=90°,∴△AFE∽△BDE,∴=,∵∠AEB=∠FED,∴△AEB∽△FED,∴∠EAB=∠EFD=45°,∴∠AFD=∠AFH+∠EFD=90°+45°=135°,∴∠AHB=∠AFD,∴△AHB∽△AFD,∴==,∴BH=DF,∴BF=BH+HF=DF+AF=2+4.故答案为:2+4.【变式2】如图,在△ABC中,∠ACB=120°,BC>AC,点E在BC上,点D在AB上,CE=CA,连接DE,∠ACB+∠ADE=180°,CH⊥AB,垂足为点H.求证:DE+AD=2CH.【解答】证明:如图,作∠FCD=∠ACB,交BA延长线于F,∵∠FCA+∠ACD=∠ACD+∠DCB,∴∠FCA=∠DCB,∵∠ACB=120°,∠ACB+∠ADE=180°,∴∠EDB=120°,∠EDA=60°,∵∠F AC=120°+∠B,∠CED=120°+∠B,∴∠F AC=∠CED,在△AFC和△EDC中,,∴△AFC≌△EDC(ASA),∴AF=DE,FC=CD,∵CH⊥FD,∴FH=HD,∠FCH=∠HCD=60°,∴DH=CH,∵AD+DE=AD+AF=FD=2DH=2CH,∴AD+DE=2CH.【变式3】如图,四边形ABCD内接于⊙O,BC是⊙O的直径,连接AC,BD,若AB=AC,请探究AD,BD,DC之间的数量关系.【解答】解:作AE⊥AD交BD于E,∵BC是直径,∴∠BAC=90°,∵∠BAE+∠EAC=∠DAC+∠EAC=90°,∴∠BAE=∠CAD,∵∠ABD=∠ACD,AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∵△AED是等腰直角三角形,∴DE=AD,∵BD=DE+BE,∴BD=AD+CD.【变式4】如图,在矩形ABCD中,AB=AD,点E为CD延长线上一点,连接AE,过点C作CF⊥AE于点F,CF交AD于点H,过点D作DN⊥AE于点N,连接DF.(1)在不添加辅助线的情况下,找出一个与△CDH相似的三角形,并证明;(2)求证:FD=2DN;(3)求证:CF=AF+2FD.【解答】(1)解:选择△AFH,证明:∵四边形ABCD是矩形,∴∠ADC=90°,∵CF⊥AE,∴∠AFC=90°,∴∠AFH=∠CDH,∵∠AHF=∠CHD,∴△AFH∽△CDH;(2)证明:连接AC,∵△AFH∽△CDH,∴,∴,∵∠FHD=∠AHC,∴△FHD∽△AHC,∴∠DFC=∠DAC,∵AB=CD=AD,∴∠DAC=60°,∴∠DFC=∠DAC=60°,∴∠DFN=30°,∵DN⊥AE,∴∠DNF=90°,∴FD=2DN;(3)证明:在线段FC上截取FO,使FO=AF,连接AO,∵∠AFO=90°,∴F AO=60°,∵∠DAC=60°,∴∠F AD=∠OAC,∵,∴△F AD∽△OAC,∴,∴OC=2FD,∴CF=FO+OC=AF+2FD,∴CF=AF+2FD.【变式5】如图,在△ABC中,AB=AC,∠BAC=90°,点D是平面内一点,且AD⊥CD.点O是BC的中点,连接OA,OD.(1)如图①,若点D是BC下方一点,过点O作OE⊥OD分别交AC,AD于点E,F.①求证:∠OAF=∠OCD;②若CD=1,DF=2,求BC的长;(2)如图②,若点D是AC右侧一点,试判断AD,CD,OD之间的数量关系,并说明理由.【解答】(1)①证明:∵AB=AC,O为BC的中点,∴OA=OB=OC,OA⊥OC,∵OE⊥OD,∴∠AOC=∠EOD=90°,∴∠AOF=∠COD,∵∠AOM=∠MDC=90°,∠AMO=∠CMD,∴∠OAM=∠MCD,∴△OAF≌△OCD(ASA),∴∠OAF=∠OCD;②解:∵△OAF≌△OCD,∴AF=CD=1,∵DF=2,∴AD=AF+DF=1+2=3,∵AD⊥DC,∴∠ADC=90°,∴AC===,∵AC=AB,∴BC=AC==2;(2)解:AD+CD=OD.理由:过点O作OE⊥OD,交DA的延长线于点E,∵∠DOE=∠AOC=90°,∴∠AOE=∠COD,∵∠ODC+∠+ODA=90°,∠ODA+∠OEA=90°,∴∠ODC=∠OEA,又∵OA=OC,∴△OCD≌△OAE(AAS),∴CD=AE,OD=OE,∴DE=OD,∴AD+AE=AD+CD=OD.【变式6】【问题探究】如图,△ABC是等腰三角形,AB=AC,点D是平面内一点,连接AD,BD,CD,且∠CAB=∠CDB.(1)如图①,当∠CAB=60°时,试探究BD,CD,AD之间的数量关系;(2)如图②,当∠CAB=120°时,探究是否为定值,并说明理由;【问题解决】(3)如图③,在四边形ADBC中,AB=AC,∠CAB=∠CDB=120°,若AD=2,BD =3,求CD的长.【解答】解:(1)BD,CD,AD之间的数量关系为:BD=CD+AD,理由如下:在BD上取一点E,使BE=CD,连接AE,设AC交BD于H,如图①所示:∵∠CAB=∠CDB,∠AHB=∠CHD,∴∠ABE=∠ACD,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴AD=AE,∠DAC=∠EAB,∴∠DAC+∠CAE=∠EAB+∠CAE=∠CAB=60°,∴△ADE是等边三角形,∴DE=AD,∴BD=BE+DE=CD+AD;(2)是定值,理由如下:在BD上取一点E,使BE=CD,连接AE,设AC交BD于H,过点A作AF⊥BD于F,如图②所示:∵∠CAB=∠CDB,∠AHB=∠CHD,∴∠ABE=∠ACD,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴AD=AE,∠DAC=∠EAB,∴∠DAC+∠CAE=∠EAB+∠CAE=∠CAB=120°,∴∠ADE=∠AED=(180°﹣120°)=30°,∵AF⊥DE,∴DF=EF,AF=AD,在Rt△AFD中,由勾股定理得:DF===AD,∴DE=2DF=AD,∵DE=BD﹣BE=BD﹣CD,∴BD﹣CD=AD,∴=,∴是定值;(3)在CD上取一点E,使CE=BD,连接AE,设AB交CD于H,过点A作AF⊥CD 于F,如图③所示:∵∠CAB=∠CDB,∠AHC=∠BHD,∴∠ACE=∠ABD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴AE=AD,∠EAC=∠DAB,∴∠EAC+∠BAE=∠DAB+∠BAE=∠CAB=120°,∴∠ADE=∠AED=(180°﹣120°)=30°,∵AF⊥DE,∴DF=EF,AF=AD,在Rt△AFD中,由勾股定理得:DF===AD,∴DE=2DF=AD,∴CD=CE+DE=BD+AD=3+×2=3+2.。
截长补短法解题模型与技巧一、引言在学习中,我们常常会遇到一些难题,有些问题我们可能已经掌握了其中的大部分知识点,但是还是无法得出正确答案。
这时候我们需要用到截长补短法解题模型与技巧。
二、截长补短法解题模型1.明确问题首先,我们需要明确问题的范围和要求。
这包括了解问题的背景、条件和限制等因素。
只有深入了解问题本身,才能更好地进行分析和解决。
2.分析问题在明确问题后,我们需要对其进行分析。
这包括对问题的结构、性质、特点等方面进行深入研究,并找出其中存在的难点和瓶颈。
3.抽象问题在分析过程中,我们需要将具体情况抽象成为一般性规律或模型。
这样可以更好地理解和归纳问题,并找到解决方案。
4.求解问题在完成前三步之后,我们就可以开始寻找最终的答案。
这个过程中需要利用前面所学习的知识和方法,并灵活运用各种技巧来达到最优化的效果。
5.检验结果最后,在得出答案之后,我们还需要对其进行检验,以确保其正确性和可靠性。
这个过程中需要注意数据的准确性和有效性,并进行反复验证,直到结果无误。
三、截长补短法解题技巧1.利用画图工具在分析问题时,我们可以使用画图工具来帮助我们更好地理解问题的结构和特点。
通过画图,我们可以将抽象的概念变得更加具体化,从而更好地理解问题。
2.利用归纳法在抽象问题时,我们可以利用归纳法来总结出一般性规律或模型。
这样可以大大简化问题的处理过程,并提高解题效率。
3.利用逆向思维在求解问题时,我们可以采用逆向思维的方法。
即从已知结果出发,倒推回去找到解决方案。
这种方法常常会带来意想不到的效果。
4.利用类比法在求解问题时,我们还可以采用类比法。
即将一个已知领域中的经验或方法应用到另一个领域中去。
通过类比法,我们可以快速找到与原问题相似的情况,并借鉴其经验和方法来解决当前难题。
5.利用分步骤法在求解复杂问题时,我们可以采用分步骤法。
即将一个复杂问题分解成多个简单问题,逐一解决,最终达到整体解决的效果。
这种方法可以大大降低问题的难度和复杂度。
透彻解析截长补短法【知识汇总】截长补短法在初中几何教学中有着十分重要的作用,它主要是用来证线段的和差问题,而且这种方法一直贯穿着整个几何教学的始终.那么什么是截长补短法呢?所谓截长补短其实包含两层意思,即截长和补短.截长就是在较长的线段上截取一段等于要证的两段较短的线段中的一段,证剩下的那一段等于另外一段较短的线段.当条件或结论中出现a+b=c时,用截长补短.1、截长法:通过添加辅助线先在求证中长线段上截取与线段中的某一段相等的线段,在证明截剩部分与线段中的另一段相等。
2、补短法:通过添加辅助线“构造”一条线段使其为求证中的两条线段之和,在证所构造的线段和求证中那一条线段相等;3、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明,这种做法一般遇到证明三条线段之间关系是常用.如图1,若证明线段AB,CD,EF之间存在EF=AB+CD,可以考虑截长补短法.截长法:如图2,在EF上截取EG=AB,在证明GF=CD即可;补短法:如图3,延长AB至H点,使BH=CD,再证明AH=EF即可.【类型一】截长“截长”是指在较长的线段上截取另外两条较短的线段,截取的作法不同,涉及四种方法。
方法一:如图2所示,在BF上截取BM=DF,易证△BMC≌△DFC(SAS),则MC=FC=FG,∠BCM=∠DCF,可得△MCF为等腰直角三角形,又可证∠CFE=45°,∠CFG=90°,∠CFG=∠MCF,FG∥CM,可得四边形CGFM为平行四边形,则CG=MF,于是BF=BM+MF=DF+CG.图2方法二:如图2所示,在BF上截取FM=GC,可证四边形GCFM 为平行四边形,可得CM=FG=CF;可得∠BFC=∠BDC=45°,得∠MCF=90°;又得∠BMC=∠DFC=135°,于是△BMC≌△DFC(AAS),BM=DF,于是BF=FM+BM=CG+DF.上述两种方法中都利用了两个共顶点的等腰Rt△BCD和△MCF。
玩转“截长补短”——突破中考数学压轴题截长补短【方法说明】遇到求证线段和差及倍半关系时,可以尝试截长补短的方法.截长指在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;补短指将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段.题目中常见的条件有等腰三角形(即两条边相等),或角平分线(即两个角相等),通过截长补短后,并连接一些点,构造全等得出最终结论.【方法归纳】1.如图,若要求证AB+BD=AC,可以在线段AC上截取线段AB′=AB,并连接DB,证明B′C=BD即可;或延长AB至点C′使得AC′=AC,并连接BC′,证明BC′=BD即可.2.如图,若要求证AB+CD=BC,可以在BC上截取线段BF=AB,再证明CD=CF即可;或延长BA至点F,使得BF=BC,再证明AF=CD即可.图(1)图(2)3.在一个对角互补的四边形中,有一组邻边(AB=AD)相等,可以使用补短的方法延长另外两边的一条,构建全等三角形.【典型例题】(2009广州)如图,边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P.(1)若AG=AE,证明:AF=AH;(2)若∠FAH=45°,证明:AG+AE=FH;(3)若Rt△GBF的周长为1,求矩形EPHD的面积.【思路点拨】(1)证明AF=AH,因此先连接AH、AF.证明线段相等可考虑三角形全等的方法,观察发现只要证明Rt△ADH≌Rt△ABF(或Rt△AGH≌Rt△AEF)即可;(2)证明AG+AE=FH这种线段和的问题,可以考虑截长补短,发现在FH上截取的方法不好证明,可以考虑补短的方法.本题可以考虑把AG+AE转化为DH+BF,延长延长CB至点M,使得BM=DH,然后证明MF=FH即可;(3)由于矩形EPHD的边长并不知道,可以采用设未知数的方式,本题可以设ED=x,DH=y,则S矩形EPHD=xy,根据Rt△GBF的周长为1,即可找到x与y的关系并求出面积.【解题过程】解:(1)连接AH、AF.∵四边形ABCD是正方形,∴AD=AB,∠D=∠B=90°.∵ADHG与ABFE都是矩形,∴DH=AG,AE=BF,又∵AG=AE,∴DH=BF.在Rt△ADH与Rt△ABF中,∵AD=AB,∠D=∠B=90°,DH=BF,∴Rt△ADH≌Rt△ABF,∴AF=AH.(2)【方法一】延长CB至点M,使得BM=DH,并连接AM,FH.∵四边形ABCD是正方形,∴AD=AB,∠D=∠B=90°.∴∠D=∠ABM=90°,∴△ABM≌△ADH,∴AM=AH,∠MAB=∠DAH.∵∠FAH=45°,∴∠MAF =∠BAF+∠MAB=∠BAF+∠DAH=90°-45°=45°=∠FAH又∵AF=AF,∴△AMF≌△AHF.∴MF=HF.∵MF=MB+BF=HD+BF=AG+AE,∴AG+AE=FH.【方法二】将△ADH绕点A顺时针旋转90°到△ABM的位置.在△AMF与△AHF中,∵AM=AH,AF=AF,∠MAF=∠MAH-∠FAH=90°-45°=45°=∠FAH,∴△AMF≌△AHF.∴MF=HF.∵MF=MB+BF=HD+BF=AG+AE,∴AG+AE=FH.(3)设ED=x,DH=y,则GB=AB-AG=1-y,BF=BC-BF =1-x,∴在Rt△GBF中,GF2=GB2+BF2=(1-y)2+(1-x)2,∵Rt△GBF的周长为1,∴GF=1-GB-BF=1-(1-x)-(1-y)=x+y-1,∴(x+y-1)2=(1-y)2+(1-x)2得xy=1/2,∴矩形EPHD的面积S=ED·DH= xy=1/2.。
截长补短法的8种方法
截长补短法的8种方法 1
切长法:以通过某点的一条垂直线为长边,在长边上切掉一条与短边相同的线段,然后证明剩下的线段与另一条短边相等。
补法:把短边拉长,用旋转的方式把两个短边结合起来。
具体方法是从较长线段中截取一段线段等于较短线段,然后试图证明较长线段的剩余线段等于另一段较短线段,称为截断法。
延长较短线段中的一条,使延长出来的线段等于另外的较短线段,然后证明两线段之和等于较长线段,称为“补短法”。
截长补短法的8种方法 2
截长:
1、过某一点作长边的垂线。
2.在长边上截取一条与短边相同的线段,然后证明剩余的线段与另一条短边相等。
补短:
1、延长短边。
2.通过旋转等将两个短边拼接在一起。
数学的截长补短法在数学的广阔领域中,解题策略多种多样,其中“截长补短法”以其灵活性和实用性在数学解题中占据了一席之地。
本文将详细阐述这一方法的基本原理、应用场景以及解题步骤,旨在帮助读者更深入地理解并掌握这一数学工具。
一、截长补短法的基本原理截长补短法,顾名思义,包含两个基本动作:“截”和“补”。
“截”指的是在复杂的数学问题中,通过截取一部分来简化问题,使之变得更容易处理;“补”则是在截取后,为了保持问题的完整性,对剩余部分进行适当的补充。
这两个动作相互配合,共同构成了截长补短法的基本框架。
在具体应用中,“截”和“补”的操作并非随意进行,而是需要遵循一定的原则。
首先,“截”的部分应该是问题中相对独立且易于处理的部分,这样才能确保截取后的问题能够得到有效的简化。
其次,“补”的部分应该与截取部分相互关联,且补充后的问题应该与原问题在本质上保持一致,这样才能确保解题的正确性。
二、截长补短法的应用场景截长补短法作为一种解题策略,可以广泛应用于数学的各个领域。
以下是一些典型的应用场景:1. 几何问题:在几何问题中,截长补短法常常用于处理复杂的图形。
例如,在面对一个复杂的几何图形时,我们可以通过截取其中的一部分来简化问题,然后再通过补充适当的辅助线或图形来恢复问题的完整性。
2. 代数问题:在代数问题中,截长补短法可以用于简化复杂的代数式。
例如,在面对一个包含多个项的代数式时,我们可以通过截取其中的一部分项来简化问题,然后再通过补充适当的项来保持等式的平衡。
3. 概率问题:在概率问题中,截长补短法可以用于处理复杂的概率事件。
例如,在面对一个包含多个独立事件的复杂概率问题时,我们可以通过截取其中的一部分事件来简化问题,然后再通过补充适当的事件来保持问题的完整性。
三、截长补短法的解题步骤虽然截长补短法在具体应用时需要根据问题的具体情况进行灵活调整,但其基本步骤可以归纳为以下几点:1. 分析问题:首先,我们需要对问题进行深入的分析,明确问题的主要难点和关键点。
截长补短法截长补短法是几何证明题中十分重要的方法。
通常来证明几条线段的数量关系。
截长补短法有多种方法。
截长法:(1)过某一点作长边的垂线(2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。
…… 补短法(1)延长短边。
(2)通过旋转等方式使两短边拼合到一起。
……例1:在正方形ABCD 中,DE=DF ,DG ⊥CE ,交CA 于G ,GH ⊥AF ,交AD 于P ,交CE 延长线于H ,请问三条粗线DG ,GH ,CH 的数量关系方法一(好想不好证) 方法二(好证不好想)例2、正方形ABCD 中,点E 在CD 上,点F 在BC 上,∠EAF=45o。
求证:EF=DE+BF变形a正方形ABCD 中,点E 在CD 延长线上,点F 在BC 延长线上,∠EAF=45o。
请问现在EF 、DE 、BF 又有什么数量关系?HPGFBACD EHPGFBACD EHMPGFBACD EFEDCAB变形b正方形ABCD 中,点E 在DC 延长线上,点F 在CB 延长线上,∠EAF=45o。
请问现在EF 、DE 、BF 又有什么数量关系?变形c正三角形ABC 中,E 在AB 上,F 在AC 上∠EDF=45o 。
DB=DC ,∠BDC=120o。
请问现在EF 、BE 、CF 又有什么数量关系?变形d正方形ABCD 中,点E 在CD 上,点F 在BC 上,∠EAD=15o ,∠FAB=30o。
AD=3,求∆AEF 的面积EFD CABEFD C ABj FE ABD例3、正方形ABCD 中,对角线AC 与BD 交于O ,点E 在BD 上,AE 平分∠DAC 。
求证:AC/2=AD-EO加强版正方形ABCD 中,M 在CD 上,N 在DA 延长线上,CM=AN ,点E 在BD 上,NE 平分∠DNM 。
过E 作EF ⊥MN 于F,请问MN 、AD 、EF 有什么数量关系?例4、、如图,在梯形ABCD 中,AD ∥BC ,∠C=90°,E 为CD 的中点,EF ∥AB 交BC 于点F (1)求证:BF=AD+CF ;(2)当AD=1,BC=7,且BE 平分∠ABC 时,求EF 的长.例5、已知梯形ABCD 中,AB ∥CD ,BD ⊥AC 于E ,AD=BC ,AC=AB ,DF ⊥AB 于F ,AC 、DF 相交于DF 的中点O .(1)若点G 为线段AB 上一点,且FG=4,CD=3,GC=7,过O 点作OH ⊥GC 于H ,试证:OH=OF ; (2)求证:AB+CD=2BE .变形1.如图,梯形ABCD 中,AD ∥BC ,∠DCB=450,CD=2,BD ⊥CD 。
截长补短“截长补短”是几何证明题中十分重要的方法,通常用来证明几条线段的数量关系,即若题目条件或结论中含有“c b a =+”的条件,需要添加辅助线时可以考虑“截长补短”的方法。
截长法:在较长的线段上截取一条线段等于较短线段,再设法证明较长线段的剩余线段等于另外的较短线段。
补短法:①延长较短线段中的一条,使延长出来的线段等于另外的较短线段,然后证明两线段之和等于较长线段。
即延长a ,得到b ,证:c b a =+。
①延长较短线段中的一条,使延长后的线段等于较长线段,然后证明延长出来的部分等于另一条较短线段。
即延长a ,得到c ,证:a c b -=。
例1. 已知:如图,在△ABC 中,△1=△2,△B=2△C .求证:AC=AB+BD .1. 补短法:证明:如图,延长AB 到E ,使BE =BD ,连接DE . △△ABD 是△BDE 的一个外角 △△ABD =△E +△BDE △BE =BD △△E =△BDE △△ABD =2△E △△ABD =2△C △△E =△C在△ADE 和△ADC 中12E CAD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩△△ADE △△ADC (AAS )21D CB A E21D CB AFA BCD12△AE =AC△AC =AB +BE=AB +BD 2. 截长法:证明:如图,在AC 上截取AF =AB ,连接DF . 在△ABD 和△AFD 中12AB AF AD AD =⎧⎪∠=∠⎨⎪=⎩△△ABD △△AFD (SAS ) △△B =△AFD ,BD =FD △△B =2△C △△AFD =2△C△△AFD 是△DFC 的一个外角 △△AFD =△C +△FDC △△FDC =△C △DF =FC △BD =FC△AC =AF +FC =AB +BD例2. 如图,在四边形ABCD 中,△A=△B=90°,点E 为AB 边上一点,且DE 平分△ADC ,CE 平分△BCD .求证:CD=AD+BC .证明:如图,在CD 上截取CF =CB . △CE 平分△CBD △△1=△2在△CFE 和△CBE 中12CF CB CE CE =⎧⎪∠=∠⎨⎪=⎩E DCB A 4321FE D CBA321G CDB A EF △△CFE △△CBE (SAS ) △△CFE =△B △△B =90°△△CFE =△DFE =90° △△A =90° △△DFE =△A △DE 平分△ADC △△3=△4在△DEF 和△DEA 中34DFE A DE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩△△DEF △△DEA (AAS ) △DF =AD△CD =DF +CF =AD +BC例3. 已知:如图,在正方形ABCD 中,AD =AB ,∠B =∠D =∠BAD =90°,E ,F 分别为CD ,BC 边上的点,且∠EAF =45°,连接EF . 求证:EF =BF +DE .证明:如图,延长FB 到G ,使BG =DE ,连接AG . △△D =△ABC =90° △△ABG =△D =90° 在△ABG 和△ADE 中AB=AD ABG= D BG=DE ⎧⎪∠∠⎨⎪⎩△△ABG △△ADE (SAS ) △AG =AE ,△1=△2 △△BAD =90°,△EAF =45° △△2+△3=45°FEDC BAE21A B CD△△1+△3=45° 即△GAF =45° △△GAF =△EAF 在△AGF 和△AEF 中AG AE GAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩△△AGF △△AEF (SAS ) △GF =EF △GF =BF +BG △EF =BF +DE例4. 在△ABC 中,AD △BC 于D ,△B =2△C .求证:CD =AB +BD .证明:如图,在线段DC 上截取DE =BD ,连接AE .△AD △BC△△ADB =△ADE =90° 在△ABD 和△AED 中AD AD ADB ADE DB DE =⎧⎪∠=∠⎨⎪=⎩△△ABD △△AED (SAS ) △△B =△1,AB =AE △△B =2△C △△1=2△C△△1是△AEC 的一个外角 △△1=△C +△2 △△C =△2 △AE =CE△CD =CE +ED =AE +BD =AB +BDD CAEA B C D P12例5. 如图,在△ABC 中,AB >AC ,△1=△2,P 为AD 上任意一点,连接BP ,CP .求证:AB -AC > PB -PC .证明:如图,在线段AB 上截取AE =AC ,连接PE . 则AB -AC =AB -AE =EB 在△AEP 和△ACP 中12AE AC AP AP =⎧⎪∠=∠⎨⎪=⎩△△AEP △△ACP (SAS )△PE =PC在△PEB 中,PB PE <EB △PB -PC <EB△AB -AC > PB -PC例6. 如图,在梯形ABCD 中,AD △BC ,CE △AB 于E ,△BDC 为等腰直角三角形,△BDC =90°,BD =CD ,CE 与BD 交于F ,连接AF .求证:CF =AB +AF .1. 截长法:证明:如图,在CF 上截取CM=BA ,连接DM .21PD A A DE CF B87654321MA D E CF B△△BDC 为等腰直角三角形,BD=CD △△1=△DCB =45°△CE △AB ,△BDC =90° △△CEB =△BDC =90° △△2=△3 △△4=△5在△ABD 和△MCD 中45AB MC BD CD =⎧⎪∠=∠⎨⎪=⎩△△ABD △△MCD (SAS ) △DA =DM ,△6=△7 △AD △BC △△7=△1=45° △△6=45° △△8=45° △△7=△8在△ADF 和△MDF 中78DA DM DF DF =⎧⎪∠=∠⎨⎪=⎩△△ADF △△MDF (SAS ) △AF =MF△CF =CM+MF =AB+AF补短法:证明:如图,延长BA 交CD 的延长线于点G . △△BDC 为等腰直角三角形△△GDB =△BDC=90°,△5=45° △CE △AB△△CEB =△BDC =90°△△1=△2 △△3=△4 在△GBD 和△FCD 中1234567G A DE CF B34GDB FDC DB DC∠=∠⎧⎪=⎨⎪∠=∠⎩△△GBD △△FCD (ASA ) △BG =CF ,DG =DF △AD △BC △△6=△5=45° △△7=45° △△6=△7在△GDA 和△FDA 中76DG DF DA DA =⎧⎪∠=∠⎨⎪=⎩△△GDA △△FDA (SAS ) △AG =AF △BG =AB +AG △CF =AB +AF。