浮头换热器计算说明书
- 格式:doc
- 大小:2.38 MB
- 文档页数:55
浮头式换热器设计说明书设计者:徐凯指导教师:张玲张亚男秦敏系别:机械工程系专业:热能与动力工程日期:2009.11宁夏理工学院前言换热器是非常重要的换热设备。
在国民生产的各个领域得到了广泛的应用。
本设计说明书主要介绍浮头式换热器的原理和设计思路及整个设计过程。
在浮头式换热器中,浮头式换热器的两端的管板,一端不与壳体相连,该端亦称浮头。
管子受热时,管束连同浮头可以沿轴向自由伸缩,完全消除了温差应力。
浮头式换热器主要有如下特点:浮头式换热器的一端管板固定在壳体与管箱之间,另一端管板可以在壳体内自由移动,这个特点在现场就能清楚地看出来。
这种换热器的壳体和管束的热膨胀是自由的,管束可以抽出,便于清洗管间和管内。
其缺点是结构复杂造价高,一般比固定管板高20%左右,在运行中浮头处发生泄漏不易检查处理。
浮头式换热器适应于壳体和管束温差较大或壳程介质易结垢的工作条件下。
本书内容系统、完整,理论与实际并重。
书中对浮头式换热器设计中所需的各学科知识均有简要的介绍和解释。
同时该书对换热器在编写时注重介绍的方法简明扼要,条理清楚,深入浅出,紧密结合工程实际。
期间得秦敏、张春兰、张亚男、张玲等老师的悉心指导。
在此表示真挚的感谢!由于编者水平有限,其中难免不妥之处,恳请各位读者批评指正。
编者:徐凯2009-11-26目录第一章绪论第二章设计任务和设计条件 (1)第三章确定设计方案 (3)3.1 换热器类型的确定 (3)3.2 管程及壳程的流体安排 (3)第四章确定物性数据 (4)4.1定性温度的确定 (4)4.2列表 (6)第五章传热面积的估算 (7)第六章工艺结构尺寸的确定 (9)6.1 管径和管内流速的确定 (9)6.2 管程数和传热管数的确定 (9)6.3 平均传热温差的校正 (10)6.4 传热管排列和分程方法确定 (10)6.5 壳体内径的确定 (11)6.6 折流板的确定 (11)6.7 其它附件的确定 (12)第七章所设计换热器的校核算 (13)7.1 传热热流量的核算 (13)7.2 壁温的校核计算 (15)7.3 换热器内流体的流动阻力的核算 (17)参考文献 (19)换热器原理课程设计心得体会 (21)第一章绪论1.1换热器课程设计的目的和要求课程设计是《换热器原理》课程的一个总结性教学环节,是培养学生综合运用本门课程及有关课程的基本知识去解决某一设计任务的一次训练。
化工原理课程设计原油加热器——浮头式换热器工艺说明书学院:材料科学与工程专业:高分子材料与工程班级:高分子112班姓名:***学号:**********指导教师:佟白目录第1章绪论 .......................................................................................................... 错误!未定义书签。
设计任务和设计条件 (3)第2章工艺设计与计算 (3)2. 1浮头式换热器的选用 (3)2.1.1 流动途径 (3)2.1.2 物性参数的确定...................................................................... 错误!未定义书签。
2.1.3 热负荷的计算 (3)2.1.4 估算传热面积A (4)2.2 工艺结构尺寸 (4)2.2.1 管径和管内流速 (4)2.2.2 管程数和传热管数 (4)2.2.3 平均传热温差校正及壳程数 (5)2.2.4 传热管排列和分程方法 (5)2.2.5 壳体内径 (6)2.2.6 折流板 (6)2.2.7 接管 (6)2.2.8 法兰 (14)2.2.9 其他附件.................................................................................. 错误!未定义书签。
2.3换热器核算 (7)2.3.1 传热能力核算 (7)2.3.2壳程流体传热膜系数 (7)2.3.3管程传热膜系数 (8)2.3.4总传热系数 (8)2.3.5传热面积裕度2.3.6壁温核算2.3.7换热器内流体的流动阻力 (9)2.3.8管程流体阻力 (9)2.3.9壳程流体阻力 (11)第3章3.1设备参数计算3. 2设计结果一览表错误!未定义书签。
目录设计题目及工艺参数---------------------------------------------------1一、换热器的分类及特点---------------------------------------------------2二、结构设计-------------------------------------------------------------51、管径及管长的选择---------------------------------------------------52、初步确定换热管的根数n和管子排列方式-------------------------------53、筒体内径确定-------------------------------------------------------54、浮头管板及钩圈法兰结构设计-----------------------------------------65、管箱法兰、管箱侧壳体法兰和管法兰设计-------------------------------76、外头盖法兰、外头盖侧法兰设计---------------------------------------77、外头盖结构设计-----------------------------------------------------88、接管的选择--------------------------------------------------------------------------------------89、管箱结构设计-------------------------------------------------------810、管箱结构设计------------------------------------------------------811、垫片选择----------------------------------------------------------912、折流板------------------------------------------------------------------------------------------913、支座选取----------------------------------------------------------1014、拉杆的选择--------------------------------------------------------1315、接管高度(伸出长度)确定------------------------------------------1316、防冲板------------------------------------------------------------1317、设备总长的确定----------------------------------------------------1318、浮头法兰---------------------------------------------------------------------------------------1419、浮头管板及钩圈----------------------------------------------------14三、强度计算--------------------------------------------------------------141、筒体壁厚的计算-----------------------------------------------------142、外头盖短节,封头厚度计算-------------------------------------------153、管箱短节、封头厚度计算 --------------------------------------------164、管箱短节开孔补强的核校 --------------------------------------------165、壳体压力试验的应力校核---------------------------------------------166、壳体接管开孔补强校核-----------------------------------------------177、固定管板计算-------------------------------------------------------188、无折边球封头计算 --------------------------------------------------199、管子拉脱力计算-----------------------------------------------------20四、设计汇总-----------------------------------------------------21五、设计体会--------------------------------------------------------------21参考文献--------------------------------------------------------------22设计题目:浮头式换热器工艺参数:管口表:符号公称直径(mm)管口名称a 130 变换气进口b 130 软水出口c 130 变换气出口d 130 软水进口e 50 排尽口设备选择原理及原因:浮头式换热器的结构较复杂,金属材料耗量较大,浮头端出现内泄露不易检查出来,由于管束与壳体间隙较大,影响传热效果。
精品文档1.方案确定选择换热器的类型浮头式换热器:主要特点是可以从壳体中抽出便于清洗管间和管内。
管束可以在管内自由伸缩不会产生热应力。
1.1 换热面积的确定根据《化工设备设计手册》选择传热面积为 400m 21.2 换热管数N 的确定我国管壳式换热器常用碳素钢、低合金钢钢管,其规格为φ19× 2、φ25× 2.5、φ32× 3、φ38 × 3、φ57 × 3.5 等,不锈钢钢管规格为φ19 × 2、φ25 × 2、φ32 × 2、φ38 × 2.5、φ57 × 2.5。
换热管长度规格为1.0、1.5、2.0、2.5、3.0、4.5、6.0、7.5、9.0m 等。
换热器换热管长度与公称直径之比,一般在 4~25 之间,常用的为 6~10。
管子的材料选择应根 据介质的压力、温度及腐蚀性来确定。
选用32×3mm 的无缝钢管,材质为 0Cr18Ni9,管长为 6000mmn=A/πd 0L 3-5式 3-5:n —换热管数 A —换热面积m 2d0—换热管外径mm L —换热管长度mm故 -3-3400n==6133.1432600010⨯⨯10⨯⨯根表1.1 拉杆直径 /mm表1.2 拉杆数量换热器公称直径DN/mm400<d400≤d<700700≤d<900900≤d<2600 44810拉杆需 10根。
1.3 换热管的排布与连接方式的确定换热管排列形式如图 3.1 所示。
换热管在管板上的排列形式主要有正三角形、正方形和转正三角形、转三角形。
正三角形排列形式可以在同样的管板面积上排列最多的管数,故用的最为广泛,但管外不易清洗。
为便于管外便于清洗可以采用正方形或转正方形的管束。
换热管中心距要保证管子与管板连接时,管桥有足够的强度和宽度。
管间需要清洗时还要留有进行清洗的通道。
换热管中心距宜不小于 1.25 倍的换热管的外径。
软件批准号:CSBTS/TC40/SC5-D01-1999DATA SHEET OF PROCESS EQUIPMENT DESIGN工程名:PROJECT设备位号:ITEM设备名称:后锥形擦拭冷器EQUIPMENT图 号: 215321-00DWG NO。
设计单位:ls有限公司DESIGNER设 计 Designed by 日期Date校 核 Checked by 日期Date审 核 Verified by 日期Date批 准 Approved by 日期Date填函式换热器设备计算计算单位 ls有限公司壳程设计压力 1.04 MPa 管程设计压力 0.80 MPa壳程设计温度 150.00 ℃ 管程设计温度 90.00 ℃筒体公称直径 553.00mm筒 填函式换热器筒体最小壁厚 8.00mm体 筒体名义厚度 8.00mm校核 合格筒体法兰厚度 40.00校核 合格前端管箱筒体名义厚度 mm前 校核端 前端管箱封头名义厚度 mm管 校核箱 前端管箱法兰厚度 mm校核后端管箱筒体名义厚度 mm后 校核端 后端管箱封头名义厚度 mm管 校核箱 后端管箱法兰厚度 mm校核管 管板厚度 30.00 mm板 校核 合格填函式换热器管板计算计算单位ls有限公司设 计 条 件 壳程设计压力 P s 1.04 MPa 管程设计压力 P t 0.80 MPa壳程设计温度 t s 150.00 °C 管程设计温度 t t 90.00 °C 换热器公称直径 D i 553.00 mm 壳程腐蚀裕量 C s 1.00mm 管程腐蚀裕量 C t1.00 mm 换热管使用场合一般场合 换热管与管板连接方式 ( 胀接或焊接)胀接,开槽初始数据 材料(名称及类型) Q345R 板材输入管板名义厚度 δn30.00mm 管 管板强度削弱系数μ 0.40 管板刚度削弱系数 η 0.40 隔板槽面积A d 7036.00 mm 2 换热管与管板胀接长度或焊脚高度 l 28.00 mm设计温度下管板材料弹性模量 E p194000.00MPa板 设计温度下管板材料许用应力 []σrt183.00 MPa 许用拉脱力 []q 4.00 mm 壳程侧结构槽深 h 1 0.00 mm 管程侧隔板槽深 h 2 2.00 mm 材料名称S30408 换热管外径 d 12.00 mm 换 换热管壁厚 δt 0.80 mm 换热管根数 n 200 根 热 换热管中心距 S 25.00 mm 换热管长 L t1686.00 mm 管 换热管受压失稳当量长度 l cr813.00 mm 设计温度下换热管材料弹性模量E t 186000.00 MPa 设计温度下换热管材料屈服点σst 156.00MPa 设计温度下换热管材料许用应力 []σtt 116.00 MPa 垫片外径 D o 590.00 mm 垫 垫片内径 D i550.00 mm垫片厚度 δgmm 片 垫片接触面宽度 ωmm 垫片压紧力作用中心园直径D G574.00 mm垫片材料 软垫片压紧面形式1a或1b。
输入数据:换热器内径Di (mm)1100900规定值:垫片最小宽度bn min (mm)1313输入数据:实际垫片宽度 bn (mm)1613 bmin (mm)44
b1 (mm)55
b2=bn+1.5 (mm)17.514.5
外头盖内直径D=Di+100(mm)12001000
浮头法兰和钩圈内直径Dfi =Di-
2*(b1+bn) -2 (mm)1056862
浮头法兰和钩圈外直径Dfo=Di+80
(mm)1180980
浮动管板外直径Do =Di-2*b1 (mm)1090890
浮动管板密封面内径D'=Dfi-3
(mm)1053859
垫片外径Dgo =Do (mm)1090890
垫片内径Dgi =Do-2*bn (mm)1058864
浮头法兰密封面直径=Do+3 (mm)1093893
输入数据:最外层换热管中心所在圆直径 Dt (mm)950825.2输入数据:换热管外径d (mm)1925最外层换热管外壁至浮头管板密封面内
径的距离b=D'/2- Dt/2-d/2(mm)42 4.4
b与bmin 比较b>=bmin,
Ok b>=bmin, Ok
两法兰密封面间的距离 H=5760.00mm 计算C值
输入参数管板厚度 δ=145.00mm 垫片厚度 δ1= 4.50mm
管板凸台深度 δ2= 4.00mm
两管板外侧间距 L=5994.00mm
C=L-(δ+30-1.5)-{δ-(δ2-δ1)}-H=
-85.00mm
计算所得数
据B型钩圈式浮头尺寸核算
计算所得数
据。
目录设计题目及工艺参数---------------------------------------------------1一、换热器的分类及特点---------------------------------------------------2二、结构设计-------------------------------------------------------------51、管径及管长的选择---------------------------------------------------52、初步确定换热管的根数n和管子排列方式-------------------------------53、筒体内径确定-------------------------------------------------------54、浮头管板及钩圈法兰结构设计-----------------------------------------65、管箱法兰、管箱侧壳体法兰和管法兰设计-------------------------------76、外头盖法兰、外头盖侧法兰设计---------------------------------------77、外头盖结构设计-----------------------------------------------------88、接管的选择--------------------------------------------------------------------------------------89、管箱结构设计-------------------------------------------------------810、管箱结构设计------------------------------------------------------811、垫片选择----------------------------------------------------------912、折流板------------------------------------------------------------------------------------------913、支座选取----------------------------------------------------------1014、拉杆的选择--------------------------------------------------------1315、接管高度(伸出长度)确定------------------------------------------1316、防冲板------------------------------------------------------------1317、设备总长的确定----------------------------------------------------1318、浮头法兰---------------------------------------------------------------------------------------1419、浮头管板及钩圈----------------------------------------------------14三、强度计算--------------------------------------------------------------141、筒体壁厚的计算-----------------------------------------------------142、外头盖短节,封头厚度计算-------------------------------------------153、管箱短节、封头厚度计算 --------------------------------------------164、管箱短节开孔补强的核校 --------------------------------------------165、壳体压力试验的应力校核---------------------------------------------166、壳体接管开孔补强校核-----------------------------------------------177、固定管板计算-------------------------------------------------------188、无折边球封头计算 --------------------------------------------------199、管子拉脱力计算-----------------------------------------------------20四、设计汇总-----------------------------------------------------21五、设计体会--------------------------------------------------------------21参考文献--------------------------------------------------------------22设计题目:浮头式换热器工艺参数:管口表:符号公称直径(mm)管口名称a 130 变换气进口b 130 软水出口c 130 变换气出口d 130 软水进口e 50 排尽口设备选择原理及原因:浮头式换热器的结构较复杂,金属材料耗量较大,浮头端出现内泄露不易检查出来,由于管束与壳体间隙较大,影响传热效果。
化工原理课程设计设计题目:浮头式换热器的设计指导教师李毅学生姓名凌风2010 年 10 月 20 日浮头式换热器设计任务书一、设计题目:浮头式换热器的设计二、设计原始数据操作条件:①大豆油:入口温度133℃,出口温度40℃②冷却介质:循环水,入口温度30℃,出口温度40℃③大豆油处理量:5000kg/h④允许压降:不大于1×105Pa⑤大豆油定性温度下的物性数据:根据液体相对密度共线图查得86.5℃下大豆油的密度为: =925 kg/m3根据液体粘度共线图得86.5℃下大豆油的粘度为:μ=0.000850 Pa/s根据液体比热容共线图得86.5℃下大豆油的定压比热容为:2.052 kJ/(kg·℃)CP0 =查表得86.5℃下大豆油的导热系数为λ=0.1559 W/(m·℃)⑥循环冷却水在定性温度下的物性数据如下:ρ=994 kg/m3密度:i=4.08 kJ/(kg·℃)定压比热容:CPiλ=0.626 W/(m·℃)导热系数:iμ=0.000725 Pa/s粘度:i⑦每年按330天计算,每天24小时连续运行。
三、设备型式浮头式换热器四、设计任务1.编写课程设计说明书2.设计计算列管式换热器的管径尺寸、管内流速、热负荷、传热面积、管程数、管数、壳程数和接管尺寸等3.工艺流程图及换热器工艺条件图4.设计评述目录一、设计方案 (3)1.1选择换热器的类型 (3)1.2流动空间及流速的确定 (3)二、物性数据 (4)三、计算总传热系数 (4)3.1热流量 (4)3.2平均传热温差(逆流) (4)3.3冷却水用量 (4)3.4总传热系数K (4)四、计算传热面积 (5)五、工艺结构尺寸 (5)5.1管径和管内流速 (5)5.2管程数和传热管数 (5)5.3平均传热温差校正系数 (6)5.4传热管排列和分程方法 (6)5.5壳体内径 (6)5.6折流板 (6)5.7接管 (7)六、换热器核算 (7)6.1热量核算 (7)6.2换热器内流体的流动阻力 (9)6.3换热器主要结构尺寸和计算结果 (10)七、主体设备图 (11)八、参考文献 (11)九、主要符号说明 (11)十、总结 (12)一、设计方案1.1选择换热器的类型两流体温度变化情况:入口温度133℃,出口温度40℃循环水,入口温度30℃,出口温度40℃本设计任务为煤油冷却器的设计,两流体在传热过程中无相的变化,该换热器用循环冷却水冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,因此初步确定选用带膨胀节的固定管板式换热器;固定管板式换热器结构比较简单,制造简单,制造成本低,管程可用多种结构,规格范围广,在生产中广泛应用。
课程设计题目:浮头式换热器院系:机械工程学院专业:过程装备与控制工程班级:1003班学生姓名:尹以龙指导教师:***目录第一部分任务书 (1)第二部分计算说明书 (2)1.传热工艺计算 (2)1.1.原始数据 (2)1.2.定性温度及物性参数 (3)1.3.传热量和冷水流量 (3)1.4.有效平均温度 (3)1.5.管程传热面积计算 (4)1.6.结构初步设计 (4)1.7.壳程换热系数计算 (5)1.8.总传热系数计算 (6)1.9.结构初步设计 (7)1.10.壳程换热系数计算 (7)1.11.总传热系数计算 (8)1.12.核算管程压强降 (8)1.13.核算壳程压强降 (9)2.强度计算 (11)2.1.换热管材料及规格的选择和根数的确定 (11)2.2.确定筒体内径 (11)2.3.确定筒体壁厚 (12)2.3.1.筒体液压试验 (13)2.4.管箱封头厚度计算 (13)2.5.浮头侧封头厚度计算 (14)2.6.设备法兰的选择 (15)2.6.1.管箱侧法兰的选择 (15)2.6.2.浮头侧法兰的选择 (16)2.6.3.壳体上与浮头侧连接的法兰 (17)2.6.4.接管法兰的选择 (17)2.7.管板的设计 (18)2.8.钩圈式浮头 (22)2.8.1浮头法兰的计算 (24)2.8.2管程压力作用下浮头盖的设计 (28)2.9.浮动管板 (29)2.10.钩圈的选择 (30)2.11.折流板的选择 (31)2.12.拉杆和定距管的确定 (32)2.13.防冲板 (32)2.14.管箱短节壁厚的计算 (32)2.15.筒体、管箱的耐压试验的校核计算 (33)2.16.接管及开孔补强 (33)2.16.1 a,b孔的补强 (33)2.16.2 d,h孔的补强 (35)2.17. 支座择及应力校核 (37)2.17.1 支座的选择 (37)2.17.2 支座的应力校核 (38)2.18. 整体尺寸布局 (40)第一部分任务书一、设计题目设计题目:用水冷却煤油产品的浮头式换热器的设计二、设计条件(1)使煤油从180℃冷却到40℃,压力1.0MPa;(2)冷却剂为水,水压力为0.5MPa。
1 绪论1.1 换热设备在工业中的应用在炼油、化工生产中,绝大多数的工艺过程都有加热、冷却和冷凝的过程,这些过程总称为换热过程。
传热过程的进行需要一定的设备来完成,这些使传热过程得以实现的设备就称之为换热设备。
据统计,在炼油厂中换热设备的投资占全部工艺设备总投资的35%~40%,因为绝大部分的化学反应或传质传热过程都与热量的变化密切相关,如反应过程中:有的要放热、有的要吸热、要维持反应的连续进行,就必须排除多余的热量或补充所需的热量。
工艺过程中某些废热或余热也需要加以回收利用,以降低成本。
综上所述,换热设备是炼油、化工生产中不可缺少的重要设备。
换热设备在动力、原子能、冶金及食品等其他工业部门也有着广泛的应用。
1.2 换热设备的分类1.2.1按作用原理或传热方式可分为:直接接触式、蓄热式、间壁式。
1.2.1.1直接接触式换热器,如下图所示热流体图1.1其传热的效果好,但不能用于发生反应或有影响的流体之间。
蓄热式换热器,如下图所示图1.2其适用于温度较高的场合,但有交叉污染,温度被动大。
1.2.1.3 间壁式换热器,又称表面式换热器利用间壁进行热交换。
冷热两种流体隔开,互不接触,热量由热流体通过间壁传递给冷流体。
1.2.2 按其工艺用途可分为:冷却器(cooler)、冷凝器(condenser)、加热器(一般不发生相变)(heater)、蒸发器(发生相变)(evaporator)、再沸器(reboiler)、废热锅炉(waste heat boiler)。
1.2.3 按材料分类:分为金属材料和非金属材料换热器。
1.3 国内外的研究现状上个世纪70年代初发生世界性能源危机,有力地促进了传热强化技术的发展。
为了节能降耗,提高工业生产的经济效益,要求开发适用不同工业过程要求的高效能换热设备。
因此,几十年来,高效换热器的开发与研究始终是人们关注的课题,国内外先后推出了一系列新型高效换热器。
近年来,国内已经进行了大量的强化传热技术的研究,但在新型高效换热器的开发方面与国外差距仍然较大,并且新型高效换热器的实际推广和应用仍非常有限。
浮头式换热器毕业设计说明书修订版IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】摘要本次设计为浮头式换热器,浮头式换热器主要由管箱、管板、壳体、换热管、折流板、拉杆、定距管、钩圈、浮头盖等组成。
浮头换热器的一端管板与壳体固定,另一端为浮动管板。
因此其优点为热应力较小,便于检查和清洗,缺点为结构较为复杂。
在传热计算工艺中,包括传热量、传热系数的确定和换热器内径及换热管型号的选择,以及传热系数、阻力降等问题。
在强度计算中主要讨论的是筒体、管箱、管板厚度计算以及折流板、法兰和接管、支座、分隔板等零部件的设计,还要进行一些强度校核。
本设计是按照GB151《管壳式换热器》和GB150《钢制压力容器》设计的。
换热器在工、农业的各个领域应用十分广泛,在日常生活中传热设备也随处见,是不可缺少的工艺设备之一。
随着研究的深入,工业应用取得了令人瞩目的成果。
关键字:换热器,工艺计算,强度校核AbstractThis design is floating head heat exchanger, it is made up of tube box 、tube sheet、shell、heat exchange tube、baffle plate、draw bar、spacer pipe、hook circle、floating head cover and so on. One tube sheet of the exchanger is connected with shell, and the other tube sheet is floating tube sheet. Soit’s easy to check and clean. On the other hand the structure of it complex. In the process of heat transfer calculation, include area computation 、capacity of heat transmission 、the determine of heat transfer coefficient and the choice of the heat exchange tube. About strength calculation, it involve the calculating of shell、tube box、sealing head and so on. This design is according to GB151 << shell-and-tube heat exchanger >> and GB150 << Steel pressure vessel >> to design. Heat exchanger is one of the indispensable process equipment. With the deepening of the research, industrial application made remarkable achievements.Keywords:heat exchanger; Process calculation;strength check目录摘要 (I)Abstract (II)前言 (1)第一章概述 (2)1.1 何为换热器 (2)1.2 换热器的应用 (2)1.3 换热器分类 (3)1.3.1 按传热原理分类 (3)1.3.2 按结构分类 (3)1.3.3 按传热种类分类 (3)1.3.4 按强化传热元件分类 (3)1.3.5 按材料分类 (3)1.4 换热器的结构和使用特点 (4)1.4 .1 浮头式换热器 (4)1.4.2 固定管板式换热器 (5)1.4.3 U形管换热器 (6)1.5 设计的思想 (7)1.5.1 首先设计必须满足生产需要 (7)1.5.2 设计必须安全可靠 (7)1.5.3 设计必须经济合理 (7)1.6 设计的特点 (8)第二章设计主要参数 (9)2.1 原始数据 (9)2.2 定性温度及物性参数 (9)第三章零件结构型式的选择 (10)3.1 前端管箱 (10)3.2 壳体 (11)3.3 后端管箱 (11)3.4 管束分程和分程隔板的布置 (11)3.4.1 管束分程 (11)3.4.2 分程隔板的布置 (11)3.5 换热管 (12)3.5.1 换热管的长度 (12)3.5.2 规格及尺寸偏差 (12)3.5.3 布管 (12)3.6 管子与管板的连接 (13)3.7 管板与壳体的连接 (14)3.8 折流板、支持板的选择 (15)3.9 拉杆的选择 (15)3.10 定距管的选择 (16)3.11 防冲板的选择 (16)3.12 排液口和排气口的选择 (16)第四章传热工艺技术 (18)4.1 有效平均温度 (18)4.2 传热量和流量 (18)4.3 管程换热系数计算 (19)4.4 结构初步设计 (19)4.5 壳程换热系数计算 (20)4.6 强度计算 (21)4.6.1 换热管材料及规格的选择和根数的确定 (21)4.6.2 确定壳体内径 (21)4.6.3 确定壳体壁厚 (21)4.6.4 壳体液压试验 (22)4.6.5 管箱封头厚度计算 (23)4.6.6 管箱短节厚壁计算 (24)4.6.7 管箱液压试验 (24)4.6.8 管板的设计 (25)4.6.9 钩圈式浮头 (25) (26) (26)选择 (27)备法兰的选择 (28)4.7 换热面积校核 (35)4.8 支座强度校核 (36)4.8.1 反力计算 (37)4.8.2 筒体轴向弯矩计算 (37)4.8.3 筒体轴向弯曲应力校核 (38)4.8.4 鞍座腹板强度校核 (38)4.9 阻力计算 (38)4.9.1 管程阻力计算 (38)4.9.2 壳程压力降 (39)第五章整体尺寸布局 (42)结论 (43)致谢 (44)参考文献 (45)前言毕业设计是完成教学计划实现专业培养目标的一个重要的教学环节;是教学计划中综合性最强的实践性教学环节。
浮头式换热器设计说明书摘要本设计说明书是关于浮头式换热器的设计,主要是进行了换热器的工艺计算、换热器的结构和强度设计。
设计的前半部分是工艺计算部分,主要是根据给定的设计条件估算换热面积,从而进行换热器的选型,校核传热系数,计算出实际的换热面积,最后进行压力降和壁温的计算。
设计的后半部分则是关于结构和强度的设计,主要是根据已经选定的换热器型式进行设备内各零部件(如接管、折流板、定距管、钩圈、管箱等)的设计,包括:材料的选择、具体尺寸确定、确定具体位置、管板厚度的计算、浮头盖和浮头法兰厚度的计算、开孔补强计算等。
关于浮头式换热器设计的各个环节,设计说明书中都有详细的说明。
浮头式换热器:其结构如图2所示。
管子一端固定在一块固定管板上,管板夹持在壳体法兰与管箱法兰之间,用螺栓连接;管子另一端固定在浮头管板上,浮头管板夹持在用螺柱连接的浮头盖与钩圈之间,形成可在壳体内自由移动的浮头,故当管束与壳体受热伸长时,两者互不牵制,因而不会产生温差应力。
浮头部分是由浮头管板,钩圈与浮头端盖组成的可拆联接,因此可以容易抽出管束,故管内管外都能进行清洗,也便于检修。
由上述特点可知,浮头式换热器多用于温度波动和温差大的场合,尽管与固定管板式换热器相比其结构更复杂、造价更高。
1.1设计任务根据给定的工艺设计条件,此设计为无相变热、冷流体间换热的浮头式换热器设计任务。
1.2总体设计①确定结构形式。
由于介质换热温差较大,因此选用浮头式换热器。
②合理安排流程。
安排冷的污水走壳程,处理过的热清水走管程。
1.3热工计算①原始数据○2定性温度与物性参数○3物料与热量恒算○4有效平均温差○5初算传热面积○6换热器结构设计○7管程传热与压降○8壳程传热与压降结构设计与强度设计1)换热流程设计:采用壳程为单程、管程为单程的结构型式.2)换热管及其排列方式:采用的无缝钢管,材料为2520钢,热管排列方式为三角形排列,如图所示,共101根。
另外6根拉杆,共排列107根。
1 绪论1.1 换热设备在工业中的应用在炼油、化工生产中,绝大多数的工艺过程都有加热、冷却和冷凝的过程,这些过程总称为换热过程。
传热过程的进行需要一定的设备来完成,这些使传热过程得以实现的设备就称之为换热设备。
据统计,在炼油厂中换热设备的投资占全部工艺设备总投资的35%~40%,因为绝大部分的化学反应或传质传热过程都与热量的变化密切相关,如反应过程中:有的要放热、有的要吸热、要维持反应的连续进行,就必须排除多余的热量或补充所需的热量。
工艺过程中某些废热或余热也需要加以回收利用,以降低成本。
综上所述,换热设备是炼油、化工生产中不可缺少的重要设备。
换热设备在动力、原子能、冶金及食品等其他工业部门也有着广泛的应用。
1.2 换热设备的分类1.2.1按作用原理或传热方式可分为:直接接触式、蓄热式、间壁式。
1.2.1.1直接接触式换热器,如下图所示热流体图1.1其传热的效果好,但不能用于发生反应或有影响的流体之间。
蓄热式换热器,如下图所示图1.2其适用于温度较高的场合,但有交叉污染,温度被动大。
1.2.1.3 间壁式换热器,又称表面式换热器利用间壁进行热交换。
冷热两种流体隔开,互不接触,热量由热流体通过间壁传递给冷流体。
1.2.2 按其工艺用途可分为:冷却器(cooler)、冷凝器(condenser)、加热器(一般不发生相变)(heater)、蒸发器(发生相变)(evaporator)、再沸器(reboiler)、废热锅炉(waste heat boiler)。
1.2.3 按材料分类:分为金属材料和非金属材料换热器。
1.3 国内外的研究现状上个世纪70年代初发生世界性能源危机,有力地促进了传热强化技术的发展。
为了节能降耗,提高工业生产的经济效益,要求开发适用不同工业过程要求的高效能换热设备。
因此,几十年来,高效换热器的开发与研究始终是人们关注的课题,国内外先后推出了一系列新型高效换热器。
近年来,国内已经进行了大量的强化传热技术的研究,但在新型高效换热器的开发方面与国外差距仍然较大,并且新型高效换热器的实际推广和应用仍非常有限。
4746/168400 T JB MnR EHA -⨯装订线4. 管板与换热管的连接:管板与换热管采用胀接的形式,胀接长度mml37=,对于规格为5.225⨯φ换热管,由于管板壁厚2540>,为5.0322==+Kmml,,连接方式如下:5. 换热管中心距:由换热管外径mmd25=外,中心距mmt32=,根据GB151-1999标准,可查得分隔板槽两侧相邻管中心距mmSn44=6. 布管限定圆:根据GB151-1999标准,对于浮头式换热器,其布管限定圆直径为:)21(2bbbDDnL++-=b1=3b2=4b=11.52575.0min⋅≥δmm75.18=21075.18++≥δmm75.30=取标准设计值:mm40=δ装订线7. 管板管孔:根据GB151-1999标准,Ⅰ级管束(碳素钢管),当换热器mmd25=外时,其管孔直径mmd25.25=孔,允许偏差为:0~15.0+8. 管板连接:根据GB151-1999标准,管板与壳程圆筒、管板与法兰之间选择a型连接方式a型连接方式为:管板通过垫片于壳体法兰何管箱法兰连接管板与管箱用螺柱、垫片平面密封连接9. 壳体接管:由前已知壳体接管mmd1001=,管箱接管mmd802=,363=LD装订线16球冠形封头钩圈式浮头换热器外头盖推荐使用球冠形封头,根据《JB04746T.02钢制压力容器用封头》标准,取封头为DN500⨯8的PSH球冠形封头,总深度H=65mm,内表面积22033.0mA=,容积30063.0mV=,封头质量kgM9739.12=R=50017. 容器法兰1:根据JB-T4701-2000标准选取长颈对焊法兰,形式为突面密封面类型,则取MPaPN0.1=,mmDN400=,规格为:4559550054031====DHDD 23344524===dD δ,配合螺柱为:20M20个结构如图所示:mmA1383≤即可装订线2:根据JB-T4701-2000标准选取长颈对焊法兰,形式为凹凸面密封面类型,则取MPaPN0.1=,mmDN500=,规格为:55510060064031====DHDD 23385524===dD δ,配合螺柱为:20M20个结构如图所示:3:根据JB-T4721-92外头盖侧法兰,形式为凸面密封面类型,则取MPaPN0.1=,mmDN400=,规格为:5559060064031====DHDD 23325524===dD δ,配合螺柱为:20M20个结构如图所示:4钩圈式浮头法兰480800=+=i f D D372)104(2400)1(2=+-=++=bn b D D i fi426186290=+=b D3946400=-=c Dmm D G 384)53200(2=--=18钩圈 选择A 型钩圈t t ][σ=113直径比K=1.29查GB150-1998第九章,得Y=7.77120)](5.0[5.0=+-=fi c b D D D La厚度δ=42mm19管板计算:对延长部分兼做法兰的固定管板根据GB151-1999,初始数据:垫片压紧力作用中心圆直径384mm管子: 管子外径:mm d 25=外 管子壁厚:mm5.2=δ管子根数:mm n68=浙江工业大学课题:浮头式换热器设计班级:过控0601学号:200602060120设计者:徐庆清。
第一章绪论1.1 换热器技术概况近年来,由于新科学技术和节约能源的发展,对被广泛应用的换热器,提高换热器的传热性能和开发新的节能型换热器,已成为换热器设计、制造方面的重要课题,我国石化行业的换热设备以管壳式换热器为主,而且传统弓形折流板换热器占到总量的70%~80%。
弓形折流板换热器固然有其优点,并在产业节能方面做出了巨大贡献,但在新的节能减排形势下,其缺点(压降大、存在大量流动死区、振动大、传热效率低等)严重限制了自身的生存和发展空间,同时也推进了强化传热理论和换热器的发展。
强化传热理论的工程应用根据强化传热理论…,在管的两侧范围内,需要增大传热系数较小的一侧才能有效改进总传热系数。
由于无法确定所有工况下,需要增大管内或管外的传热系数以得到最高的总传热系数,因此,强化传热理论在工程中的应用不是单一的模式,而是呈现出 3种趋势,即对管内、管外、管束整体的强化传热。
无论是那种类型的强化传热结构,都已经细化出许多更新类型,且其适用的工作环境和强化效果各异。
因此,几十年来,换热器的开发与研究始终是人们关注的课题,国内外先后推出了一系列新型高效换热器。
比如:气动喷涂翅片管换热器,焊接式板式换热器,螺旋折流板换热器,新型麻花管换热器和Titan绕丝花环换热器等。
而管壳式换热器由于应用广泛,发展也较迅速。
管壳式换热器又称列管式换热器,是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。
虽然它在换热效率、结构紧凑性和金属材料消耗等方面,不如其它新型换热设备,但它具有结构坚固、操作弹性大、适应性强、可靠程度高、选材范围广、处理能力大、能承受高温和高压等特点,在换热设备中始终占有约70%的主导地位。
管壳式换热器是当前应用最广、理论研究和设计技术完善,运用可靠性良好的一类换热器,目前各国为改善该换热器的性能对其强化传热技术开展了大量的研究。
111管壳式换热器的研究和发展主要表现在两方面:一是新型高效传热管(如螺纹管、横纹管、波纹螺旋管、缩放管、绕丝花环管、异形翅片管)等的开发和应用,以强化管程传热。
输入数据:换热器内径Di (mm)1100900规定值:垫片最小宽度bn min (mm)1313输入数据:实际垫片宽度 bn (mm)1613 bmin (mm)44
b1 (mm)55
b2=bn+1.5 (mm)17.514.5
外头盖内直径D=Di+100(mm)12001000
浮头法兰和钩圈内直径Dfi =Di-
2*(b1+bn) -2 (mm)1056862
浮头法兰和钩圈外直径Dfo=Di+80
(mm)1180980
浮动管板外直径Do =Di-2*b1 (mm)1090890
浮动管板密封面内径D'=Dfi-3
(mm)1053859
垫片外径Dgo =Do (mm)1090890
垫片内径Dgi =Do-2*bn (mm)1058864
浮头法兰密封面直径=Do+3 (mm)1093893
输入数据:最外层换热管中心所在圆直径 Dt (mm)950825.2输入数据:换热管外径d (mm)1925最外层换热管外壁至浮头管板密封面内
径的距离b=D'/2- Dt/2-d/2(mm)42 4.4
b与bmin 比较b>=bmin,
Ok b>=bmin, Ok
两法兰密封面间的距离 H=5760.00mm 计算C值
输入参数管板厚度 δ=145.00mm 垫片厚度 δ1= 4.50mm
管板凸台深度 δ2= 4.00mm
两管板外侧间距 L=5994.00mm
C=L-(δ+30-1.5)-{δ-(δ2-δ1)}-H=
-85.00mm
计算所得数
据B型钩圈式浮头尺寸核算
计算所得数
据。
换热器计算本设计的换热器采用管壳式换热器,因为管壳式换热器适应性强,制造简单,易于维修以及生产成本低。
浮头式换热器,这种换热器中两端的管板有一端的管板可以沿轴向自由地浮动,完全消除了热应力,而且整个管束可从壳体中抽出,便于机械清洗和检修。
将压缩后的烟道气温度从141o C 将至60o C ,压力为1.2MPa ,流量为。
循环用冷却水入口温度18o C ,出口温度32o C ,压力为0.4MPa 。
循环冷却水较易结垢,为了便于水垢清洗,循环水走管程,电厂烟气走壳程。
本设计选用Φ25×2.5的碳钢管。
1.计算定性温度,确定物理常数对于循环冷凝水,定性温度t=(18+32)/2=25o C()3/kg 95.9965107.9952.9982.998m =⨯÷--=ρ()s Pa 6.9025102.80110041004⋅=⨯÷--=μμ()()K kg kJ/179.4510174.4183.4183.4C ⋅=⨯÷--=p()()K m /W 6078.05105985.06171.05985.0⋅=⨯÷-+=λ 对于电厂烟道气,定性温度t=(141+60)/2=100.5o C()C 01254.096.10537.0429.1726.025.10945.000484.0o 1⨯+⨯+⨯+⨯=ρ(标况)3m /kg 230.1=nRT mP=ρ则对于同压力下同质量的同种气体,==nRPmT ρ常数 则烟道气在100.5o C ,0.1013MPa 下的密度()15.273230.115.2735.1002⨯=+⨯ρ 32m /kg 8992.0=ρ则烟道气的质量流量为s kg /85.936008992.098.39440W =÷⨯= 则烟道气在100.5o C ,1.2MPa 下的密度,则对于同质量同温度下的同种气体,==m RT n Pρ常数 8992.01013.02.1=ρ 2/kg 652.10m =ρ s Pa 70.480945.03551254.07.130537.03.20726.017⋅=⨯+⨯+⨯+⨯=μμ求烟道气比热容()()K kg O p ⋅=⨯-+=/kJ 221.405.0220.4233.4220.4C 2H查气体的摩尔定压容与温度的关系表2C cT bT a p ++= 氮气的比热容为()()26315.2735.100109502.015.2735.10010226.632.27C 2+⨯⨯-+⨯⨯+=--pN()()K kg kJ K mol ⋅=⨯=⋅=-/054.1102851.29/J 51.293同理 ()K kg kJ pO ⋅=/137.1C 2 ()K kg kJ O p ⋅=/922.0C 2C 则烟道气的比热容为0945.0221.41254.0922.00537.0137.17260.0054.1C ⨯+⨯+⨯+⨯=p()K kg ⋅=/kJ 339.10945.0.22501254.00137.00537.00240.0726.00228.0⨯+⨯+⨯+⨯=λ()K m /W 0408.0⋅=求对数平均温差总热量为()()21.15J/s 1068360141133985.9T T WC Q 21p =-⨯⨯=-= 对数平均温差为5.2186036141t t T T R 1221=--=--=173.0601411832T T t t S 2112=--=--= 特性数据表()()25.70186032141In 186032141t 1=-----=∆m冷却水用量为()()s /kg 26.1818321000179.415.1068321t t C Q W 12=-⨯⨯=-=p温差修正系数为假设管程数为多程,壳程数为一程,查下图得F T =0.97,由于平均传热温差校正系数大于0.8,同时壳程流体流量较大,故取单壳程合适。
武汉工程大学邮电与信息工程学院毕业设计(论文)说明书论文题目 BES-900-1.0-165-4.5/25-2Ⅱ浮头式换热器设计学号 1002050314学生姓名刘成专业班级 10过程装备与控制工程03班指导教师刘丽芳总评成绩2014年 6 月 1 日摘要 (2)Abstract (3)绪论 (4)一换热器的简单介绍 (4)二换热器的应用 (4)三管壳式换热器的分类及其特点 (4)四换热器在化学工业中的应用 (5)五换热器的选型 (7)第一章结构及强度计算 (8)1.1筒体的计算 (8)1.2管箱的结构设计 (9)1.3 浮头盖的设计 (14)1.4管板的计算 (27)1.5外头盖的计算 (32)1.6开孔补强计算 (33)1.7其他零部件设计 (36)第二章浮头式换热器的制造工艺 (41)2.1 总体制造工艺 (41)2.2 管箱、壳体、头盖的制造工艺 (41)2.3 换热管的制造工艺 (41)2.4 管板与折流板的制造工艺 (41)第三章浮头式换热器的检验、安装、使用和维修 (43)3.1换热管的水压试验 (43)3.2安装 (43)3.3使用 (44)3.4维护 (44)设计总结 (45)致谢 (46)参考文献 (47)附录 (48)换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。
换热器的应用广泛,它的主要功能是保证工艺过程对介质所要求的特定温度,同时也是提高能源利用率的主要设备之一。
换热器既可是一种单独的设备,如加热器、冷却器和凝汽器等;也可是某一工艺设备的组成部分,如氨合成塔内的热交换器。
本设计说明书是关于浮头式换热器的设计,主要是进行了换热器的结构和强度设计。
这部分主要是根据设计课题和课题给定条件进行设备内各零部件(如管箱、浮头钩圈、管板、接管、折流板、隔板、定距管等)的设计,包括:材料的选择、具体尺寸确定、确定具体位置、管板厚度的计算、浮头盖和浮头法兰厚度的计算、开孔补强计算等。
沈阳化工大学本科毕业论文题目:流量为290t/h的浮头式加热器院系:机械工程学院专业:过程装备与控制工程班级:过控0605学生姓名:谢珏勋指导教师:金丹副教授论文提交日期: 2010年 06月 28日论文答辩日期:2010年06月29日毕业设计(论文)任务书过程装备与控制工程0605班学生:谢珏勋内容摘要换热器是化工生产中重要的设备之一,它是一种冷热流体间传递热量的设备,其中管壳式换热器应用最为广泛。
本设计为单壳程、两管程换热器,壳程介质为水,管程介质为水。
水的流量为290t/h,管程的入口温度为95℃,出口温度为60℃,壳程的入口温度为20℃,出口温度为70℃本次设计为浮头式换热器,浮头式换热器主要由管箱、管板、壳体、换热管、折流板、拉杆、定距管、钩圈、浮头盖等组成。
浮头换热器的一端管板与壳体固定,另一端为浮动管板。
因此其优点为热应力较小,便于检查和清洗。
缺点为结构较为复杂。
在传热计算工艺中,包括传热面积计算,传热量、传热系数的确定和换热器内径及换热管型号的选择,以及传热系数、压降及壁温的验算等问题。
在强度计算中主要讨论的是筒体、管箱、封头、管板厚度计算以及折流板、法兰、垫片和接管、支座、分隔板等零部件的设计,还要进行一些强度校核。
本设计是按照GB151《管壳式换热器》和GB150《钢制压力容器》设计的。
换热器在工、农业的各个领域应用十分广泛,在日常生活中传热设备也随处见,是不可缺少的工艺设备之一。
随着研究的深入,工业应用取得了令人瞩目的成果。
关键词:换热器;浮动管板;传热计算;强度校核AbstractHeat exchanger is one of the important equipment in chemical industry ,it transfer heat between cold and heat fluid. In this heat exchanger the tubular heat exchanger is most widely used. This design is one shell and two tube, water flow in tube and water flow in shell.This design is floating head heat exchanger, it is made up of tube box 、tube sheet、shell、heat exchange tube、baffle plate、draw bar、spacer pipe、hook circle、floating head cover and so on. One tube sheet of the exchanger is connected with shell, and the other tube sheet is floating tube sheet. So it’s easy to check and clean. On the other hand the structure of it complex.In the process of heat transfer calculation, include area computation 、capacity of heat transmission 、the determine of heat transfer coefficient and the choice of the heat exchange tube. About strength calculation, it involve the calculating of shell、tube box、sealing head and so on. This design is according to GB151 << shell-and-tube heat exchanger >> and GB150 << Steel pressure vessel >> to design.Keywords: heat exchanger; floating tube sheet; heat transfer calculation; strength check目录第一部分文献综述 (1)第二部分计算说明书 (5)1.传热工艺计算 (5)1.1. 原始数据 (5)1.2. 定性温度及物性参数 (5)1.3. 传热量和冷水流量 (6)1.4. 有效平均温度 (6)1.5. 管程传热面积计算 (6)1.6. 结构初步设计 (7)1.7. 壳程换热系数计算 (8)1.8. 总传热系数计算 (8)1.9. 核算管程压强降 (9)1.10. 核算壳程压强降 (9)2. 强度计算 (9)2.1. 换热管材料及规格的选择和根数的确定 (9)2.2. 确定筒体内径 (11)2.3. 确定筒体壁厚 (11)2.4. 管箱封头厚度计算 (12)2.5. 浮头侧封头厚度计算 (13)2.6. 设备法兰的选择 (15)2.7. 管板的设计 (17)2.8. 钩圈式浮头 (20)2.9. 浮动管板 (29)2.10. 钩圈的选择 (31)2.11. 折流板的选择 (31)2.12. 拉杆和定距管的确定 (32)2.13. 管箱短节壁厚的计算 (33)2.14. 筒体、管箱的耐压试验的校核计算 (33)2.15. 接管及开孔补强 (34)2.16. 择及应力校核 (37)致谢 (41)附录 (42)Abstract (42)Introduction (42)1) increasing the system performance (42)Background (43)Heat Exchanger Effectiveness (45)第一部分文献综述换热器:换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。
换热器是实现化工生产过程中热量交换和传递不可缺少的设备。
在热量交换中常有一些腐蚀性、氧化性很强的物料,因此,要求制造换热器的材料具有抗强腐蚀性能。
它可以用石墨、陶瓷、玻璃等非金属材料以及不锈钢、钛、钽、锆等金属材料制成。
但是用石墨、陶瓷、玻璃等材料制成的有易碎、体积大、导热差等缺点,用钛、钽、锆等稀有金属制成的换热器价格过于昂贵,不锈钢则难耐许多腐蚀性介质,并产生晶间腐蚀。
换热器作为传热设备被广泛用于耗能用量大的领域。
随着节能技术的飞速发展,换热器的种类越来越多。
适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:一、换热器按传热原理可分为:1、表面式换热器:表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。
表面式换热器有管壳式、套管式和其他型式的换热器。
2、蓄热式换热器:蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。
蓄热式换热器有旋转式、阀门切换式等。
3、流体连接间接式换热器:流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。
4、直接接触式换热器:直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。
二、换热器按用途分为:1、加热器:加热器是把流体加热到必要的温度,但加热流体没有发生相的变化。
2、预热器:预热器预先加热流体,为工序操作提供标准的工艺参数。
3、过热器:过热器用于把流体(工艺气或蒸汽)加热到过热状态。
4、蒸发器:蒸发器用于加热流体,达到沸点以上温度,使其流体蒸发,一般有相的变化。
三、按换热器的结构可分为:浮头式换热器、固定管板式换热器、U形管板换热器、板式换热器等。
换热器的用途换:热器的作用可以是以热量交换为目的。
即在确定的流体之间,在一定时间内交换一定数量的热量;也可以是以回收热量为目的,用于余热利用;也可以是以保证安全为目的,即防止温度升高而引起压力升高造成某些设备被破坏。
换热器的作用不同,其设计、选型、运行工况也各不相同。
在石油、化工、轻工、制药、能源等工业生产中,常常需要把低温流体加热或者把高温流体冷却,把液体汽化成蒸汽或者把蒸汽冷凝成液体。
这些过程均和热量传递有着密切联系,因而均可以通过换热器来完成。
换热器的优点:换热器的热损失要少,换热效率要高;流动阻力要小;要有足够的机械强度,抗腐蚀和抗损坏能力要强,维护工作量要少;结构要合理,工作要安全可靠,即零部件之间因为温升而产生的热应力不会导致换热器破裂;要便于制造、安装和检修;经济上要合理,设奋全寿命期的总投资要少,生活热水系统的换热器应易于清除水垢,以上要求常常相互制约,难于同时满定,因此应视具体情况,在换热器的选型和设计中有所侧重,满足工程对换热器的主要要求。
因为换热器故障率较低,并且供暖为季节性负荷,有足够的检修时间,生活热水系统暂停供热也不会造成重大影响,所以可不设备用换热器。
换热器台数的选择和单台能力的确定应适应热负荷的分期增长,并考虑供热的可靠性。
换热器故障分析:在换热器中,冷、热流体分别在固体壁面的两侧流过,热流体的热量主要以对流方式传给壁面,经过壁面导热再传给冷流体。
为了强化传热效果,冷热流体常采用逆流传热方式。
换热器通常在稳态下工作,换热器内冷热流体温度沿程变化。
正常情况下,冷流体出口温度接近或超过热流体出口温度,但在实际运行中,往往由于换热器故障出现冷热流体温度不正常现象。
换热器故障主要表现为:情况1,热流体出口温度达到冷流体出口温度的1.1倍以上,不符合逆流传热规律;情况2,冷热流体出口温度接近且均偏低。
清洗换热器水垢的具体步骤:1、冲冼:酸洗前,先对换热器进行开式冲洗,使换热器内部没有泥、垢等杂质,这样既能提高酸洗的效果,也可降低酸洗的耗酸量。
2、将清洗液倒人清洗设备,然后再注入换热器中。
3、酸洗:将注满酸溶液的换热器静态浸泡2h。
然后连续动态循环3~4 h。
其间每隔0.5 h进行正反交替清洗。
酸洗结束后,若酸液pH值大于2,酸液可重复使用,否则,应将酸洗液稀释中和后排掉。
4、碱洗:酸洗结束后,用NaOH,Na,PO ,软化水按一定的比例配制好,利用动态循环的方式对换热器进行碱洗,达到酸碱中和,使换热器板片不再腐蚀。
5、水洗:碱洗结束后,用清洁的软化水.反复对换热器进行冲洗0.5 h,将换热器内的残渣彻底冲洗干净。