【0917】《高等数学》-答题卷
- 格式:doc
- 大小:176.89 KB
- 文档页数:2
高等数学考试题目及答案一、单项选择题(每题3分,共30分)1. 以下哪个函数是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = x^4 \)D. \( f(x) = \sin(x) \)答案:B2. 极限 \(\lim_{x \to 0} \frac{\sin(x)}{x}\) 的值是多少?A. 0B. 1C. \(\infty\)D. -1答案:B3. 以下哪个积分是发散的?A. \(\int_0^1 \frac{1}{x^2} dx\)B. \(\int_1^\infty \frac{1}{x^2} dx\)C. \(\int_0^1 \frac{1}{x} dx\)D. \(\int_1^\infty \frac{1}{x} dx\)答案:C4. 函数 \( f(x) = e^x \) 的导数是什么?A. \( e^x \)B. \( e^{-x} \)C. \( \ln(e) \)D. \( 1 \)答案:A5. 以下哪个级数是收敛的?A. \(\sum_{n=1}^\infty \frac{1}{n^2}\)B. \(\sum_{n=1}^\infty \frac{1}{n}\)C. \(\sum_{n=1}^\infty \frac{1}{2^n}\)D. \(\sum_{n=1}^\infty \frac{1}{n^3}\)答案:C6. 函数 \( y = \ln(x) \) 的二阶导数是什么?A. \( \frac{1}{x^2} \)B. \( \frac{1}{x} \)C. \( -\frac{1}{x} \)D. \( -\frac{1}{x^2} \)答案:A7. 以下哪个函数是周期函数?A. \( f(x) = e^x \)B. \( f(x) = \sin(x) \)C. \( f(x) = x^2 \)D. \( f(x) = \ln(x) \)答案:B8. 以下哪个函数是偶函数?A. \( f(x) = x^3 \)B. \( f(x) = x^2 \)C. \( f(x) = \sin(x) \)D. \( f(x) = \cos(x) \)答案:D9. 函数 \( y = x^2 \) 的不定积分是什么?A. \( \frac{x^3}{3} \)B. \( \frac{x^2}{2} \)C. \( \frac{x^3}{2} \)D. \( \frac{x^4}{4} \)答案:A10. 以下哪个函数是单调递增的?A. \( f(x) = e^{-x} \)B. \( f(x) = \ln(x) \)C. \( f(x) = -x^2 \)D. \( f(x) = x^3 \)答案:D二、填空题(每题4分,共20分)1. 函数 \( f(x) = x^2 - 4x + 4 \) 的最小值是 ________。
高等数学试题详解及答案一、单项选择题(每题2分,共10分)1. 函数f(x)=x^2在x=0处的导数是:A. 0B. 1C. 2D. 0答案:B2. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. πD. -1答案:B3. 函数F(x)=∫(0 to x) t^2 dt的不定积分是:A. (1/3)x^3 + CB. (1/2)x^2 + CC. x^3 + CD. x^2 + C答案:A4. 无穷小量α与无穷小量β,若α是β的高阶无穷小,则:A. α/β→0B. α/β→∞C. α/β→1D. α/β→常数答案:A5. 曲线y=x^3-3x+2在x=1处的切线斜率是:A. -2B. 0C. 2D. 1答案:C二、填空题(每题3分,共15分)1. 若函数f(x)的二阶导数为f''(x)=6x,那么f'(x)=______。
答案:3x^2 + C2. 函数y=e^x的反函数是______。
答案:ln(x)3. 定积分∫(0 to 1) x dx的值是______。
答案:1/24. 函数y=ln(x)的导数是______。
答案:1/x5. 曲线y=x^2在点(1,1)处的法线方程是______。
答案:y=-x+2三、解答题(每题10分,共30分)1. 求函数f(x)=x^3-3x^2+2x的极值点。
答案:首先求导数f'(x)=3x^2-6x+2,令f'(x)=0,解得x=1或x=2/3。
通过二阶导数f''(x)=6x-6,可以判断x=1为极大值点,x=2/3为极小值点。
2. 计算定积分∫(0 to π/2) sin(x) dx。
答案:根据积分公式,∫sin(x) dx = -cos(x) + C,所以∫(0 toπ/2) sin(x) dx = [-cos(x)](0 to π/2) = -cos(π/2) + cos(0)= 1。
高等数学试题及参考答案一、选择题(每题4分,共20分)1. 以下哪个函数是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = \sin(x) \)D. \( f(x) = \cos(x) \)答案:B2. 计算极限 \(\lim_{x \to 0} \frac{\sin(x)}{x}\) 的值。
A. 0B. 1C. 2D. \(\infty\)答案:B3. 以下哪个级数是收敛的?A. \(\sum_{n=1}^{\infty} \frac{1}{n^2}\)B. \(\sum_{n=1}^{\infty} \frac{1}{n}\)C. \(\sum_{n=1}^{\infty} \frac{1}{2^n}\)D. \(\sum_{n=1}^{\infty} \frac{1}{n^3}\)答案:A4. 函数 \(y = e^x\) 的导数是?A. \(e^x\)B. \(-e^x\)C. \(\ln(e)\)D. \(\frac{1}{e^x}\)答案:A5. 计算定积分 \(\int_0^1 x^2 dx\) 的值。
A. \(\frac{1}{3}\)B. \(\frac{1}{2}\)C. \(\frac{1}{4}\)D. \(\frac{1}{6}\)答案:A二、填空题(每题6分,共30分)1. 函数 \(y = \ln(x)\) 的反函数是 \(y = \boxed{e^x}\)。
2. 函数 \(y = x^2 + 2x + 1\) 的最小值是 \(\boxed{0}\)。
3. 函数 \(y = \sin(x)\) 的周期是 \(\boxed{2\pi}\)。
4. 函数 \(y = \frac{1}{x}\) 的不定积分是 \(\boxed{\ln|x| + C}\)。
5. 函数 \(y = \cos(x)\) 的导数是 \(\boxed{-\sin(x)}\)。
高等数学测试题及答案1-9章全第1章自测题一、 选择题1. 若函数()f x 在点0x 处的极限存在,则( ) A ()f x 在点0x 处的函数值必存在,并且等于极限值; B ()f x 在点0x 处的函数值必存在,但不一定等于极限值; C ()f x 在点0x 处的函数值可以不存在; D 如果0()f x 存在的话,一定等于极限值 . 答案: C .提示:根据极限的定义.2.下列函数中,在点2x =处连续的是( ) .A ln(2)x -; B 22x -; C 242x y x -=-; D答案: B .提示:A 与C 在2x =处无意义,D 在2x =处左连续.3.函数53sin ln x y = 的复合过程是( )A x w w v v u u y sin ,,ln ,35====B x u u y sin ln ,53== ;C x u u y sin ,ln 53== ;D x v v u u y sin ,ln ,5=== . 答案:A .4.设,0(),0x e x f x a x x ⎧<⎪=⎨+⎪⎩≥ ,要使()f x 在0x =处连续,则a =( )A 2 ; B 1 ; C 0 ; D -1 .答案: B .提示:0lim ()lim e e 1x x x f x --→→===,00lim ()lim()x x f x a x a ++→→=+=. 二、填空题5. 函数()34f x x =-的反函数是 . 答案:43x y +=.提示:反表示为43y x +=.6. 函数y 的复合过程是 .答案:2ln ,,cos y u v v t t x ====.7. 若2()f x x =, ()x g x e =,则[()]f g x = ,[()]g f x = .答案: 22[()](e )e x x f g x ==,2[()]x g f x e =. 8. 函数1()ln(2)f x x =-的连续区间为 .答案:(2,3)和(3,)+∞. 提示:20x ->且ln 20x -≠.三、 解答题9.设函数ln ,01()1,122x x f x x x x ⎧<⎪=-<⎨⎪>⎩≤≤ ,(1) 求()f x 的定义域;(2) 作出函数图像;(3) 讨论()f x 在1x =及2x =处的连续性 .解 (1) 函数()f x 的定义域为(0,)+∞. (2) 函数图像为第1题图(3) 观察图像知,函数()f x 在1x =处连续,在2x =处不连续性.10.指出函数2πsin (3)4y x =-是有哪些简单函数复合而成的.解 2π,sin ,34y u u v v x ===-.11.计算下列各极限:(1) 22125lim 1x x x x →-+++ ; (2)221241lim 232x x x x →-+-; (3) 32lim(2)x x x →- ;(4)224lim 2x x x →--+;(5) 221lim()x x x→∞- ;(6)2241lim 232x x x x →∞-+-.解 (1) 22125125lim2111x x x x →-++-+==++; (2)2211122241(21)(21)214lim lim lim (21)(2)25232x x x x x x x x x x x x →→→--++===-+++-;(3) 33222lim(2)lim 2lim 484x x x x x x x →→→-=-=-=- ;(4)22224(2)(2)lim lim lim (2)422x x x x x x x x x →-→-→---+==-=-++;(5) 222121lim()lim lim 000x x x x x xx →∞→∞→∞-=-==-= ;(6)22221441limlim 2322322x x x x x x x x→∞→∞--==+-+-.12. 利用高级计算器计算下列各极限:(1)2lim sinx x x→∞ ; (2)3x → ;(3)lim x →+∞ (4)21lim()xx x x→∞+.解(1)2lim sin2x x x→∞= ; (2)314x →=; (3)x →∞=0; (4)221lim()e xx x x→∞+=.四、应用题1.若某厂每天生产某种产品60件的成本为300元,生产80件的成本为340元.求这种产品的线性成本函数,并求每天固定成本和生产一件产品的可变成本为多少?解 300602(),,()180234080180a b a C Q aQ b C Q Q a b b =+=⎧⎧=+⇒⇒∴=+⎨⎨=+=⎩⎩; 固定成本为180元,一件产品的变动成本为2元.2.甲向乙购买一套价值300万元的房子,乙提出三种付款方式:(1)全部付现款,可以优惠10万元;(2)先首付100万元,余款每隔一年付40万元,但每次付款必须加还40万元产生的利息(按年利率5%计算),5年后还清;(3)先首付200万元,一年后付余款100万元,但必须加还100万元的利息(按年利率5%计算);分别计算这三种付款方式实际付款金额. 解 (1)300—10=290(万元);(2)234510040(15%)40(15%)40(15%)40(15%)40(15%)332.076513++++++++++=万元;(3)(3)200100(15%)305++=万元.第2章 自测题一、 选择题1.过曲线2y x x =-上M 点处切线斜率为1,M 点坐标为( ). A.()1,0;B.()1,1;C.()0,0;D.()0,1.答案: A .提示:切线斜率为211,1k x x =-==,0y =.2.设在0x =处可导,则0(2)(0)lim h f h f h→-=( ).A.0;B.2(0)f '-;C.(0)f ';D.2(0)f '.答案: D .提示:00(2)(0)(02)(0)lim lim 22(0)2h h f h f f h f f h h→→-+-'=⋅=3.函数()f x 在点0x x =取得极大值,则必有( ). A.()00f x '=;B.()00f x '<;C ()00f x '=且()00f x =;D.()0f x '等于零或不存在.答案: D .提示:()0f x '等于零或不存在的点都是可能的极值点. 4.函数sin y x x =-在[]0,π上的最大值是( ).; B.0; C.π-; D.π. 答案: C. 提示:因为cos 10y x '=-≤,所以函数单调递减.最大值为()f ππ=-5.函数e arctan x y x =+在区间[]1,1-上( ). A.单调减少;B.单调增加;C.无最大值;D.无最小值.答案: B .提示:因为2101x y e x'=+>+. 6.d d yx=( ).C.D.答案: C .提示:0,y y ''==. 7. 设()211f x x =+ (0)x >,则()f x '=( ). A.21(1)x -+; B.21(1)x +;C.;. 答案: C .提示:()f x,所以y '= 8.设32,2t x te y t t -==+,则1t dydx =-=( ) A.2e -; B.2e -; C.2e; D.2e答案:C .提示:因为262ttdy t tdx e te--+=-,所以12t dy dx e =-= 9.设(),()y f u u x ϕ==,则dy =( )A.()f u dx ';B.()()f x x dx ϕ''C.()()f u x dx ϕ'';D.()()f u x du ϕ'' 答案: C .提示:根据复合函数求导法则. 二、填空题10.已知某商品的收益为375)(Q Q Q R -=,则其边际收益=')(Q R 解 2375)(Q Q R -='11.函数1x y e -=在2x =-处的切线斜率为 . 解 13222xx x k y e e -=-=-'==-=.12.曲线()21f x x =-在区间 上是单调增加函数. 解 ()2f x x '=-,所以在(,0)-∞上是单调增加函数. 13.如果2,0.01x x =∆=,则22()x d x == .解 2220.01()20.04x x x d x x x==∆==⋅∆=.14.函数x y xe -=在[]1,2-上的最大值为 .解 (1)x y e x -'=-,得驻点1x =,12(1),(1),(2)f f e f e e=-=-=,所以最大值为2(2)f e=.15.如果2sin 2y x =,则y '= . 解 2sin 2cos222sin 4y x x x '=⋅⋅=.16. 某需求曲线为1003000Q P =-+,则20P =时的需求弹性E = 解 202020()(100)21003000P P P P P E Q P Q P ==='=-=--=-+ . 17.已知ln 2y x =,则y ''= .解 211,y y x x'''==-.三、计算题18. 求下列函数的导数(1)(1y =+ (2)cos πy =+解y =解231(1)3y x -'=⋅+。
《高等数学基础》期末试题及答案一、选择题(每题5分,共25分)1. 函数f(x) = x² - 2x + 1在x = 1处的导数是()A. 0B. 2C. -2D. 1答案:A2. 函数y = ln(e²x)的导数是()A. 2xB. 2C. e²xD. 1答案:A3. 下列极限中,正确的是()A. lim(x→0) sinx/x = 0B. lim(x→0) sinx/x = 1C. lim(x→0) sinx/x = ∞D. lim(x→0) sinx/x = -1答案:B4. 函数y = x²e²x的极值点为()A. x = 0B. x = 1C. x = -1D. x = 2答案:C5. 定积分∫(0→1) x²dx的值是()A. 1/3B. 1/2C. 1D. 2答案:A二、填空题(每题5分,共25分)6. 函数y = 2x³ - 3x² + 2x + 1的一阶导数是______。
答案:6x² - 6x + 27. 函数y = x²e²x的二阶导数是______。
答案:4x²e²x + 4xe²x8. 极限lim(x→∞) (1 + 1/x)²ⁿ = ______。
答案:e9. 定积分∫(0→π) sinx dx的值是______。
答案:210. 定积分∫(0→π/2) eˣdx的值是______。
答案:eπ/2 - 1三、解答题(每题25分,共75分)11. 设函数f(x) = x³ - 3x² + 4,求f'(x)和f''(x)。
解:f'(x) = 3x² - 6x,f''(x) = 6x - 6。
12. 求函数f(x) = x²e²x的极值点和极值。
高等数学考试题及答案一、选择题(每题3分,共30分)1. 若函数f(x)在某区间内可导,则该函数在该区间内一定连续。
此说法是:A. 正确B. 错误答案:A2. 极限lim(x→0) (sin x)/x的值为:A. 0B. 1C. -1D. 2答案:B3. 函数f(x)=x^2在x=0处的导数为:A. 0B. 1C. 2D. -1答案:A4. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5答案:B5. 曲线y=x^3在点(1,1)处的切线斜率为:A. 1B. 3C. 9D. 27答案:B6. 定积分∫(0 to 1) x dx的值为:A. 1/2B. 1/3C. 1/4D. 1/5答案:A7. 微分方程dy/dx = y的通解为:A. y = Ce^xB. y = CxC. y = C/xD. y = Cx^2答案:A8. 以下哪个级数是收敛的?A. 1 + 1/2 + 1/4 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1 + 1/2^2 + 1/3^2 + ...D. 1 - 1/2^2 + 1/3^2 - 1/4^2 + ...答案:C9. 函数f(x) = e^x的不定积分为:A. e^x + CB. e^(-x) + CC. -e^x + CD. -e^(-x) + C答案:A10. 二重积分∬(0 to 1, 0 to 1) xy dxdy的值为:A. 1/4B. 1/2C. 1D. 2答案:C二、填空题(每题4分,共20分)1. 函数f(x) = ln(x)的导数为 ________。
答案:1/x2. 极限lim(x→∞) (x^2 - 3x + 2)/(x^2 + 1)的值为 ________。
答案:13. 曲线y = x^2在点(2,4)处的切线方程为 y - 4 = ________(x - 2)。
高数考试试题及答案一、选择题(每题5分,共30分)1. 函数f(x)=x^3-3x+1在x=1处的导数为:A. 2B. -2C. 3D. -3答案:A2. 曲线y=x^2在点(2,4)处的切线斜率为:A. 4B. 2C. 1D. 0答案:A3. 极限lim(x→0) (sin x / x)的值为:A. 0B. 1C. -1D. ∞答案:B4. 设函数f(x)=x^3-6x^2+11x-6,其在x=2处的极值是:A. 最大值B. 最小值C. 无极值D. 无法确定5. 函数f(x)=x^2-4x+c的图像与x轴有两个交点,则c的取值范围是:A. c>0B. c<0C. c>4D. c<4答案:D6. 函数y=x^3-3x^2+4x-1的单调递增区间是:A. (-∞, 1)B. (1, +∞)C. (-∞, 1)∪(2, +∞)D. (1, 2)答案:B二、填空题(每题5分,共20分)1. 函数f(x)=x^2-6x+8的最小值为______。
答案:22. 曲线y=x^3-3x^2+2的拐点坐标为______。
答案:(1, -2)3. 设f(x)=ln(x+√(1+x^2)),则f'(x)=______。
答案:1/(√(1+x^2)+x)4. 若函数f(x)=x^3+2x^2-5x+1,则f''(x)=______。
答案:6x+4三、解答题(每题10分,共50分)1. 求极限lim(x→∞) (1+1/x)^x。
2. 求函数f(x)=x^3-6x^2+11x-6的单调区间。
答案:单调递增区间为(2, +∞),单调递减区间为(-∞, 2)3. 求曲线y=x^3-3x^2+2在x=1处的切线方程。
答案:y=-2x+14. 求函数f(x)=x^2-4x+c的图像与x轴交点的坐标。
答案:交点坐标为(2±√(4-c), 0)5. 求函数f(x)=x^3-3x^2+4x-1在区间[0, 2]上的最大值和最小值。
《高等数学》试卷1〔下〕一.选择题〔3分⨯10〕1.点1M ()1,3,2到点()4,7,22M 的距离=21M M 〔 〕.A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有〔 〕.A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是〔 〕.A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y xy x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是〔 〕.A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是〔 〕. A.2 B.2- C.1 D.1- 6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz =〔 〕.A.22B.22-C.2D.2-7.若p 级数∑∞=11n p n 收敛,则〔 〕. A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为〔 〕.A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是〔 〕.A.x -11 B.x -22 C.x -12 D.x-21 10.微分方程0ln =-'y y y x 的通解为〔 〕.A.xce y = B.xe y = C.xcxe y = D.cxe y =二.填空题〔4分⨯5〕1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z2_____________________________. 4.x+21的麦克劳林级数是___________________________. 三.计算题〔5分⨯6〕1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4.求两个半径相等的直交圆柱面所围成的立体的体积〔R 为半径〕.四.应用题〔10分⨯2〕1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省? .试卷1参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121.5.()xex C C y 221-+= .三.计算题 1.()()[]y x y x y e xzxy +++=∂∂cos sin ,()()[]y x y x x e y z xy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z yy z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R . 5.x xe ey 23-=.四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷2〔下〕一.选择题〔3分⨯10〕1.点()1,3,41M ,()2,1,72M 的距离=21M M 〔 〕. A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为〔 〕. A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为〔 〕.A.(){}10,22≤+≤y x y xB.(){}10,22<+<y x y x C.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为〔 〕. A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为〔 〕. A.0 B.1 C.1- D.216.设223y xy x z ++=,则()=∂∂2,1xz 〔 〕.A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的,则〔 〕.A.1≤rB.1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为〔 〕.A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是〔 〕. A.条件收敛 B.绝对收敛 C.发散 D.不能确定二.填空题〔4分⨯5〕1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.三.计算题〔5分⨯6〕1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+〔0>a 〕所围的几何体的体积. 四.应用题〔10分⨯2〕 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.试卷2参考答案一.选择题 CBABA CCDBA. 二.填空题1.211212+=-=-z y x . 2.()xdy ydx exy+.3.488=--z y x .4.()∑∞=-021n n n x . 5.3x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ . 3.22,z xy xz y z z xy yz x z +-=∂∂+-=∂∂. 4.⎪⎭⎫ ⎝⎛-3223323πa . 5.x xe C eC y --+=221.四.应用题 1.316. 2. 00221x t v gt x ++-=. 《高等数学》试卷3〔下〕一、选择题〔本题共10小题,每题3分,共30分〕 2、设a=i+2j-k,b=2j+3k,则a 与b 的向量积为〔 〕 A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k 3、点P 〔-1、-2、1〕到平面x+2y-2z-5=0的距离为〔 〕 A 、2 B 、3 C 、4 D 、5 4、函数z=xsiny 在点〔1,4π〕处的两个偏导数分别为〔 〕 A 、,22,22 B 、,2222- C 、22-22- D 、22-,225、设x 2+y 2+z 2=2Rx,则yzx z ∂∂∂∂,分别为〔 〕 A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R,面密度为22y x +=μ的薄板的质量为〔 〕〔面积A=2R π〕A 、R 2AB 、2R 2AC 、3R 2AD 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为〔 〕A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为〔 〕A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n二、填空题〔本题共5小题,每题4分,共20分〕 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________. 直线L 3:之间的夹角为与平面062321221=-+=-+=-z y x zy x ____________. 2、〔0.98〕2.03的近似值为________,sin100的近似值为___________. 3、二重积分⎰⎰≤+Dy x D d 的值为1:,22σ___________. 4、幂级数的收敛半径为∑∞=0!n nx n __________,∑∞=0!n nn x 的收敛半径为__________. 三、计算题〔本题共6小题,每小题5分,共30分〕2、求曲线x=t,y=t 2,z=t 3在点〔1,1,1〕处的切线与法平面方程.3、计算⎰⎰===Dx y x y D ,xyd 围成及由直线其中2,1σ.4、问级数∑∞=-11sin )1(n n?,?n 收敛则是条件收敛还是绝对若收敛收敛吗 5、将函数f<x>=e 3x 展成麦克劳林级数四、应用题〔本题共2小题,每题10分,共20分〕 1、求表面积为a 2而体积最大的长方体体积.参考答案一、选择题1、D2、C3、C4、A5、B6、D7、C8、A9、B 10,A 二、填空题 1、218arcsin,182cosar 2、0.96,0.17365 3、л 4、0,+∞ 5、ycx cey x 11,22-== 三、计算题2、解:因为x=t,y=t 2,z=t 3, 所以x t =1,y t =2t,z t =3t 2, 所以x t |t=1=1, y t |t=1=2, z t |t=1=3 故切线方程为:312111-=-=-z y x 法平面方程为:〔x-1〕+2<y-1>+3<z-1>=0 即x+2y+3z=63、解:因为D 由直线y=1,x=2,y=x 围成, 所以 D :1≤y ≤2y ≤x ≤2 故:⎰⎰⎰⎰⎰=-==212132811)22(][dy y y dy xydx xyd yDσ4、解:这是交错级数,因为。
《高等数学》考试试卷A 卷及答案解析一.填空题(共24分,每小题3分)1.设函数x y z =,则__________________________=dz .2.方程333z e xyz e -=确定()y x z z ,=,则__________________=∂∂x z. 3. 曲线t t x sin -=,t y cos 1-=,2sin 2tz =在π=t 处切线方程为_________________________________________.4. 函数2u x y z =+在点(2,1,0)M 处最大的方向导数为__________________.5. 交换二次积分222(,)y y I dy f x y dx =⎰⎰的积分次序,得__________________=I .6.设平面曲线)10(:2≤≤=x x y L ,则曲线积分__________________=⎰ds x L.7. 幂级数∑∞=12n n n x n的收敛域是 ________________________.8. 微分方程022=+'-''y y y 的通解为___________________________.二、选择题(共12分,每小题3分)1. 设曲面2232y x z +=在点)5 , 1 , 1(M 处的切平面方程为064=+-+λz y x ,则λ=( ).(A) 15- (B) 0 (C) 5- (D) 52. 函数),(y x f 在点),(y x 处可微是函数),(y x f 在该点处存在偏导数的( ). (A) 必要条件 (B) 充分条件(C) 充要条件 (D) 既非充分又非必要条件3. 设曲线L 是单位圆周122=+y x 按逆时针方向,则下列曲线积分不等于零的是( ).(A) ds y L⎰ (B) ds x L⎰ (C) dx y xdy L⎰+ (D) ⎰+-L y x ydxxdy 224. 下列级数中收敛的是( ).(A) ∑∞=122n n n (B) ∑∞=+12n n n(C) ∑∞=+1)2121(n n n (D) ∑∞=133n n n三、解答题:(共59分)1.(7分)求二元函数()3132,23---=y x xy y x f 的极值. 2. (7分)设函数2,x z f x y y ⎛⎫= ⎪⎝⎭,其中()v u f ,具有二阶连续偏导数,求yx zx z ∂∂∂∂∂2 , .3.(7分)计算二重积分dxdy xy D⎰⎰2,其中D 是由圆周422=+y x 与y 轴所围成的右半区域.4.(7分)将函数())1ln(x x f +=展成1-x 的幂级数,并写出可展区间5.(7分)计算曲面积分(2)I xy x y z dS ∑=+++⎰⎰,其中∑为平面1x y z ++=在第一卦限中的部分.6. (8分) 求微分方程x xe y y y 223=+'-''的通解.7. (8分)计算曲线积分()()y d y xy dx yx x I L⎰+-+-=2322其中L 为曲线22x x y -=从)0,2(A 到)0,0(O 的弧段.8.(8分)利用高斯公式计算曲面积分()()d xdy x z dzdx y dydz x I ⎰⎰∑-+++=33332,其中∑为由上半球面224y x z --=与锥面22y x z +=围成的空间闭区域的整个边界曲面的外侧.四.(5分)设()f x 是在(,)-∞+∞内的可微函数, 且()()f x f x α'<, 其中01α<<. 任取实数0a , 定义1ln (),1,2,3n n a f a n -==.证明:级数11()n n n a a ∞-=-∑绝对收敛.《高等数学》考试试卷A 卷答案一、填空题(共24分,每小题3分) 1. dy xy ydx y dz x x 1ln -+= 2. 3z z yzx e xy ∂=∂- 3.2022-=-=-z y x π4.5. 2(,)xI dx f x y dy =⎰⎰6.()11127. )21, 21[- 8. )sin cos (21x c x c e y x +=二、选择题(共12分,每小题3分) 1. C 2. B 3. D 4. D 三、解答题(共64分) 1. (7分)解: 令⎪⎩⎪⎨⎧=-==-=022022y x f x y f yx 得驻点⎩⎨⎧==00y x ,⎩⎨⎧==22y x 2 分 x f xx 2-=,2=xy f ,2-=yy f 4 分 在(0,0)处, 2 , 2 , 0-===C B A04 2<-=-B AC , ∴(0,0)为非极值点. 5 分在(2,2)处 2 , 2 , 04-==<-=C B A04 2>=-B AC ∴ 1)2 , 2(=f 为函数),(y x f 的极大值. 7 分2.(7分) 解:2121f xy f yx z '+'=∂∂ 3分)21(212f xy f yy y x z '+'∂∂=∂∂∂ ])([ 22])([11222212221221112x f yx f xy f x x f y x f y f y ''+-''+'+''+-''+'-= 223122113212221f y x f y x f yx f x f y ''+''-''-'+'-= 7 分3. (7分) 解:⎰⎰⎰⎰--=224 0222y Dxdx dy y dxdy xy3分⎰--=2 2 22)4(21dy y y 5 分 1564)4(2 0 42=-=⎰dy y y 7 分4. (7分)解:1(1)ln(1)1n n n x x n ∞+=-+=+∑ 11≤<-x 1 分)211ln(2ln )]1(2ln[)1ln(-++=⋅-+=+x x x 3分10)21(1)1(2ln +∞=∑-+-+=n n n x n∑∞=++-+-+=011)1(2)1()1(2ln n n n nx n 6分 1211≤-<-x ⇒ 31≤<-x 7分5.(7分)解::1z x y ∑=--dS ∴== 2分(2DI xy ∴=+⎰⎰4分1102xDdx xydy dxdy -=+⎰5分()13202xx x dx =-++6分12=7分6.(8分)解 (1)先求微分方程023=+'-''y y y 的通解Y特征方程 0232=+-r r 即 0)1)(2(=--r r ,21=r ,12=rx x e c e c Y 221+= 3 分(2)求原方程的一个特解*y 2 =λ 是特征方程的根,故设 x x e bx ax e b ax x y 222)()(+=+=*5分令bx ax x Q +=2)(,则b ax x Q +='2)(,a x Q 2)(=''将)(x Q ',)(x Q ''代入方程x x Q p x Q ='++'')()2()(λ 得 x b ax a =++22则 ⎩⎨⎧=+=1212b a a , 解之得⎪⎩⎪⎨⎧==021b a , x xe y 221=*7 分 所求通解 x x x xe e c e c y 222121++= 8 分7.(8分) 解:⎰++-+-OAL dy y xy dx yx x )2()(322dxdy x y dxdy y Px Q DD)()(22⎰⎰⎰⎰+=∂∂-∂∂= 3 分 ⎰⎰⋅=θd ρd cos 2 0220 ρρθπ5 分⎰==20 443cos 4ππθθd 6 分dy y xy dx yx x I OA ⎰+-+--=)2()(43322π 7 分2434320-=-=⎰ππxdx 8 分8. (8分) 解:由高斯公式dV z y x I )333(222⎰⎰⎰Ω++= 3 分2244 03 sin d d r dr ππθφφ=⎰⎰⎰ 6 分192(152π=- 8 分9.(5分)解:对任意设2n ≥,由拉格朗日中值定理,有111212121'()ln ()ln (),()n n n n n n n n n n f a a f a f a a a a a f ξαξ----------=-=-<-2 分其中1n ξ-介于1n a -与2n a -之间. 于是有11101,2,.n n n a a a a n α---<-=3分又级数1101n n a a α∞-=-∑收敛, 由比较审敛法知级数11()n n n a a ∞-=-∑绝对收敛.5分。
《高等数学》试题库一、选择题 (一)函数1、下列集合中( )是空集。
{}{}4,3,02,1,0. a {}{}7,6,53,2,1. b (){}x y x y y x c 2,.==且 {}01.≥〈x x x d 且2、下列各组函数中是相同的函数有( )。
()()()2,.x x g x x f a == ()()2,.x x g x x f b ==()()x x x g x f c 22cos sin ,1.+== ()()23,.x x g xx x f d ==3、函数()5lg 1-=x x f 的定义域是( )。
()()+∞∞-,55,. a ()()+∞∞-,66,. b()()+∞∞-,44,. c ()()()()+∞∞-,66,55,44,. d4、设函数()⎪⎩⎪⎨⎧-+2222x x x〈+∞≤〈≤〈∞〈-x x x 2200 则下列等式中,不成立的是( )。
()()10.f f a = ()()10.-=f f b ()()22.f f c =- ()()31.f f d =-5、下列函数中,( )是奇函数。
x xa . x xb sin .211.+-x x a a c 21010.x x d -- 6、下列函数中,有界的是( )。
arctgx y a =. t g xy b =. xy c 1.= xy d 2.= 7、若()()11-=-x x x f ,则()=x f ( )。
()1.+x x a ()()21.--x x b ()1.-x x c .d 不存在8、函数x y sin =的周期是( )。
π4.a π2.b π.c 2.πd 9、下列函数不是复合函数的有( )。
xy a ⎪⎭⎫ ⎝⎛=21. ()21.x y b --= x y c s i n lg .= x ey d s i n1.+=10、下列函数是初等函数的有( )。
11.2--=x x y a ⎩⎨⎧+=21.xx y b 00≤〉x x x y c c o s 2.--=()()2121lg 1sin .⎪⎪⎭⎫ ⎝⎛+-=x e y d x11、区间[,)a +∞, 表示不等式( ).(A )a x <<+∞ (B )+∞<≤x a (C )a x < (D )a x ≥12、若ϕ3()1t t =+,则 ϕ3(1)t +=( ).(A )31t + (B )61t + (C )62t + (D )963332t t t +++13、函数log (a yx =+ 是( ).(A )偶函数 (B )奇函数 (C )非奇非偶函数 (D )既是奇函数又是偶函数 14、函数()yf x =与其反函数1()y f x -=的图形对称于直线( ). (A )0y = (B )0x = (C )y x = (D )y x =-15、函数1102x y-=-的反函数是( ).(A )1xlg22y x =- (B )log 2x y = (C )21log y x= (D )1lg(2)y x =++ 16、函数sin cos yx x =+是周期函数,它的最小正周期是( ).(A )2π (B )π (C )2π (D )4π 17、设1)(+=x x f ,则)1)((+x f f =( ). A . x B .x + 1 C .x + 2 D .x + 3 18、下列函数中,( )不是基本初等函数. A . x y )e1(= B . 2ln x y = C . xx y cos sin =D . 35x y = 19、若函数f(e x)=x+1,则f(x)=( )A. e x+1 B. x+1 C. ln(x+1) D. lnx+120、若函数f(x+1)=x 2,则f(x)=( )A.x 2B.(x+1) 2C. (x-1) 2D. x 2-1 21、若函数f(x)=lnx ,g(x)=x+1,则函数f(g(x))的定义域是( ) A.x>0 B.x ≥0 C.x ≥1 D. x>-1 22、若函数f(x)的定义域为(0,1)则函数f(lnx+1)的定义域是( )A.(0,1)B.(-1,0)C.(e -1,1)D. (e -1,e) 23、函数f(x)=|x-1|是( )A.偶函数B.有界函数C.单调函数D.连续函数 24、下列函数中为奇函数的是( )A.y=cos(1-x)B.⎪⎭⎫ ⎝⎛++=21ln x x y C.e x D.sinx 2 25、若函数f(x)是定义在(-∞,+∞)内的任意函数,则下列函数中( )是偶函数。
入学考试题库〔共180题1.函数、极限和连续〔53题1.1函数〔8题 1.1.1函数定义域 1.函数lgarcsin 23x xy x =+-的定义域是〔 。
A A. [3,0)(2,3]-; B. [3,3]-;C. [3,0)(1,3]-; D. [2,0)(1,2)-.2.如果函数()f x 的定义域是1[2,]3-,则1()f x的定义域是〔 。
DA. 1[,3]2-; B. 1[,0)[3,)2-⋃+∞; C. 1[,0)(0,3]2-⋃; D. 1(,][3,)2-∞-⋃+∞.3.如果函数()f x 的定义域是[2,2]-,则2(log )f x 的定义域是〔 。
B A. 1[,0)(0,4]4-; B. 1[,4]4; C. 1[,0)(0,2]2-; D. 1[,2]2.4.如果函数()f x 的定义域是[2,2]-,则3(log )f x 的定义域是〔 .DA . 1[,0)(0,3]3-⋃; B . 1[,3]3; C . 1[,0)(0,9]9-⋃; D . 1[,9]9.5.如果)(x f 的定义域是[0,1],则(arcsin )f x 的定义域是〔 。
CA. [0,1];B. 1[0,]2; C. [0,]2π; D. [0,]π. 1.1.2函数关系6.设()()22221,1x f x x x xϕϕ+⎡⎤==⎣⎦-,则()f x =< >.A A .211x x +-; B. 211x x -+; C. 121x x -+; D.121x x +-. 7.函数331xx y =+的反函数y =〔 。
BA .3log ()1x x +; B. 3log ()1x x -; C. 3log ()1x x -; D.31log ()x x-.8.如果2sin (cos )cos 2xf x x=,则()f x =< >.CA .22121x x +-; B. 22121x x -+; C. 22121x x --; D.22121x x ++.1.2极限〔37题 1.2.1数列的极限9.极限123lim ()2n n nn →+∞++++-=< >.BA .1; B. 12; C. 13; D.∞.10.极限2123lim 2n nn →∞++++=< >.AA .14; B. 14-; C. 15; D.15-11.极限111lim 1223(1)n n n →∞⎛⎫+++=⎪⋅⋅+⎝⎭< >.CA .-1; B. 0; C. 1; D.∞.12.极限221111(1)222lim1111333n nn n→+∞-+++-=++++< >.A A .49;B. 49-;C. 94;D.94-1.2.2函数的极限13.极限limx x→∞=< >.CA .12; B. 12-; C. 1; D.1-. 14.极限0x →=< >.A A.12; B. 12-; C. 2; D.2-. 15.极限0x →=〔 .B A. 32-; B. 32 ; C. 12- ; D.12.16.极限11lim1x x →=-〔 .CA. -2 ;B. 0 ;C. 1 ;D. 2 .17.极限4x →=< >.BA .43-; B. 43; C. 34-; D.34. 18.极限x →∞= < >.DA .∞; B. 2; C. 1; D.0.19.极限2256lim2x x x x →-+=- < >.D A .∞; B. 0; C. 1; D.-1.20.极限3221lim 53x x x x →-=-+ < >.A A .73-; B. 73; C. 13; D.13-. 21.极限2231lim 254x x x x →∞-=-+ < >.C A .∞; B.23; C. 32; D.34. 22.极限sin limx xx→∞=< >.BA .1-; B. 0; C. 1; D.2.23.极限01lim sinx x x→=< >.B A .1-; B. 0; C. 1; D.2.24.极限02sin 1limxx tdt t x →-=⎰< >.BA .12; B. 12-; C. 13; D.13-. 25.若232lim43x x x kx →-+=-,则k =〔 .AA .3-; B. 3; C. 13-; D.13. 26.极限2323lim31x x x x →∞++=- < >.B A .∞; B. 0; C. 1; D.-1.无穷小量与无穷大量27.当0x →时,2ln(12)x +与2x 比较是〔 。
20XX 年《高等数学(一)》最新模拟试题及答案一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( )....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x2.()02lim1cos t t xx e e dtx-→+-=-⎰( )A .0B .1C .-1D .∞3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )A.不连续B.连续但左、右导数不存在C.连续但不可导D. 可导5.设C +⎰2-x xf(x)dx=e ,则f(x)=( )2222-x -x -x -x A.xe B.-xe C.2e D.-2e二、填空题(本大题共10小题,每空3分,共30分) 请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-14)的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞++++<=8.arctan lim _________x x x→∞=9.已知某产品产量为g 时,总成本是2g C(g)=9+800,则生产100件产品时的边际成本100__g ==MC10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.11.函数3229129y x x x =-+-的单调减少区间是___________.12.微分方程3'1xy y x -=+的通解是___________. 13.设2ln 2,6aa π==⎰则___________.14.设2cos xz y=则dz= _______.15.设{}2(,)01,01y DD x y x y xe dxdy -=≤≤≤≤=⎰⎰,则_____________. 三、计算题(一)(本大题共5小题,每小题5分,共25分)16.设1xy x ⎛⎫= ⎪⎝⎭,求dy.17.求极限0ln cot lim ln x x x +→18.求不定积分.19.计算定积分I=.⎰20.设方程2zx 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。
《高数》试卷1(上)一.选择题(将答案代号填入括号,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()()20ln 10x f x x a x -≠⎪=+⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xe C -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰②()220a x a >-⎰③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2. 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln |x C +③()1x e x C --++ 四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A)()f x x =和()g x = (B)()211x f x x -=-和1y x =+(C)()f x x =和()22(sin cos )g x x x x =+ (D)()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }.(A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12xx e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C)()()220f f -⎡⎤⎣⎦ (D)()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '.3.求下列不定积分: ①3tan sec x xdx ⎰②()220a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c +③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1.01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx.四、求下列积分 (每小题5分, 共15分)1.12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x<2.4a =3.2x =4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==--四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx =C 、)5(x d dx --=D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x- C 、 C x +2sin D 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分) 1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x;4、微分方程 044=+'+''y y y 的通解是.5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是,最小值是;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→B 、x x arctan lim ∞→C 、x x sin lim ∞→D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C e x+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则 =-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是.三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。
高等数学考试题库(附答案)1. 解析:求函数 f(x) = x^2 在区间 [0, 2] 上的定积分。
2. 解析:求函数 f(x) = e^x 在区间 [1, 1] 上的定积分。
3. 解析:求函数 f(x) = sin(x) 在区间[0, π] 上的定积分。
4. 解析:求函数 f(x) = cos(x) 在区间[0, π/2] 上的定积分。
5. 解析:求函数 f(x) = ln(x) 在区间 [1, e] 上的定积分。
6. 解析:求函数 f(x) = x^3 在区间 [1, 1] 上的定积分。
7. 解析:求函数f(x) = √x 在区间 [0, 4] 上的定积分。
8. 解析:求函数 f(x) = 1/x 在区间 [1, 2] 上的定积分。
9. 解析:求函数 f(x) = tan(x) 在区间[0, π/4] 上的定积分。
10. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [0, 1] 上的定积分。
11. 解析:求函数 f(x) = x^2 + 1 在区间 [0, 1] 上的定积分。
12. 解析:求函数 f(x) = e^(x) 在区间 [0, 2] 上的定积分。
13. 解析:求函数 f(x) = sin^2(x) 在区间[0, π] 上的定积分。
14. 解析:求函数 f(x) = cos^2(x) 在区间[0, π/2] 上的定积分。
15. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [1, 1] 上的定积分。
16. 解析:求函数f(x) = √(1 x^2) 在区间 [1, 1] 上的定积分。
17. 解析:求函数 f(x) = x^3 3x^2 + 2x 在区间 [0, 2] 上的定积分。
18. 解析:求函数 f(x) = e^(2x) 在区间 [1, 1] 上的定积分。
19. 解析:求函数 f(x) = ln(x) 在区间 [1, e^2] 上的定积分。
20. 解析:求函数 f(x) = sin(x)cos(x) 在区间[0, π/2] 上的定积分。
《高等数学》练习测试题库及答案一.选择题1.函数 y=1是()2x1A. 偶函数B. 奇函数C 单调函数D 无界函数2.设 f(sin x)=cosx+1,则 f(x) 为()2A 2x 2-2B 2-2x 2+x 2D 1 - 2C 1x3.下列数列为单调递增数列的有( )A . 0.9 ,0.99, 0.999,0.9999B . 3, 2, 5,42345n为奇数n1 , n21nC . {f(n)}, 其中 f(n)=n , 为偶数 D. { 2n}1n4.数列有界是数列收敛的( ) A .充分条件 B. 必要条件 C.充要条件 D 既非充分也非必要 5.下列命题正确的是( ) A .发散数列必无界 B .两无界数列之和必无界 C .两发散数列之和必发散D .两收敛数列之和必收敛6. lim sin( x 21) ()x 1x 1A.1B.0C.2D.1/27.设 lim (1 k ) x e 6则 k=()xxA.1B.2C.6D.1/68.当 x1 时,下列与无穷小(x-1)等价的无穷小是()A.x 2 -1B. x 3 -1C.(x-1) 2D.sin(x-1)9.f(x) 在点 x=x 0 处有定义是 A. 必要条件C.充分必要条件f(x) 在x=x 0 处连续的(B.充分条件 D.无关条件)10、当|x|<1时,y=()A 、是连续的B、无界函数C 、有最大值与最小值D、无最小值11、设函数 f (x)=( 1-x )cotx要使 f (x)在点: x=0 连续,则应补充定义f (0)为()A 、B、 e C、-e D、-e -112、下列有跳跃间断点x=0 的函数为()A、xarctan1/xB、 arctan1/xC、 tan1/xD、 cos1/x13、设f(x) 在点 x0连续, g(x) 在点 x0不连续,则下列结论成立是(A、f(x)+g(x)在点x0必不连续B、f(x) ×g(x) 在点 x0必不连续须有C、复合函数 f[g(x)]在点x0必不连续)D、在点x0必不连续14、设f(x)=在区间 (-∞,+∞) 上连续,且f(x)=0,则a,b满足()A、a>0,b >0 C、a<0,b >0BD、a>0,b <0、a<0,b <015、若函数f(x)在点x0连续,则下列复合函数在x0也连续的有()A、B、C、tan[f(x)]D、 f[f(x)]16、函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л]B、( 0, л)C、[-л /4,л/4]D、( - л/4,л /4 )17、在闭区间[a ,b]上连续是函数f(x)有界的()A、充分条件B、必要条件C、充要条件D、无关条件18、f(a)f(b)<0是在[a,b]上连续的函f(x)数在(a,b)内取零值的()A、充分条件B、必要条件C、充要条件D、无关条件19、下列函数中能在区间 (0,1) 内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x 4-4x+120、曲线 y=x2在 x=1 处的切线斜率为()A、k=0B、k=1C、k=2D、-1/221、若直线 y=x 与对数曲线 y=log a x 相切,则()A、eB、1/e CxD1/e 、 e、 e22、曲线 y=lnx平行于直线 x-y+1=0 的法线方程是()A、x-y-1=0B、x-y+3e -2 =0C、 x-y-3e-2 =0D、 -x-y+3e -2 =023、设直线 y=x+a 与曲线 y=2arctanx 相切,则 a=()A、± 1B、±л/2C、± ( л/2+1)D、± ( л/2-1)24、设 f(x) 为可导的奇函数,且 f`(x 0)=a ,则 f`(-x0)=()A、 aB、-aC、|a|D、025、设 y=㏑,则 y’|x =0=()A、 -1/2 B 、1/2C、-1 D、026、设 y=(cos)sinx,则 y’|x =0=()A、 -1B、0C、1D、不存在27、设 yf(x)=㏑(1+X) ,y=f[f(x)],则 y’|x =0=()A、 0 B 、 1/㏑ 2 C 、 1 D 、㏑ 228、已知 y=sinx ,则 y(10)=()A、 sinx B 、cosx C、-sinx D、 -cosx29、已知 y=x ㏑ x,则 y(10) =()9B 99、9A、 -1/x、1/ x C 、8.1/xD-8.1/x30、若函数 f(x)=xsin|x|,则()A、f``(0) 不存在 B 、f``(0)=0C、f``(0) =∞D、 f``(0)=л31、设函数 y=yf(x)在[0 ,л ] 内由方程 x+cos(x+y)=0所确定,则|dy/dx|x=0=()32、圆 A 、 -1 B 、0 C 、л/2D、 2x2cos θ,y=2sin θ上相应于 θ =л /4 处的切线斜率,K=()A 、-1B 、0C 、1D 、233、函数f(x)在点x 0 连续是函数f(x)在 x 0 可微的()A 、充分条件B 、必要条件C 、充要条件D 、无关条件34、函数 f(x) 在点 x 0 可导是函数 f(x) 在 x 0 可微的()A 、充分条件B、必要条件C 、充要条件D 、无关条件35、函数A 、0f(x)=|x|在B 、-dxx=0 的微分是( C 、dx D 、)不存在36、极限 lim ( x1) 的未定式类型是()x 11x ln xA 、0/0 型B、∞ / ∞型 C 、∞ - ∞D 、∞型137、极限 lim(sin x) x 2的未定式类型是()xx 0A 、00 型B、 0/0 型∞型C 、 1 型D 、∞x 2sin138、极限limx=()x 0sin x A 、0 B、1 C 、 2 D 、不存在39、x x 0 时, n 阶泰勒公式的余项 Rn(x) 是较 x x 0 的()A 、(n+1)阶无穷小B 、 n 阶无穷小C 、同阶无穷小D、高阶无穷小40、若函数 f(x) 在[0, +∞] 内可导,且 f`(x) >0,xf(0) <0 则 f(x) 在 [ 0,+ ∞]内有()A 、唯一的零点 B、至少存在有一个零点C 、没有零点D、不能确定有无零点41、曲线 y=x2-4x+3 的顶点处的曲率为()A、2B、 1/2C、1D、 042、抛物线 y=4x-x 2在它的顶点处的曲率半径为()A、0B、 1/2C、1D、 243、若函数 f(x)在( a,b )内存在原函数,则原函数有()A、一个B、两个C、无穷多个D、都不对44、若∫ f(x)dx=2e x/2 +C=()A、2e x/2B、 4 e x/2C、e x/2+CD、e x/245、∫ xe-x dx = ( D)A、xe-x -e -x +CB、-xe -x+e-x+CC、xe-x +e -x +CD、-xe -x -e -x+C-ndx()46、设 P( X)为多项式,为自然数,则∫ P(x)(x-1)A、不含有对数函数B、含有反三角函数C、一定是初等函数D、一定是有理函数47、∫-10|3x+1|dx= ()A、5/6 B 、1/2C、-1/2D、148、两椭圆曲线x2/4+y 2 =1及 (x-1)2/9+y 2/4=1之间所围的平面图形面积等于()A、л B 、2л C 、4л D 、6л49、曲线 y=x2-2x 与 x 轴所围平面图形绕轴旋转而成的旋转体体积是()A、лB、6л /15C、16л/15D、32л/1550、点( 1, 0, -1 )与( 0, -1 ,1)之间的距离为()A、 B 、2 C 、31/2D、2 1/251、设曲面方程(P, Q)则用下列平面去截曲面,截线为抛物线的平面是()A、 Z=4 B 、Z=0C、Z=-2D 、x=252、平面x=a 截曲面 x2/a 2+y2 /b 2-z 2/c 2=1 所得截线为()A、椭圆B、双曲线 C 、抛物线 D 、两相交直线53、方程 =0 所表示的图形为()A、原点( 0,0,0)B、三坐标轴C、三坐标轴D、曲面,但不可能为平面54、方程 3x2 +3y2-z 2=0 表示旋转曲面,它的旋转轴是()A、X 轴B、Y轴C、Z轴D、任一条直线55、方程 3x2 -y 2-2z 2=1 所确定的曲面是()A、双叶双曲面 B 、单叶双曲面 C 、椭圆抛物面D、圆锥曲面56 下列命题正确的是()A、发散数列必无界B、两无界数列之和必无界C、两发散数列之和必发散D、两收敛数列之和必收敛57.f(x)在点x=x0处有定义是f(x)在x=x0处连续的()A、. 必要条件B、充分条件C、充分必要条件D、无关条件58 函数 f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0, л ]B、(0,л)C、[- л/4, л/4]D、(-л/4,л /4)59 下列函数中能在区间 (0,1) 内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x 2-1D、f(x)=5x4-4x+160 设 y=(cos)sinx,则y’|x=0=()A、-1B、0C、1D、不存在二、填空题1、求极限 lim(x 2+2x+5)/(x 2+1)= ()x1、求极限3()lim2x 03、求极限 lim x-2/(x+2)1/2 =()x 24、求极限 lim[x/(x+1)]x=()x5、求极限 lim1/x= ()(1-x)x 06、已知 y=sinx-cosx ,求 y`| x=л/6 =()7、已知ρ=ψsin ψ+cosψ/2 ,求 dρ /d ψ| ψ=л/6=()8、已知 f(x)=3/5x+x2 /5 ,求 f`(0)=()9、设直线 y=x+a 与曲线 y=2arctanx相切,则 a=()10、函数 y=x2-2x+3 的极值是 y(1)= ()11、函数 y=2x3极小值与极大值分别是()12、函数 y=x2-2x-1的最小值为()13、函数 y=2x-5x 2的最大值为()14、函数 f(x)=x 2e-x在[-1,1]上的最小值为()315、点( 0, 1)是曲线 y=ax +bx2+c 的拐点,则有 b=() c= ()16、∫ xx 1/2 dx= ()17、若 F`(x)=f(x) ,则∫ dF(x) = ()18、若∫ f(x)dx =x2e2x+c,则 f(x)= ()b19、d/dx∫a arctantdt =()1x t2x2(e1)dt0, x 0在点x=0连续,则a=()20、已知函数 f(x)=a, x0、∫ 02(x 2+1/x 4 )dx =()21x1/2(1+x1/2)dx=()22、∫4923、∫031/2a dx/(a2+x2)=()24、∫01 dx/(4-x2)1/2=()л25、∫л/3 sin (л /3+x)dx=()x1/2(1+x1/2)dx=()26、∫49x1/2(1+x1/2)dx=()27、∫49x1/2(1+x1/2)dx=()28、∫49x1/2(1+x1/2)dx=()29、∫49x1/2(1+x1/2)dx=()30、∫4931、∫49 x1/2(1+x1/2)dx=()32、∫49 x1/2(1+x1/2)dx=()33、满足不等式 |x-2|<1 的 X 所在区间为34、设 f(x) = [x] +1 ,则 f (л+10)=(35、函数 Y=|sinx|的周期是()())36、y=sinx,y=cosx 直线 x=0,x= л/2 所围成的面积是()238、心形线 r=a(1+cosθ )的全长为()39、三点( 1,1,2),(-1,1,2),( 0, 0, 2)构成的三角形为()40、一动点与两定点( 2,3,1)和( 4,5,6)等距离,则该点的轨迹方程是()41、求过点( 3,0,-1),且与平面 3x-7y+5z-12=0 平行的平面方程是()42、求三平面 x+3y+z=1 ,2x-y-z=0,-x+2y+2z=0 的交点是()43、求平行于 xoz 面且经过( 2,-5, 3)的平面方程是()44、通过 Z 轴和点( -3, 1, -2)的平面方程是()45、平行于 X 轴且经过两点( 4, 0, -2)和( 5, 1, 7)的平面方程是()46求极限 lim [x/(x+1)]x=()x47函数 y=x2-2x+3 的极值是 y(1)= ()9x 1/2(1+x1/2)dx= ()48∫449y=sinx,y=cosx直线 x=0,x= л /2 所围成的面积是()50求过点( 3,0,-1 ),且与平面 3x-7y+5z-12=0平行的平面方程是()三、解答题21、设 Y=2X-5X ,问 X 等于多少时 Y 最大?并求出其最大值。
1、西南大学网络教育2018年春[0917]《高等数学》答案2、西南大学网络教育【0917】3、西南大学网络教育0917高等数学4、西南大学网络教育2016年6月〈高等数学〉[0917]试卷大作业A答案5、西南大学网络与继续教育学院0917大作业答案6、西南大学网络与继续教育学院0917高等数学大作业答案7、西南大学网络与继续教育学院高等数学【0917】大作业答案8、西南大学2016年6月[0917]《高等数学》大作业A 答案9、西南大学2016年6月网教《高等数学》【0917】大作业A 答案10、西南大学2016年6月网络教育学院《高等数学》[0917]大作业A标准答案11、西南大学2016年12月[0917]〈高等数学〉大作业A答案12、西南大学2016年12月网络教育学院西南大学(0917)《高等数学》大作业A答案13、西南大学2016年12月网络与继续教育【0917】《高等数学》大作业答案14、西南大学2016年12月网络与继续教育学院《高等数学》【0917】大作业答案15、西南大学2017年6月网络教育-[0917]《高等数学》16、西南大学2017年12月网教大作业答案-高等数学【0917】doc17、西南大学2017年12月网络教育大作业答案-091718、西南大学2017年12月网络教育大作业答案-0917高等数学19、西南大学2018年6月网络与继续教育学院大作业答案-0917高等数学20、西南大学网络继续教育学院2016年12月[091721、西南大学网络教育[0917]《高等数学》------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------(一)计算题(本大题共9小题,每小题10分,共90分)1. 求.解:本题考虑无穷多个无穷小之和.先变形再求极限2.求不定积分.解:3. 求定积分. 解: ⎰⎰---=1010x x xde dx xe ⎪⎭⎫ ⎝⎛--=⎰--1010dx e xe x x ()()⎥⎦⎤⎢⎣⎡-+--=⎰--1010x d e e x ⎪⎭⎫ ⎝⎛+-=--101xe e ()[]111-+-=--e e121--=e4. 求函数的微分. 解:5. 求函数的极值.6. 计算抛物线与直线所围图形的面积. 解:面积微元:所求面积:7.求函数的全微分.解:因为8. 求三元函数的偏导数.解:把和z 看作常数,对求导得把和看作常数,对求导得把和看作常数,对求导得9.求解微分方程解:原方程变形为(齐次方程)令则故原方程变为即分离变量得两边积分得或回代便得所给方程的通解为(二)证明题(本大题共1小题,每小题10分,共10分)1. 证明方程有且仅有一个小于1的正实根.------------------------------------------------------------------------------------------------------------------------0917高等数学------------------------------------------------------------------------------------------------------------------------西南大学网络与继续教育学院课程考试试题卷类别:网教 专业:机电一体化技术、车辆工程、电力系统自动化技术 2016年6月课程名称【编号】: 高等数学 【0917】 A 卷大作业 满分:100分(一)计算题(本大题共9小题,每小题10分,共90分)1. 求.解:2. 求不定积分.解:3. 求定积分.dx xdx x dxx x dx x x x x dx x x x x = + + = + + = + + + = + + + ⎰ ⎰ ⎰ ⎰ ⎰ …………………………………… 1 1 1 ) 11 1 ( ) 1 ( ) 1 ( ) 1 ( 12 2 2 2 2 2 x x x x x x x x x x x x 1 1 1 1 1 1 1 1 1 lim lim lim lim 1 = ⎪⎭⎫ ⎝ ⎛ - + = ⎥ ⎥ ⎦⎤ ⎢ ⎢ ⎣⎡ ⎪ ⎭ ⎫⎝ ⎛ - + = ⎪ ⎭ ⎫ ⎝ ⎛- + = ⎪ ⎭ ⎫ ⎝ ⎛ - - ∞ → - - ∞ → ∞ → ∞ →解:4. 求函数的导数.解:5. 求函数的极值.解:6. 求函数的二阶偏导数及.7. 计算函数的全微分.带做秋秋:334123452 32620794528. 求微分方程 的通解.解:.,·ln 2221211212x C x C C x Ce y e C e e e y C x y xdx y dyxdx y dy =±=±=±=+=⇒==+⎰⎰解,则得到题设方程的通记从而两端积分得分离变量得( ) [ ] ( ) [ ]( ) (1)( sin 3 ) (sin sin 2 1 sin 3 ) sin ( ) sin (3 sin 2 2 ' 2 2 ' 2 2 2 3 2 ''x x x x x x x x x x x x y + + = + + = + + = + = . ) (sin 5 2 ) (sin 5 2sin ) (sin sin ) (sin ) (sin cos ) (sin cos ) (sin cos sin sin ) (sin cos sin sin 22 5 2 0 2 5 23 2 23 2 023 2232 023 05 3 35 3 = - = - =- ==- ∴= - ⎰ ⎰⎰ ⎰⎰ ⎰ xxx xx x xx x xxx x x d x x d x dxx x dx x x dx x x dx x x x x x x9. 计算,其中是抛物线及直线所围成的闭区域.解:D 既是X-型,也是Y-型,但选择前者计算比较麻烦,需将积分区域划分为两部门来计算,故选择后者。
《高等数学》一.选择题1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( )A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y2. 函数f(x)在点x 0极限存在是函数在该点连续的( )A )、必要条件B )、充分条件C )、充要条件D )、无关条件3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ).A)、()()()2221,21)(x x x x e e x g e e x f ---=-=B)、(())()ln ,ln f x x g x x ==-C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2tan,sec csc )(xx g x x x f =+= 4. 下列各式正确的是( )A )、2l n 2x xx dx C =+⎰ B )、s i n c o s t d t t C =-+⎰C )、2a r c t a n 1dxdx x x =+⎰ D )、211()dx C x x-=-+⎰ 5. 下列等式不正确的是( ).A )、()()x f dx x f dx d b a =⎥⎦⎤⎢⎣⎡⎰ B )、()()()[]()x b x b f dt x f dx d x b a '=⎥⎦⎤⎢⎣⎡⎰ C )、()()x f dx x f dx d x a =⎥⎦⎤⎢⎣⎡⎰ D )、()()x F dt t F dx d x a '=⎥⎦⎤⎢⎣⎡'⎰ 6. 0ln(1)limxx t dt x→+=⎰( )A )、0B )、1C )、2D )、47. 设bx x f sin )(=,则=''⎰dx x f x )(( )A )、C bx bx b x +-sin cos B )、C bx bx b x+-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin8. 10()()bx xa e f e dx f t dt =⎰⎰,则( )A )、1,0==b aB )、e b a ==,0C )、10,1==b aD )、e b a ==,19. 23(sin )x x dx ππ-=⎰( )A )、0B )、π2C )、1D )、22π10. =++⎰-dx x x x )1(ln 2112( )A )、0B )、π2C )、1D )、22π11. 若1)1(+=x xxf ,则dx x f ⎰10)(为( )A )、0B )、1C )、2ln 1-D )、2ln12. 设)(x f 在区间[]b a ,上连续,⎰≤≤=xa b x a dt t f x F )()()(,则)(x F 是)(x f 的( ).A )、不定积分B )、一个原函数C )、全体原函数D )、在[]b a ,上的定积分13. 设1sin 2y x x =-,则dxdy=( ) A )、11c o s2y - B )、11c o s2x - C )、22c o sy- D )、22c o sx-14. )1ln(1lim 20x e x xx +-+→=( )A 21-B 2C 1D -115. 函数x x y +=在区间]4,0[上的最小值为( )A 4;B 0 ;C 1;D 3二.填空题1. =+++∞→2)12(lim xx x x ______.2. 2-=⎰3. 若⎰+=C e dx e x f xx 11)(,则⎰=dx x f )(4. =+⎰dt t dx d x 26215. 曲线3y x =在 处有拐点 三.判断题 1. xxy +-=11ln是奇函数. ( ) 2. 设()f x 在开区间(),a b 上连续,则()f x 在(),a b 上存在最大值、最小值.( ) 3. 若函数()f x 在0x 处极限存在,则()f x 在0x 处连续. ( ) 4. 0sin 2xdx π=⎰. ( )5. 罗尔中值定理中的条件是充分的,但非必要条件.( )四.解答题1. 求.cos 12tan lim20xxx -→ 2. 求nxmxx sin sin limπ→,其中n m ,为自然数.3. 证明方程01423=+-x x 在(0,1)内至少有一个实根.4. 求cos(23)x dx -⎰.5. 求⎰+dx xx 321.6. 设21sin ,0()1,0x x f x x x x ⎧<⎪=⎨⎪+≥⎩,求()f x '7.求定积分4⎰8. 设)(x f 在[]1,0上具有二阶连续导数,若2)(=πf ,⎰=''+π5sin )]()([xdx x f x f ,求)0(f ..9. 求由直线0,1,0===y x x 和曲线x e y =所围成的平面图形绕x 轴一周旋转而成的旋转体体积《高等数学》答案一.选择题1. C2. A3. D4. B5. A6. A7. C8. D9. A 10. A 11. D 12. B 13. D14. A15. B 二.填空题 1. 21e 2. 2π 3. C x+1 4. 412x x + 5. (0,0) 三.判断题 1. T 2. F 3. F 4. T 5. T 四.解答题 1. 82. 令,π-=x t nmn nt m mt nx mx n m t x -→→-=++=)1()sin()sin(lim sin sin lim 0πππ3. 根据零点存在定理.4.1cos(23)cos(23)(23)31sin(23)3x dx x d x x C-=---=--+⎰⎰5. 令t x =6,则dt t dx t x 566,==原式⎰⎰⎰++-=+=+=dt )t111t (6dt t 1t 6dt t t t 62435 C t 1ln t 2t 62+⎪⎭⎫⎝⎛++-= C x x x +++⋅-⋅=6631ln 6636. 222sin 2cos ,0()1,00x x x x f x x x ⎧-+<⎪⎪⎪'=>⎨⎪=⎪⎪⎩不存在,7. 42ln3-8. 解:⎰⎰⎰''--=-=ππππ0sin )()0()()cos ()(sin )(xdx x f f f x d x f xdx x f所以3)0(=f9. V=())1(2121)2(212102102102210-====⎰⎰⎰e e x d e dx e dx exx xxπππππ 《高等数学》试题2一.选择题1. 当0→x 时,下列函数不是无穷小量的是 ( )A )、x y =B )、0=yC )、)1ln(+=x yD )、x e y =2. 设12)(-=x x f ,则当0→x 时,)(x f 是x 的( )。