电力系统故障录波数据分析
- 格式:docx
- 大小:27.81 KB
- 文档页数:2
故障录波文件解析1.引言1.1 概述故障录波文件解析是一项重要的技术,在电力系统故障诊断和维护方面起着关键的作用。
故障录波是指在电力系统发生故障时,对系统电压、电流等参数进行高频采样记录的过程。
故障录波文件解析是对录波数据进行分析和处理的过程,通过解析故障录波文件,可以获取有关故障发生时的详细信息,包括故障类型、故障位置、故障时的电压电流波形等。
这些信息对于电力系统的故障诊断和维护具有重要的指导意义。
在故障录波文件解析的过程中,需要使用一系列的方法和步骤。
首先,需要对录波数据进行预处理,包括数据校验、数据格式转换等。
然后,通过信号处理和数学算法,对录波数据进行分析和提取,获取相关的故障特征。
最后,通过与故障诊断数据库进行比对,确定故障类型和故障位置。
故障录波文件解析在电力系统运维中扮演着重要的角色。
它可以帮助工程师们迅速准确地定位故障,提高故障处理的效率。
同时,通过对录波数据的分析与比对,还能为日后的故障预防和系统优化提供可靠的依据。
因此,故障录波文件解析是电力系统运维中不可或缺的一环。
它的重要性不容忽视,对于保障电力系统的安全稳定运行具有重要意义。
在接下来的正文部分,我们将详细介绍故障录波的定义和作用,以及文件解析的方法和步骤,以期帮助读者更好地理解和应用这一技术。
1.2文章结构文章结构部分的内容可以包括以下内容:文章的结构部分旨在介绍整篇文章的组织架构和内容安排,帮助读者更好地理解文章的内容和脉络。
首先,本文的结构分为引言、正文和结论三个部分。
引言部分主要包括概述、文章结构和目的三个方面。
概述部分可以简要介绍故障录波文件解析的背景和重要性,引起读者的兴趣。
文章结构部分就是本小节要介绍的内容,主要目的是向读者呈现整篇文章的组织结构和内容安排,让读者了解本文的整体框架。
目的部分可以明确本文的写作目的,概括地说明本文的主要目标和内容要点。
正文部分是文章的核心部分,包括故障录波的定义和作用以及文件解析的方法和步骤。
在我们的日常生产中经常需要通过录波图来分析电力系统到底发生了什么样的故障?保护装置的动作行为是否正确?二次回路接线是否正确?CT、PT 极性是否正确等等问题。
接下来分享一下分析录波图的基本方法:1、当我们拿到一录波图后,首先要大致判断系统发生了什么故障,故障持续了多长时间。
2、以某一相电压或电流的过零点为相位基准,查看故障前电流电压相位关系是否正确,是否为正相序?负荷角为多少度?3、以故障相电压或电流的过零点为相位基准,确定故障态各相电流电压的相位关系。
(注意:选取相位基准时应躲开故障初始及故障结束部分,因为这两个区间一是非周期分量较大,二是电压电流夹角由负荷角转换为线路阻抗角跳跃较大,容易造成错误分析)4、绘制向量图,进行分析。
一、单相接地短路故障录波图分析:分析单相接地故障录波图的要点:1、一相电流增大,一相电压降低;出现零序电流、零序电压。
2、电流增大、电压降低为同一相别。
3、零序电流相位与故障相电流同向,零序电压与故障相电压反向。
4、故障相电压超前故障相电流约 80 度左右;零序电流超前零序电压约 110 度左右。
当我们看到符合第 1 条的一录波图时,基本上可以确定系统发生了单相接地短路故障;若符合第 2 条可以确定电压、电流相别没有接错;符合第 3 条、第 4 条可以确定保护装置、二次回路整体均没有问题(不考虑电压、电流同时接错的问题,对于同时接错的问题需要综合考虑,比如说你可以收集同一系统上下级变电所的录波图,对于同一个系统故障各个变电所录波图反映的情况应该是相同的,那么与其他站反映的故障相别不同的变电站就需要进行现场测试)。
若单相接地短路故障出现不符合上述条件情况,那么需要仔细分析,查找二次回路是否存在问题。
这里需要特别说明一下南瑞公司的900 系列线路保护装置,该系列保护在计算零序保护时加入了一个78 度的补偿阻抗,其录波图上反映的是零序电流超前零序电压 180 度左右。
对于分析录波图,第 4 条是非常重要的,对于单相故障,故障相电压超前故障相电流约条是非常重要的,对于单相故障,故障相电压超前故障相电流约 80 度左右;对于多相故障,则是故障相间电压超前故障相间电流约 80 度左右;“80 度左右”的概念实际上就是短路阻抗角,也即线路阻抗角。
简析故障录波分析注意事项在变电站故障处理中故障录波器的录波信息是进行电力系统故障分析、判断的重要数据,如何对故障录波的数据进行分析,从而正确、快速地判断出系统的故障类型、故障位置,对正确处理电网事故意义重大。
为加快故障分析的准确性故在分析中应注意以下几点。
一、勿使用保护装置录波取代专用故障录波器录波保护装置的首要任务是在系统发生故障时能快速可靠地切除故障,保证系统安全稳定运行,现代的微机保护中均有一定的录波功能,但只是记录与该保护动作情况相关的少数电气量,且记录长度有限。
正确动作的保护故障录波可以作为单一故障的分析依据,但不能完全作为分析电力系统故障发展和演变过程的依据,尤其是遇有保护装置不正确动作时,更需要由专用故障录波器的录波数据来分析保护的动作行为。
专用故障录波器实际上应命名为电力系统故障动态记录仪。
电力系统故障动态过程记录的主要任务是,记录系统大扰动,如短路故障、系统振荡、频率崩溃、电压崩溃等发生后的有关系统电参量的变化过程及继电保护与安全自动装置的动作行为。
而保护装置不反映除短路故障以外的其他系统动态变化过程,因此保护装置无法记录除短路故障以外的其他系统动态变化过程。
二、要保障录波设备的运行工况良好专用故障录波器的运行工况是否良好对于一些复杂事故的分析至关重要。
专用故障录波器的侧重点是录波,现场很多的故障录波器的软、硬件故障告警能力远不如保护装置,特别是软件故障告警能力,软件程序“卡死”后能可靠发告警信号的能力一直不理想,使得录波器的运行工况无法得到有效监控,给事故分析带来困难。
此外,综合自动化变电站应重视各类二次设备的GPS对时问题,精确而统一的事故发生的绝对时间,对于正确、快速地阅读各类装置的报文、录波信息,以及快速处理事故是极其重要的,特别是对分析、处理区域性电网事故意义更大。
因此,专用故障录波器及各类监控、保护等装置的良好运行工况,是获取足够准确的事故信息、录波信息的保障。
三、提高故障录波图阅读、分析能力的方法1、运行维护人员要多看故障录波图,特别是正确动作的录波图,只有对各种故障情况下正确动作的录波图的特点能熟练掌握,才能对异常情况下的录波图有敏锐的洞察力,从而快速找到事故处理的入手点和突破口。
基于Python软件的故障录波数据分析基于Python软件的故障录波数据分析引言:电力系统是现代社会的重要基础设施,为保障电力系统的稳定运行,故障录波数据的分析变得尤为重要。
而Python语言作为一种功能强大的编程语言,在数据分析、可视化和机器学习等方面有着广泛的应用。
本文将介绍如何使用Python软件对故障录波数据进行分析,以帮助电力系统工程师更好地理解和处理故障。
一、故障录波数据的特点:故障录波数据是指在电力系统发生故障时,通过录波装置记录下的相关信号。
故障录波数据具有以下特点:1. 高速采样:为了准确记录故障发生过程中的细节,录波装置通常以较高的采样频率进行数据采集。
2. 大数据量:因为故障发生的瞬间,录波装置需要记录较长的时间窗口,导致录波数据的数量庞大。
3. 多种信号:录波数据通常包含多个信号,如电流、电压、功率等。
4. 难以处理:录波数据的处理需要考虑信号的同步、滤波、配准等问题,具有一定的难度。
二、Python在故障录波数据分析中的应用:Python语言具备丰富的科学计算库和数据处理工具,使其成为处理故障录波数据的理想选择。
1. 数据导入与预处理:Python拥有强大的数据导入和处理功能,可以轻松处理大规模的录波数据。
通过使用Pandas库,可以将数据从不同格式(如CSV、Excel等)导入到Python环境中,并进行数据清洗和预处理工作。
示例代码:import pandas as pddata = pd.read_csv('data.csv') # 导入数据data = data.dropna() # 去除缺失值2. 数据可视化:Python提供了多种数据可视化库,如Matplotlib和Seaborn,可以帮助分析师更好地理解和呈现故障录波数据。
可以利用这些库绘制波形、频谱图、柱状图等图形,揭示数据中的规律和特点。
示例代码:import matplotlib.pyplot as pltplt.plot(data['time'], data['voltage']) # 绘制电压波形plt.xlabel('Time')plt.ylabel('Voltage')plt.show()3. 特征提取与分类:故障录波数据中蕴含着丰富的信息,可以通过特征提取和分类算法进一步分析数据。
故障录波四步分析法讲解故障录波是电力系统中的一种常见设备,它能够捕捉到电力系统中出现的异常波形,并将这些波形记录下来。
故障录波数据对于电力系统的故障分析、事故处理以及设备运行状态评估都有着重要的作用。
而故障录波的四步分析法则是一种对故障录波数据进行系统分析的方法。
故障录波四步分析法概述故障录波四步分析法指的是从故障录波数据的挑选、分析、诊断以及判定四个步骤入手,对故障录波数据进行分析的方法。
具体来讲,故障录波四步分析法包括以下四个步骤:1. 故障录波数据的挑选对于整个电力系统中存在的大量故障录波数据,我们需要首先从中挑选出与我们正在研究的故障类型以及特有的电学特征相一致的数据。
例如,如想要研究一次侧接地故障的波形,我们需要把一次侧的故障录波数据从整个数据中筛选出来。
2. 故障录波数据的分析在确定了可以用于研究的故障录波数据之后,我们需要对这些数据进行进一步的分析。
在此步骤中需要关注的重点包括:•波形特征的分析,包括波形起点、极值点、波形衰减等。
•电学特征的分析,包括电流的大小、相位角、频率响应等。
在了解了故障录波数据的基本信息之后,我们需要对这些数据进行进一步的诊断。
主要包括:•确定故障类型,它可以是接地故障、短路故障等。
•确定故障位置,例如故障发生是在哪个支路、哪个相位等。
•确定故障性质,例如故障是否单相、三相、瞬时短路等。
4. 故障录波数据的判定最后,根据对故障录波数据的挑选、分析和诊断,可以得出对发生故障位置的初步判断。
在此步骤中需要打打决策,例如进行临时保护动作等。
故障录波四步分析法应用案例下面以一种典型的短路故障为例,介绍故障录波四步分析法的应用:1. 故障录波数据的挑选首先,我们需要从大量的故障录波数据中挑选出符合要求的数据。
在这个案例中,我们需要挑选出短路故障发生在某个特定支路下的录波数据,并将其与其他支路下的录波数据进行比较。
2. 故障录波数据的分析接下来,我们需要对选定的故障录波数据进行分析。
故障录波器波形分析故障录波器(Fault Recorder)是一种专用的电力系统故障记录设备,广泛应用于电力系统的技术运行和故障分析过程中。
它能够记录和保存电力系统中的各种故障事件的波形数据,为故障的快速分析和解决提供了重要的依据。
故障录波器的波形分析是指对录波器保存的故障事件波形数据进行分析和解读的过程。
通过对波形数据的全面分析,可以从中获得有关故障事件的详细信息,包括故障类型、发生位置、故障时刻、故障电压和电流的变化等等。
这对于电力系统的运行和维护非常重要。
波形分析主要包括以下几个方面:1.故障类型的识别:通过对波形数据的特征分析,可以确定故障事件的类型,如短路、接地故障、电压暂降、电压暂升等。
不同类型的故障具有不同的波形特征,通过对波形数据的分析,可以准确地确定故障类型,为故障的修复提供依据。
2.故障的发生位置和时刻的确定:通过对电流和电压波形的相位和幅值分析,可以确定故障事件的发生位置和发生时刻。
电流和电压波形的相位差可以反映故障发生的位置,而波形的幅值变化可以反映故障的时刻。
通过对波形数据的分析,可以快速准确地确定故障的发生位置和时刻。
3.故障电压和电流的变化规律分析:通过对电流和电压波形的变化规律的分析,可以了解故障电压和电流在故障事件中的变化过程。
这对于了解故障的严重程度和对电力设备的损坏程度有重要的意义,对于故障的修复和设备的保护具有重要的指导作用。
4.波形数据的比较和对比分析:通过对不同事件之间波形数据的比较和对比分析,可以找出故障事件之间的相似之处和不同之处,寻找共性和规律。
这有助于从整体上了解故障事件的特点和规律,为未来类似故障的分析和解决提供经验和参考。
总之,故障录波器的波形分析是电力系统故障处理和分析的重要环节。
通过对波形数据的深入分析和解读,可以准确地确定故障的类型、发生位置和时刻,了解故障电压和电流的变化规律,为故障的修复和设备的保护提供重要依据。
它对于电力系统的安全稳定运行和维护具有重要的意义。
输电线路典型故障录波图的分析摘要:输电线路长期运行于野外自然环境,面临着雷击、鸟害、绝缘子污闪、外力破坏、山火及冰灾等考验。
输电线路故障后能否及时找到故障点及故障原因能有效避免故障的升级及再次发生。
本文通过对几种输电线路常见的典型故障的录波图进行研究,对故障期间整个过程的电压、电流的变化进行分析,找出一定规律总结,为下步及时查找输电线路故障点及原因提供重要参考。
关键词:输电线路;典型录播;分析;1 雷击故障录波分析输电线路故障中雷击是较常见的典型故障,110 kV以上输电线路雷击在故障类型中占到50%以上,雷击故障的重合闸成功率较高在70~80%左右。
一般雷击故障分为绕击和反击,绕击雷击故障大多为单相故障,反击为单相、两相和三相故障也较为常见。
雷电绕击时,雷绕过架空避雷线击于导线,雷电具有较高电压往往超过线路绝缘水平,单相绝缘子串闪络,造成线路跳闸,造成单相接地故障。
单相绝缘子串闪络前期伴随着较大幅值的雷电流,过后幅值快速下降,故障单相的电压出现变化,之后稳定的雷电流在波形图上呈现较为稳定和整齐的正炫波。
单相雷击后线路保护切除故障,重合闸动作后,大幅值雷电流消失,故线路一般可重合成功。
图1为某220 kV线路一起故障波形图。
图中可知I B相电流增大,U B相电压降低,出现了3I0零序电流及3U0零序电压,I B电流增大与U B电压降低为同一相别,3I0零序电流相位与I B相电流同向,3U0零序电压与U B相电压反向。
由此基本可以断定为单相接地故障。
分析录波后安排线路运维人员现场核实故障,结论为该线路N54塔B相绝缘子雷击闪络痕迹,与故障测距相符确定为故障点。
图1 单相雷击接地故障典型波形图反击故障一般雷击于杆塔顶部和架空避雷线,雷电流经杆塔引线接入大地,幅值较大的雷电流在杆塔上产生较高电压,导线与塔身电位差大于线路绝缘水平即可发生跳闸,故障有可能单相、两相或三相,与单相闪络相似,波形图前期电压波动,后期正炫波整齐稳定。
电力系统故障录波分析工具的开发应用张志梅;刘玉东【摘要】A new analysis tool based on graphical of power system fault is introduced in the article. First, we have introduced the necessity of power system fault analysis tool in practical work. Secondly, we have introduced the language of C#, and we have introduced the software functions. Thirdly, we have introduced the application of the analysis tool in smart substation. Finally, we test the validity of the analysis tool dependent of analyzing power system fault wave recording examples.%本文介绍了一种基于图形化的电力系统故障录波分析工具。
文中首先介绍了电力系统故障录波分析工具在实际工作中的必要性;其次介绍了C#语言和软件工具的主要功能模块;再次介绍了该分析工具在智能变电站中的应用前景;最后通过电力系统的故障录波的实例进行故障分析,验证了该应用软件的实用性和可靠性。
【期刊名称】《软件》【年(卷),期】2013(000)009【总页数】3页(P109-111)【关键词】故障录波;C#;故障计算方法;智能变电站【作者】张志梅;刘玉东【作者单位】国网河北省电力公司石家庄供电分公司,石家庄 050000;河北建投国融能源服务股份有限公司,石家庄 050051【正文语种】中文【中图分类】TP3190 引言随着电网规模日益扩大和智能化的快速发展,就需要一个能够准确进行故障元件诊断、事故后数据分析、保护动作行为评价、系统故障模拟等功能完善的电力系统故障信息综合分析系统,这对于电力系统的安全可靠运行起着十分重要的作用。
电网故障录波“四步分析法”第一步:确定故障类型在进行故障录波分析之前,首先需要确定故障的类型。
常见的故障类型包括短路故障、接地故障和过电压故障。
通过对故障录波中的电流和电压信号进行分析,可以确定故障类型。
例如,当电流信号出现超过额定值的瞬态变化,且电压信号仍保持稳定时,可以判断为短路故障;当电流信号和电压信号同时出现波动时,可以判断为过电压故障;当电流信号波动幅度较大,且电压信号接近零时,可以判断为接地故障。
第二步:确定故障位置确定故障位置是故障分析的核心步骤,通过对故障录波进行细致的分析,可以确定故障的位置。
首先,需要通过测量故障前后的电流和电压信号,确定故障发生的时间。
然后,通过比较故障前后的电流和电压信号的相位差和幅值变化,可以大致确定故障的位置。
例如,当故障前后的电流和电压信号相位差和幅值变化较大时,可以判断故障位置靠近电源侧;当故障前后的电流和电压信号相位差和幅值变化较小时,可以判断故障位置靠近负载侧。
第三步:分析故障原因确定了故障的类型和位置之后,需要进一步分析故障的原因。
故障的原因可能是因为设备故障、操作错误或外界因素等引起的。
通过对故障录波中的特征信号进行分析,可以找出故障的原因。
例如,当故障录波中出现频率较高的谐波信号时,可以判断为设备故障;当故障录波中出现频率较低的谐波信号时,可以判断为操作错误;当故障录波中出现频率连续变化的信号时,可以判断为外界因素引起的故障。
第四步:制定故障处理方案根据故障的类型、位置和原因,制定相应的故障处理方案。
对于设备故障,需要对设备进行检修或更换;对于操作错误,需要对操作人员进行培训和引导;对于外界因素引起的故障,需要采取相应的防护措施。
总的来说,电网故障录波“四步分析法”是一种简单、直观的故障分析方法,通过对故障录波进行四个步骤的分析,可以准确地确定故障的类型、位置和原因,从而制定相应的故障处理方案。
这种方法在电力系统故障分析中得到了广泛应用,能够有效地提高故障处理的效率和准确性。
电力设备的故障录波与分析技术电力设备的故障录波与分析技术在现代电力系统运维中扮演着重要的角色。
正是通过录波技术,运维人员能够及时、准确地获取设备的故障信息,并通过分析技术对故障进行深入研究,从而有效地解决设备故障问题,提高电力系统的可靠性与安全性。
第一节:录波技术1.1 什么是录波技术录波技术是一种将电力系统中发生的电气事件的波形曲线信息记录下来的技术。
通过使用录波设备,可以对设备在特定时间段内的电流、电压等信号进行采样和记录,获得真实可靠的故障波形。
1.2 录波设备的种类目前市面上常见的录波设备有数字录波仪、模拟录波仪以及多功能录波仪等。
其中,数字录波仪具有采样频率高、储存容量大、数据处理方便等特点,成为电力系统中常用的录波设备。
1.3 录波数据的应用录波数据的应用主要包括设备状况监测、故障诊断、事故分析和运行与维护优化等方面。
通过对录波数据的分析与处理,运维人员可以及时了解设备的运行情况,发现潜在的故障风险,并采取相应的措施进行维修与改进。
第二节:故障分析技术2.1 故障诊断的重要性故障诊断是电力设备故障分析的重要环节。
通过对故障进行准确的诊断,能够找到故障根源,避免因故障延误设备修复的时间,提高系统的可靠性和连续性。
2.2 常用的故障分析技术(1) 基于录波数据的故障分析技术:通过分析录波数据中的电流、电压等信号波形,结合故障时刻的电气参数,可以判断故障的类型、位置以及对周边设备的影响程度。
(2) 基于数字保护装置的故障分析技术:现代数字保护装置结合了录波功能,能够自动记录设备发生故障时的电气参数,并通过内部的故障诊断算法对故障进行分析。
(3) 基于人工智能的故障分析技术:随着人工智能技术的发展,越来越多的电力系统开始运用人工智能算法对故障进行分析,通过机器学习和数据挖掘等方法,提高故障分析的准确性和效率。
第三节:故障分析实例3.1 故障分析流程故障分析一般包括以下步骤:获取录波数据、数据预处理、波形特征提取、故障诊断与定位、故障原因分析和故障处理。
电力系统的故障录波与故障定位电力系统是现代社会的基础设施之一,承担着传输和分配电能的重要任务。
然而,在运行过程中,电力系统可能会出现各种故障,如短路、接地故障等,这些故障会对电网产生严重影响。
因此,对电力系统的故障进行准确快速的录波和定位显得尤为重要。
一、故障录波故障录波是指在电力系统发生故障时,通过信号采集设备记录下故障瞬时数据的过程。
录波设备通常会记录下故障发生的时间、电流、电压等信息,这些信息对于分析故障的原因和性质至关重要。
根据录波数据,电力系统的运维人员可以迅速找出故障的位置,采取相应的措施进行修复,从而尽快恢复电网的正常运行。
二、故障定位故障定位是指在发生故障后,通过录波数据分析和计算,确定故障点的位置和可能原因的过程。
故障定位的准确性直接影响到故障处理的效率和质量。
目前,常用的故障定位方法包括时差法、阻抗法、复归比较法等。
这些方法各有优劣,需要根据具体情况选择合适的方法进行应用。
三、故障录波与故障定位的现状随着电力系统的发展和智能化技术的应用,故障录波与故障定位技术也在不断更新。
现代化的录波设备可以通过网络实时传输数据,运维人员可以远程监控和管理电力系统的运行情况。
同时,计算机和人工智能技术的进步为故障定位提供了更多的方法和手段,提高了故障定位的准确性和效率。
四、未来展望在未来,随着电力系统规模的不断扩大和电力负荷的增加,对故障录波与故障定位技术的要求会更加严格。
更先进更智能的录波设备和故障定位算法将会得到广泛应用,提高电力系统的稳定性和可靠性。
此外,人工智能和大数据技术的结合也将为故障录波与故障定位带来更多的机遇和挑战。
总之,电力系统的故障录波与故障定位是保障电网安全稳定运行的重要环节。
随着技术的不断进步和应用,相信在未来的发展中,这一领域将会迎来更加美好的前景。
愿我们共同努力,为电力系统的安全运行保驻出更大的奉献。
故障录波器波形分析1.转换波形数据:将录波器记录的波形数据转换成图表形式,以便更直观地观察和分析。
2.故障类型判断:通过观察波形,可以判断出故障类型,如短路故障、接地故障、过电压故障等。
3.故障原因分析:根据录波器记录的波形特点,可以分析出故障发生的原因。
例如,如果录波器记录到了电流突变和电压波动,可以判断是由于短路故障或者设备故障引起的。
4.故障位置定位:通过分析故障波形的传播时间和电流电压的大小变化,可以估计故障发生的位置。
例如,通过测量电流和电压的相位差和传播时间,可以利用时差法或半径法进行故障位置的定位。
5.故障后果预测:根据录波器记录的波形,可以对故障后果进行预测。
例如,通过分析电流的大小和变化,可以预测设备是否会损坏,以及故障对电网运行和负荷供应的影响程度。
故障录波器波形分析的优势在于能够提供准确的故障信息和相对精确的故障位置,可以帮助维修人员迅速定位故障点和采取相应的修复措施。
此外,录波器还可以在故障发生的瞬间记录数据,避免了人工分析时可能的遗漏和误判。
然而,故障录波器波形分析也存在一些限制。
首先,必须依赖于高质量的录波器设备和准确的数据采集。
其次,对于复杂的故障,需要综合考虑多个因素才能得出准确的判断结果。
再者,对于一些细微的故障,波形分析可能无法捕捉到相关的特征,需要借助其他手段进行进一步的分析。
总之,故障录波器波形分析是电力系统故障处理中重要的一环,可以帮助维修人员准确快速地定位故障情况,从而提高维修效率。
随着技术的不断发展,故障录波器波形分析的方法和设备也在不断改进和完善,为电力系统的安全运行提供了有力的支持。
电力系统故障录波数据分析
摘要:电力系统故障录波系统是电力系统发生故障及振荡时能自动记录的一种
系统或一种装置。
近年来,不同类型的故障录波器已在电力系统中得到广泛应用,所记录的各种故障录波数据为电力系统故障分析及
各种保护动作行为的分析和评价提供了数据来源和依据。
目前,电网调度端已能通过专用网
或电话网将电网故障录波数据集中到一起,但如何有效管理和利用这些信息进行必要的故障
分析、保护动作行为评价及故障测距等并
没有统一的标准,因此,本文针对电力系统故障录波数据进行了分析。
关键词:电力故系统故障分析;故障录波数据;双端测距
一、电力故障录波器
目前,在各个电压等级的变电站中,故障录波器的应用非常普遍。
故障录波器的系统
运行原理是基于三相制(三相电压和三相电流)的电力系统进行运作的。
以单相为例,电力
系统的电压经由滤波器将低频漂移
信号和高频干扰信号过滤,再由霍尔电压传感器变为电流信号,调理电路则将电流信号转变
为等比例电压信号,并将该信号传递给模数转换芯片转换成数字信号,通过相关的计算方法
对这些数据进行分析,可以得到关于电压
的各项参数,包括电压峰值、有效值、最大值、THD等,监控中心获得这些参数后,则可根
据分析结果向电力系统故障录波器发送如检测电压、电流以及调整故障记录限值的相关控制
指令,并以此促使电力系统始终处于正常的
工作状态中。
由此可见,故障录波器是对电力系统故障进行动态记录的主要设备,其负责对
电力系统中高速故障及其动态过程的全程记录工作。
(1)对高速故障的记录是针对新型高速断电保护以及安全自动装置进行检测的主要手段,包括对电力系统的短路及通过线路分布参数与电流和电压的系统操作错误的暂态过程进
行记录。
(2)对故障动态过程进行记录是针对继电保护与安全自动装置的动作行为进行检测的
主要手段,由于大扰动的原因使得电流、电压及其导出量发生有功、无功、频率的变化的全
过程都是故障录波器对故障动态过
程记录的相关内容。
(3)长过程动态记录是对发电机组和电网正常运行时的稳态数据的记录,其内容包括
对母线电压及频率、线路有功潮流、变压器电压分接头位置以及自动装置的动作行为等。
二、系统总体设计
java的最大优势就是跨平台,通俗地说可以用于各种操作系统,本系统是以java为平台开发
的基于IEEE标准的COMTRADE数据格式的面向对象的可视化程序,下面简单说一下设计思路:
2.1数据采用的格式
目前故障录波器基本上采用IEEE的COMTRADE标准。
每个COMTRADE记录都有一组4
个与其相关的文件,其中CFG和DAT文件有严格的格式,用于存储通道数据和相关解释信息;HDR没有固定格式。
COMTRADE文件遵循固
定的记录格式,这使得编写程序读取数据成为可能。
文件以一行为单位记录录波信息,每行
种又以逗号隔开各类信息或数据。
2.2图形用户界面的显示
在本系统中,无论是波形分析(如波形的横向、纵向放大缩小;波形的瞬时值)还是
故障分析(如谐波分析、序分量分析)以及故障测距计算等结果,都
要通过视图显示到屏幕上,实现信息从机器到人的传递,因此,设计一个直观、友好的GUI
(GraphicalUserInterface,即图形用户界面)对程序编写的基本要求。
2.3基本过程思路如图1。
三、电力系统故障录波数据分析的相关算法及程序介绍
3.1波形分析
故障录波器所采集的数据通常都是一系列离散的点,而COMTRADE文件通过对这些离散的点进行计算得到实时的电压、电流瞬时值,再利用图表绘制类库jfreechart得到对应的电压、电流波形图。
系统生成单通道
波形的程序为:
3.2频率计算
假设采样时电压幅值和系统频率保持不变,那么以一正弦电压为采样电压信号的相关计算则可通过以下公式表示系统电压信号采样:v(t)=Vsin(2πft)以N代表每周波的采样点数,n表示每0.1s采样获得的点
数,当电压信号采样的时间间隔为T时:
由此可以推导出公式:
3.3全周傅式变换算法
电力系统发生故障时,常会出现较大的衰减现象,而全周傅式变换算法可以将由此产生的误差进行消除。
利用采样值之差x(n+1)?x(n)
取代x(n)的差分变换,以此降低直流分量对计算造成的影响。
在进行数据分析时,假设采样信号为包含了基波、不衰减直流分量和各次谐波的周期性时间函数,并以自然数n来表示谐波次数,那么各次谐波的余弦项振幅则以
an表示,各次谐波的正弦项振幅以bn表示。
a1和b1则分别表示基波分量的余弦项和正弦项振幅。
由此得出公式:
四、结语
随着科学技术的发展,电力系统的自动化程度越来越高,本文设计的电力系统故障录波数据分析系统是基于COMTRADE的进一步实现电网调度自动化有效性的相关软件,该软件可针对实际情况,完善相关系统中关
于频率分析、谐波分析、故障定位的数学分析方法,具有一定的实用性和参考性。
参考文献:
[1]黄纯,杨帅雄,梁勇超,刘琨,文超,郭振华.电力系统故障录波数据实用压缩方法[J].电力自动化设备,2014,06:162-167.
[2]郭振华.电力故障录波数据的分析方法研究及软件设计[D].湖南大学,2011.
[3]秦倩.基于故障录波数据的继电保护动作特性分析系统[D].湖南大学,2013.
作者简介:
鄢园(1988.1.1),女;湖北仙桃;汉;学历:研究生、硕士;工程师;变电二次检修工;研究方向:变电。