七年级数学上册3.4一元一次方程模型的应用第3课时行程问题习题课件(新版)湘教版
- 格式:ppt
- 大小:14.54 MB
- 文档页数:20
第3课时行程问题1.能分析行程问题中已知数与未知数之间的数量关系,利用路程、时间与速度三个量之间的关系式,列出一元一次方程解应用题.2.会用“线段图”分析复杂问题中的数量关系,从而建立方程解决实际问题,培养分析问题、解决问题的能力,进一步体会方程模型的作用.一、情境导入亲爱的同学们,你们读过名著《西游记》吗?关于孙悟空的故事你一定知道很多吧.有这样一首描述孙悟空捉妖的诗:悟空顺风探妖踪,千里只用四分钟;归时四分行六百,风速多少才算准.请你帮孙悟空算算当时的风速每分钟是多少里?二、合作探究探究点一:用一元一次方程解决相遇问题小明家离学校2.9千米,一天小明放学走了5分钟之后,他爸爸开始从家出发骑自行车去接小明,已知小明每分钟走60米,爸爸骑自行车每分钟骑200米,请问小明爸爸从家出发几分钟后接到小明?解析:本题等量关系:小明所走的路程+爸爸所走的路程=全部路程,但要注意小明比爸爸多走了5分钟,另外也要注意本题单位的统一.解:设小明爸爸出发x分钟后接到小明,如图所示,由题意,得200x+60(x+5)=2900.解得x=10.答:小明爸爸从家出发10分钟后接到小明.方法总结:找出问题中的等量关系是列方程解应用题的关键,对于行程问题,通常借助“线段图”来分析问题中的数量关系.这样可以比较直观地反映出方程中的等量关系.探究点二:用一元一次方程解决追及问题敌我两军相距25km,敌军以5km/h的速度逃跑,我军同时以8km/h的速度追击,并在相距1km处发生战斗,问战斗是在开始追击后几小时发生的?解析:本题相等关系:我军所走的路程-敌军所走的路程=敌我两军相距的路程.解:设战斗是在开始追击后x小时发生的.根据题意,得8x-5x=25-1.解得x=8.答:战斗是在开始追击后8小时发生的.探究点三:用一元一次方程解决环形问题甲、乙两人在一条长400米的环形跑道上跑步,甲的速度为360米/分,乙的速度是240米/分.(1)两人同时同地同向跑,问第一次相遇时,两人一共跑了多少圈?(2)两人同时同地反向跑,问几秒后两人第一次相遇?解析:(1)题实质上是追及问题,两人第一次相遇,实际上就是快者追上慢者一圈,其等量关系是追上时,甲走的路程-乙走的路程=400米;(2)题实质上是相遇问题,两人第一次相遇就是两人所走的路程之和为环行跑道一圈的长,其等量关系是相遇时,甲走的路程+乙走的路程=400米. 解:(1)设x 分钟后两人第一次相遇,由题意,得360x -240x =400.解得x =103. ⎝ ⎛⎭⎪⎫103×360+103×240÷400=5(圈). 答:两人一共走了5圈.(2)设x 分钟后两人第一次相遇,由题意,得360x +240x =400.解得x =23(分钟)=40(秒).答:40秒后两人第一次相遇. 方法总结:环形问题中的相等关系:两个人同地背向而行:相遇问题(首次相遇),甲的行程+乙的行程=一圈周长;两个人同地同向而行:追及问题(首次追上),甲的行程-乙的行程=一圈周长.三、板书设计行程问题→⎩⎪⎨⎪⎧相遇问题追及问题环形问题教学过程中,通过对开放性问题的探讨与交流,体验生活中数学的应用与价值,感受数学与人类生活的密切联系,激发学生学习数学的兴趣,培养学生的创新意识、团队精神和克服困难的勇气.。
3.4一元一次方程模型的应用(第1课时)【教学目标】知识与技能掌握一元一次方程解简单应用题的方法和步骤,并能解答一元一次方程的和、差、倍分问题的简单应用题.过程与方法通过列方程解应用题,提高分析问题、解决问题的能力.情感态度理解和体会数学建模思想在实际问题中的应用,形成用数学知识解决问题的意识.教学重点找出等量关系,列出方程.教学难点找出等量关系,列出方程.【教学过程】一、情景导入,初步认知,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决,若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较有什么优越性?某数的3倍减2等于它与4的和,求某数.(用算术方法解由学生回答)解:(4+2)÷(3-1)=3答:某数为3.如果设某数为x,根据题意,其数学表达式为3x-2=x+4此式恰是关于x的一元一次方程.解得x=3.上述两种解法,很明显算术方法不易思考,而应用设未知数,列出方程并通过解一元一次方程求得应用题的解有化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.2.我们知道方程是一个含有未知数的等式,而等式表示了一个相等的关系.对于任何一个应用题中所提供的条件应首先找出一个相等的关系,然后将这个相等的关系表示成方程.下面我们通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.【教学说明】采用提问的形式,方法与方程解决实际问题的方法对比,让学生明白方程的优越性.二、思考探究,获取新知1.探究:某湿地公园举行观鸟活动,其门票价格如下,全价票为20元/人,半价票为10元/人.该公园共售出1 200X门票,得总票款为20 000元,问:全价票和半价票分别售出多少X?(1)在此问题中,有何等量关系?全价票款+半价票款=总票款.(2)怎样设未知数?设售出全价票xX,则售出半价票(1 200-x)X.(3)根据等量关系列出方程,并求解.x·20+(1 200-x)·10=20 000解得:x=800所以半价票为1 200-800=400(X)即全价票售出800X,半价票售出400X.【教学说明】让学生体会找相等关系是列方程的关键所在.,你能总结出一元一次方程解实际问题的一般步骤吗?【归纳结论】一元一次方程解实际问题的一般步骤为:【教学说明】培养学生观察、概括及语言表达能力.三、运用新知,深化理解1.教材P98例1.,,今年的是去年的2倍,这三年的总产值为550万元,前年的产值是多少?解:设前年的产值为x,,,则x+1.5x+2×1.5x=550,解得x=100.答:前年的产值为100万元.3.某面粉仓库存放的面粉运出15%后,还剩余42 500 kg,这个仓库原来有多少面粉?分析:题中给出的已知量为仓库中存放的面粉运出15%;仓库中还剩余42 500 kg.未知量为仓库中原来有多少面粉.已知量与未知量之间的一个相等关系:原来质量-运出质量=剩余质量设原来有x千克面粉,运出15%x千克,还剩余42 500千克.解:设原来有x千克面粉,那么运出了15%x千克,根据题意,得x-15%·x=42 500即x-x=42 500x=42 500解得x=50 000.经检验,符合题意.答:原来有50 000千克面粉.,生产特种螺栓和螺母,一个螺栓的两头均套上一个螺母配成一套,每人每天平均生产螺栓12个或螺母18个,问:多少工人生产螺栓,多少工人生产螺母,才能使一天所生产的螺栓和螺母正好配套?解:设x名工人生产螺栓,(28-x)名工人生产螺母,列方程得2×12x=18(28-x).解得x=12.生产螺母的人数为28-x=16.答:12名工人生产螺栓,16名工人生产螺母,才能使一天所生产的螺栓和螺母正好配套. ,蜻蜓有6条腿,现在有蜻蜓、蜘蛛若干只,它们共有270条腿,且蜻蜓的只数比蜘蛛的2倍少5,问:蜘蛛、蜻蜓分别有多少只?解:设有蜘蛛x只,蜻蜓有(2x-5)只,则8x+6(2x-5)=270,解方程得x=15,2x-5=25.答:蜘蛛有15只,蜻蜓有25只.,,使在甲处的人数为在乙处的人数的2倍,应分别调往甲、乙两处多少人?分析:(1)审题:从外处共调20人去支援.若设调往甲处的是x人,则调往乙处的是多少人?一处增加x人,另一处便增加(20-x)人.看下表:调动前调动后甲处27人(27+x)人乙处19人[19+(20-x)]调人后甲处人数=调人后乙处人数的2倍.解:设应该调往甲处x人,则,得27+x=2[19+(20-x)].解方程得x=17.20-x=20-17=3.经检验,符合题意.答:应调往甲处17人,调往乙处3人.,如果由一个人单独做要用30h,现先安排一部分人用1h整理,随后又增加6人和他们一起又做了2h,,那么先安排整理的人员有多少?解:设先安排整理的人员有x人,依题意,得+=1解得x=6.经检验,符合题意.答:先安排整理的人员有6人.【教学说明】通过练习,巩固本节课所学的内容.四、师生互动、课堂小结先小组内交流收获和感想,再以小组为单位派代表进行总结.教师作以补充.【课后作业】布置作业:教材“习题3.4”中第4、7、8题.3.4一元一次方程模型的应用(第2课时)【教学目标】知识与技能学会用方程表示实际问题中的数量关系和变化规律.过程与方法通过探索实际问题,培养学生应用数学的意识,体会数学的价值.情感态度培养学生观察、分析、推理能力,渗透建模思想、方程思想、分类讨论思想.教学重点正确地分析出应用题中的已知数、未知数.教学难点能够准确地找出应用题的等量关系.【教学过程】一、情景导入,初步认知某超市把一种羊毛衫按进价提高50%标价,再按8折(标价的80%)出售,这样该超市每卖出一件羊毛衫就可盈利80元.这种羊毛衫的进价是多少元?如果按6折出售,该超市还盈利吗?为什么?【教学说明】通过学生进行实际调查,激发学生的学习兴趣,使每一名学生都成为知识的探索者、创新者,渗透方程思想、建模思想,培养学生运用数学知识解决实际问题的意识.二、思考探究,获取新知1.探究:某商店将某型号彩电按标价的八折出售,则此时每台彩电的利润率是5%,已知该型号彩电的进价为每台4 000元,求该型号彩电的标价.(1)在此问题中,有何等量关系?售价-进价=利润.(2)怎样设未知数?设彩电标价为每台x元,则售价为0.8x元.(3)根据等量关系列出方程,并求解.0.8x-4 000=4 000×5%解得:x=5 250即:彩电的标价为每台5 250元.2.交流讨论:在销售问题中进价、售价、利润、利润率的关系式有哪些?【归纳结论】销售问题中的等量关系式有:①商品利润=商品售价-商品进价②商品售价=商品标价×折扣数③×100%=商品利润率④商品售价=商品进价×(1+利润率),杨明将一笔钱存入某银行,定期3年,年利率是5%,若到期后取出,他可得到本息和23 000元,求杨明存入的本金是多少元.(1)引导学生分析、解决问题.(2)在存款问题中有哪些等量关系式?【归纳结论】存款问题中的等量关系式有:①利息=本金×年利率×年数②本息和=本金+利息【教学说明】明确解决销售问题的关键是利用销售问题的公式,,要好好把握各种问题的数量关系,可以作为一种知识的储备!三、运用新知,深化理解,这件衣服是按标价的3折出售的,这件衣服的标价是多少元?解:设这件羊毛衫的标价是x元,根据题意,得x=69.解得x=230答:这件衣服的标价是230元.,每件可盈利2元,为了支援山区,现在按原售价的7折出售给一个山区学校,:该文具每件的进价是多少元?基本关系式:进价=标价×折数-利润解:设该文具每件的进价是x元.根据题意得x= (x+2)-0.2.解得x=4.答:该文具每件的进价是4元.,标价为400元,商店要求利润率不低于25%的价格出售,求:售货员最低可以打几折出售此商品?解:设打x折出售此商品.400x-200=200×25%则x=0.625.答:售货员最低可以打6.25折出售此商品.4.某企业存入银行甲、乙两种不同性质的存款20万元.甲种存款的年利率为5.5%,乙种存款的年利率为4.5%,该企业一年可获利9500元,求甲、乙两种存款分别是多少元?解:设甲种存款为x元,依题意,得5.5%x+(200 000-x)×4.5%=9 500,解得:x=50 000,乙存款:200 000-50 000=150 000(元).答:甲存款50 000元,乙存款150 000元.,文具商店搞促销活动,同时购买一个书包和一个文具盒可以打8折,,那么书包和文具盒的标价分别是多少元?解:设一个文具盒标价为x元,则一个书包标价为(3x-6)元,依题意,得解此方程,得x=18,经检验,符合题意.3x-6=48(元)答:书包和文具盒的标价分别是48元/个,18元/个.,其中一个亏本20%,另一个盈利60%.请你计算一下,在这次买卖中,这家商店是赚还是赔?若赚,共赚了多少元?若赔,赔了多少元?解:设一个价钱为x元,另一个价钱为y元,依题意得:x(1+60%)=64,y(1-20%)=64,所以x=40,y=80,则64×2-(x+y)=128-120=8.故盈利8元.答:在这次买卖中,这家商店是赚了,共赚了8元.,电脑价格不断下降,某一品牌电脑,每台先降价m元,后连续两次降价,每次降价25%,现售价为n元,那么该电脑原来每台售价是多少元?解:设原来的售价是x元.根据等式列方程得:(1-25%)2(x-m)=n,解得x=n+m,答:原来每台的售价是(n+m)元.【教学说明】通过练习提高学生思维的广度;培养学生的发散思维和创新精神.四、师生互动、课堂小结先小组内交流收获和感想,再以小组为单位派代表进行总结,教师作以补充.【课后作业】布置作业:教材“习题3.4”中第1、2题.3.4一元一次方程模型的应用(第3课时)【教学目标】知识与技能进一步体会运用方程解决问题的关键是寻找等量关系,提高分析问题、解决问题的能力. 过程与方法通过自主探究与小组合作交流,能合理清晰地表达自己的思维过程,掌握根据具体问题中的数量关系,列出方程,感悟方程是刻画现实世界的一个有效模型,训练学生运用新知识解决实际问题的能力.情感态度进一步体会数学中的化归思想,引导学生关注生活实际,建立数学应用意识,热爱数学. 教学重点利用线形示意图分析行程问题中的数量关系.教学难点找出问题中的等量关系.【教学过程】一、情景导入,初步认知在行程问题中,最基本的等量关系式是什么?【教学说明】为本节课的教学做准备.二、思考探究,获取新知1.探究:星期天早晨,小斌和小强分别骑自行车从家里出发去参观雷锋纪念馆,已知他俩的家到纪念馆的路程相等,小斌每小时骑10km,他在上午10时到达;小强每小时骑15km,他在上午9时30分到达,求他们的家到雷锋纪念馆的路程.【教学说明】引导学生分析题意,找出题目中的等量关系式,并列出方程解答.2.讨论:在行程问题中还存在什么样的等量关系式?【归纳结论】相遇问题的基本关系:各路程之和=总路程.追及问题的基本关系:追及者的路程-被追者的路程=相距的路程.3.探究:为鼓励居民节约用水,某市出台了新的家庭用水收费标准,规定:所交水费分标准内水费与超标部分水费两部分,,,某家庭6月份用水12t,需缴水费27.44元.求该市规定的家庭月标准用水量.本问题首先要分析所缴的,因为1.96×12=23.52(元),,所以含有超标部分的水费,则等量关系式为:月标准内水费+超标部分水费=该月所缴的水费设月标准用水量为x t,根据等量关系,得解得:x=8所以,该市家庭月标准用水量是8吨.,我们先要确定所给的数据所处的分段,再根据它的分段合理地解决.,由小敏、小聪两人负责选购圆珠笔、钢笔共22支,,看到圆珠笔每支5元,钢笔每支6元.(1)若他们购买圆珠笔、钢笔刚好用去120元,则圆珠笔、钢笔分别买了多少支?(2)若购圆珠笔可按9折付款,钢笔可按8折付款,在所需费用不超过100元的前提下,请你写出一种选购方案.解:(1)设圆珠笔买了x 支,则钢笔买了(22-x)支,根据题意得:5x+6(22-x)=120,解得:x=12.所以22-x=22-12=10.答:圆珠笔、钢笔分别买了12支、10支.(2)是一道方案设计题,也是一道开放型题,答案不唯一,根据题意,圆珠笔的单价为109×5=4.5(元);钢笔的单价为108×6=4.8(元),由于圆珠笔的单价小而钢笔的单价大,因此尽量圆珠笔多买些.①当买圆珠笔19支,钢笔3支时,19×4.5+3×4.8=99.9(元)<100(元)满足条件;②当买圆珠笔20支,钢笔2支时,20×4.5+2×4.8=99.6(元)<100(元)满足条件;③当买圆珠笔21支,钢笔1支时,21×4.5+1×4.8=99.3(元)<100(元)满足条件.故有三种方案,圆珠笔19支,钢笔3支或圆珠笔20支,钢笔2支或圆珠笔21支,钢笔1支.【教学说明】 这一层次及时鼓励学生通过观察、分析、小组讨论,找出其中的等量关系,并尝试用文字语言表述出来,有利于提高学生的分析问题能力和语言表达能力.三、运用新知,深化理解1.教材P101例3、P103例4.2.某城市出租车起步价为8元(3km 以内),以后每千米2元(不足1km 按1km 算),某人乘出租车花费20元,那么他大概行驶了多远?解:设这个人大概行驶了xkm ,根据题意得:8+2(x-3)=20解得:x=9答:这个人大概行驶9km.3.甲、乙两列火车的长为144m 和180m ,,从相遇到全部错开需9s ,问:两车的速度分别是多少?解:设乙车每秒行驶x m ,则甲车每秒行驶(x+4) m ,根据题意得:9(x+x+4)=144+180,整理得:2x=32,解得:x=16,x+4=20.答:甲车每秒行驶20m ,乙车每秒行驶16m.4.甲、乙两地的路程为360千米,一列快车从乙站开出,每小时行72千米;一列慢车从甲站开出,每小时行48千米.(1)若两列火车同时开出,相向而行,经过多长时间两车相遇?(2)若快车先开25分钟,两车相向而行,慢车行驶了多长时间两车相遇?解:(1)设两车同时开出相向而行,经过x 小时两车相遇,即72x+48x=360,解得:x=3,答:经过3小时两车相遇.(2)设慢车行驶y 小时两车相遇.根据题意有:48y+72(y+6025)=360, 解得y=411. 答:慢车行驶了411小时两车相遇. ,用气量如果不超过60m 3,;如果超过60m 3,为,求该用户10月份应缴的煤气费是多少元.解:由10月份的煤气费平均每立方米为,可得10月份用气量一定超过60 m 3,设10月份用了煤气x 立方米,由题意得:60×0.8+(x -60)×1.2=0.88×x,解得:x=75,则所缴的电费为75×0.88=66(元).答:10月份应缴的煤气费是66元.6.某水果批发市场香蕉的价格如下表:二次分别购买香蕉多少千克?分析:由于X强两次共购买香蕉50千克(第二次多于第一次),因此第二次购买香蕉多于25千克,第一次少于25千克.因为50千克香蕉共付264元,,所以第一次购买香蕉的价格必然为6元/千克,即少于20千克,第二次购买的香蕉价格可能是5元,也可能是4元.我们分两种情况讨论即可.解:(1)当第一次购买香蕉少于20千克,第二次购买香蕉20千克以上但不超过40千克时,设第一次购买x千克香蕉,则第二次购买(50-x)千克香蕉,根据题意,得:6x+5(50-x)=264解得:x=1450-14=36(千克)(2)当第一次购买香蕉少于20千克,第二次购买香蕉超过40千克时,设第一次购买x千克香蕉,则第二次购买(50-x)千克香蕉,根据题意,得:6x+4(50-x)=264解得:x=32(不符合题意)答:第一次购买14千克香蕉,第二次购买36千克香蕉.信公司开设了两种业务:一是“全球通”,使用者先缴纳50元月租费,;二是“快捷通”,使用者不缴纳月租费,每通话1分钟付通话费0.60元.(1)小明的爸爸一个月的通话时间约为200分钟,你认为他应选择哪种通讯业务,可使费用较少?请说明理由.(2)当每月通话时间为多少分钟时,两种通讯业务缴纳的费用一样?解:(1)他应选择快捷通业务;使用全球通业务需要50+0.4×200=130(元),使用快捷通业务需要0.6×200=120(元),120元<130元,所以他应选择快捷通业务.(2)设当每月通话时间为x分钟时,两种通讯业务缴纳的费用一样.,解得x=250.所以当每月通话时间为250分钟时,两种通讯业务缴纳的费用一样.,在市场上若直接销售,每吨利润为1 000元,经粗加工后销售,每吨利润4 000元,经精加工后销售,,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果对蔬菜进行精加工,每天可加工6吨,,,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.如果你是公司经理,你会选择哪一种方案,说说理由.解:方案一:4 000×140=560 000(元);方案二:15×6×7 000+(140-15×6)×1 000=680 000(元);方案三:设精加工x吨,则+=15;解得:x=60,7 000×60+4 000×(140-60)=740 000(元);答:选择第三种方案.【教学说明】通过练习,检测学生的掌握情况;教师做适当地提示.四、师生互动、课堂小结先小组内交流收获和感想,再以小组为单位派代表进行总结.教师作以补充.【课后作业】布置作业:教材“习题3.4”中第5、6、7题.。
3.4 一元一次方程模型的应用第3课时行程问题教学目标:知识技能:学会用图示法分析、解决实际问题中的行程问题;能准确地从实际问题中找到相等关系,并列方程解应用题。
数学思考:利用图示法解决实际问题中相遇问题和追击问题,能够分析出是属于哪一类问题,学会归类解决。
问题解决:经历运用方程解决实际问题的过程,体会图示法对分析行程问题的优越性,体会方程是刻画现实世界的有效数学模型。
情感态度:通过教学,让学生初步体会代数方法的优越性;体会数形结合的思想;培养应用数学意识,自觉反思解题过程的良好习惯。
教学重点:运用图示法寻找问题中的相等关系,列方程解决行程中的相遇和追击问题。
教学难点:列方程解决行程中的相遇和追击问题。
教学过程:一、复习提问,揭示目标:速度、路程、时间之间的关系?(利用这些知识的复习为后面的应用题提供依据。
)这节课我们就来学习关于这三个量的应用题—行程问题。
二、例题展示,解决问题1.例1:西安站和武汉站相距1500km,一列慢车从西安开出,速度65km/h,一列快车从武汉开出,速度为85km/h,两车同时相向而行,几小时相遇?(由老师引导学生从实际问题中抽象出数学模型,从示意图分析,并解答,向学生呈现一个完整的分析、解决行程问题的过程,让学生利用形象的图示理解相遇问题,在解决此类问题时头脑中能形成映像,能够画出示意图解决。
)通过学习让学生对相遇问题中的各量的关系有了认识。
2.延伸拓展西安站和武汉站相距1500km,一列慢车从西安开出,速度为60km/h,一列快车从武汉开出,速度为87km/h,若两车相向而行,慢车先开30分钟,快车行使几小时后两车相遇?先让学生自己分析后,同学讨论试着画出图分析出等量,列出方程,教师再借助多媒体加深学生的理解。
理解相遇问题的不同类型归纳:相遇问题甲路程+乙路程=总路程3.例2:两匹马赛跑,黄色马的速度是6m/s,棕色马的速度是7m/s,如果让黄马先跑5m,棕色马再开始跑,几秒后可以追上黄色马?(借助多媒体中图像让学生理解题意,解答)利用此例题让学生对追击问题中的各量之间的关系加深理解,找出等量关系,初步建模。
第3课时行程问题1.能分析行程问题中已知数与未知数之间的数量关系,利用路程、时间与速度三个量之间的关系式,列出一元一次方程解应用题.2.会用“线段图”分析复杂问题中的数量关系,从而建立方程解决实际问题,培养分析问题、解决问题的能力,进一步体会方程模型的作用.一、情境导入亲爱的同学们,你们读过名著《西游记》吗?关于孙悟空的故事你一定知道很多吧.有这样一首描述孙悟空捉妖的诗:悟空顺风探妖踪,千里只用四分钟;归时四分行六百,风速多少才算准.请你帮孙悟空算算当时的风速每分钟是多少里?二、合作探究探究点一:用一元一次方程解决相遇问题小明家离学校2.9千米,一天小明放学走了5分钟之后,他爸爸开始从家出发骑自行车去接小明,已知小明每分钟走60米,爸爸骑自行车每分钟骑200米,请问小明爸爸从家出发几分钟后接到小明?解析:本题等量关系:小明所走的路程+爸爸所走的路程=全部路程,但要注意小明比爸爸多走了5分钟,另外也要注意本题单位的统一.解:设小明爸爸出发x分钟后接到小明,如图所示,由题意,得200x+60(x+5)=2900.解得x=10.答:小明爸爸从家出发10分钟后接到小明.方法总结:找出问题中的等量关系是列方程解应用题的关键,对于行程问题,通常借助“线段图”来分析问题中的数量关系.这样可以比较直观地反映出方程中的等量关系.探究点二:用一元一次方程解决追及问题敌我两军相距25km,敌军以5km/h的速度逃跑,我军同时以8km/h的速度追击,并在相距1km处发生战斗,问战斗是在开始追击后几小时发生的?解析:本题相等关系:我军所走的路程-敌军所走的路程=敌我两军相距的路程.解:设战斗是在开始追击后x小时发生的.根据题意,得8x-5x=25-1.解得x=8.答:战斗是在开始追击后8小时发生的.探究点三:用一元一次方程解决环形问题甲、乙两人在一条长400米的环形跑道上跑步,甲的速度为360米/分,乙的速度是240米/分.(1)两人同时同地同向跑,问第一次相遇时,两人一共跑了多少圈?(2)两人同时同地反向跑,问几秒后两人第一次相遇?解析:(1)题实质上是追及问题,两人第一次相遇,实际上就是快者追上慢者一圈,其等量关系是追上时,甲走的路程-乙走的路程=400米;(2)题实质上是相遇问题,两人第一次相遇就是两人所走的路程之和为环行跑道一圈的长,其等量关系是相遇时,甲走的路程+乙走的路程=400米. 解:(1)设x 分钟后两人第一次相遇,由题意,得360x -240x =400.解得x =103. ⎝ ⎛⎭⎪⎫103×360+103×240÷400=5(圈). 答:两人一共走了5圈.(2)设x 分钟后两人第一次相遇,由题意,得360x +240x =400.解得x =23(分钟)=40(秒).答:40秒后两人第一次相遇. 方法总结:环形问题中的相等关系:两个人同地背向而行:相遇问题(首次相遇),甲的行程+乙的行程=一圈周长;两个人同地同向而行:追及问题(首次追上),甲的行程-乙的行程=一圈周长.三、板书设计行程问题→⎩⎪⎨⎪⎧相遇问题追及问题环形问题教学过程中,通过对开放性问题的探讨与交流,体验生活中数学的应用与价值,感受数学与人类生活的密切联系,激发学生学习数学的兴趣,培养学生的创新意识、团队精神和克服困难的勇气.。