最新姜启源等编《数学模型》第四版 课件 第十一章 博弈模型说课材料
- 格式:ppt
- 大小:1.68 MB
- 文档页数:81
2021-11第4版姜启源数学模型复习总结(1) 第四版姜启源数学模型复习总结第1章:了解模型的概念与分类,熟练掌握数学模型的定义,数学模型的重要应用,建模的重要例子-指数模型,Logist模型。
建模的一般方法及其在建模中的应用。
建模的一般步骤(每步的主要内容与问题)。
建模的全过程(框图)4个环节的含义。
模型的特点(技艺性)。
模型分类(表现特征),建模中的能力培养。
数学建模实例的建模思想及其步骤§1 数学模型的概念:模型:模型是为了一定目的,对客观事物的一部分信息进行简缩、抽象、提炼出来的原型的替代物。
模型的分类:具体模型(或物质模型,实的),包括直观模型,物理模型。
抽象模型(或理想模型,虚的),包括思维模型,符号模型,数学模型。
数学模型:对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。
1-1-1 模型是为了特定的目的,将原型的()而得到的原型替代物。
1-1-2数学模型可以描述为:对于一个现实对象,()。
1-1-3 关于数学模型的如下论述中正确的是() A。
数学模型是以现实世界的特定问题为研究对象。
B。
数学模型只是对实际问题的近似表示,其中包含一些简化假设。
C。
数学模型表示是某一特定问题的内在规律的数学表示,是以方程和函数关系表示的数学结构。
D。
数学模型是现实问题的真实的描述,不能做任何假设和简化。
1-1-4 关于数学建模的如下论述中正确的是() A。
数学模型和数学建模是完全相同的概念。
B。
数学建模是一个全过程,包括表述、求解、解释和验证四个环节。
C。
数学建模全过程涉及两个世界是现实世界和虚拟世界,涉及的“双向翻译”是同声翻译和文献翻译。
D.数学建模过程是一个从理论-实践-再理论-再实践不断改进的过程。
§2 建模的重要意义(1)数学以空前的广度和深度向一切领域渗透在一般工程技术领域数学建模仍然大有用武之地;在高新技术领域数学建模几乎是必不可少的工具了; 数学进入一些新领域,为数学建模开辟了许多处女地. 数学建模的具体应用:分析与设计,预测与决策,优化与控制,规划与管理。