牛顿—柯特斯(Newton-Cotes)求积公式
- 格式:ppt
- 大小:3.02 MB
- 文档页数:74
newton-cotes 公式牛顿-科特斯(Newton-Cotes)公式是用来在有限的数据点上进行数值积分的公式,它有助于解决一些数学里复杂的积分问题。
牛顿-科特斯(Newton-Cotes)公式是建立在具有固定的插值点的基础上的,它的基本思想是将积分区间上的函数值用一个多项式曲线表示,根据多项式的函数值,通过运用权重系数求出函数对应积分区间上的积分值。
牛顿-科特斯(Newton-Cotes)公式具有理论可靠性和可计算性,可以用来计算任何一类好的函数在有限积分区间上的数值积分值。
牛顿-科特斯(Newton-Cotes)公式有如下几种:前向 - 望厄(Forward-Newton-Cotes)公式,中间 - 望厄(Midpoint-Newton-Cotes)公式,后向 - 望厄(Backwards-Newton-Cotes)公式和梯形 - 望厄(Trapezoid-Newton-Cotes)公式,每种公式都是以一定的格式形式来进行积分计算的,它们在实用水平上是相通的,可以用来求取给定函数在有限划分区间上的近似数值积分值。
不同的是,每种公式都有不同的特点,比如,前向 - 望厄(Forward-Newton-Cotes)公式算法效率高但精度低,后向 - 望厄(Backwards-Newton-Cotes)公式算法精度高但效率低,梯形 - 望厄(Trapezoid-Newton-Cotes)公式精度取决于区间的分段数,而中间 - 望厄(Midpoint-Newton-Cotes)公式适合单次积分的计算。
牛顿-科特斯(Newton-Cotes)公式可以用来解决一些数学里比较复杂的积分问题,它对于提高程序自动执行效率也必不可少,所以它在很多地方都有实际应用。
牛顿-科特斯求积公式是数学中的一种用于数值积分的方法。
在使用牛顿-科特斯求积公式进行数值积分时,需要首先确定所需的阶数,然后计算对应的系数。
在这篇文章中,我们将讨论牛顿-科特斯求积公式的系数之和,以及与其相关的一些重要概念和应用。
一、牛顿-科特斯求积公式的概念和原理牛顿-科特斯求积公式是一种数值积分方法,通常用于对定积分进行数值近似计算。
其原理是在给定的区间上,将被积函数进行插值,然后计算插值函数的积分,从而近似原函数的定积分值。
具体来说,对于给定的区间[a, b]和积分函数f(x),牛顿-科特斯求积公式可以表示为:∫f(x)dx ≈ h/2 * [f(x0) + 2∑(i=1 to n-1) f(x_i) + f(x_n)]其中,h = (b-a)/n,n为插值节点的数量,x0 = a,x_i = a + i*h,x_n = b。
二、牛顿-科特斯求积公式的系数之和我们现在来讨论牛顿-科特斯求积公式中系数之和的计算。
我们知道,在牛顿-科特斯求积公式中,系数h/2是一个常数项,而f(x0)和f(x_n)分别是被积函数在区间端点的函数值,其系数也为1。
我们只需要关注∑(i=1 to n-1) f(x_i)部分的系数之和。
定义∑(i=1 to n-1) f(x_i)的系数之和为Cn,即:Cn = 2∑(i=1 to n-1) 1其中,1为每个f(x_i)前的系数,而2为相邻节点之间的权重,其作用是对函数进行等距离的插值。
通过对Cn进行计算和分析,我们可以得到牛顿-科特斯求积公式中系数之和的具体表达式,从而帮助我们更好地理解和应用该数值积分方法。
三、牛顿-科特斯求积公式系数之和的计算为了计算牛顿-科特斯求积公式中系数之和的表达式,我们首先将∑(i=1 to n-1) 1进行展开,得到:∑(i=1 to n-1) 1 = 1 + 1 + ... + 1 (共计n-1项)根据等差数列的求和公式,上式可以进一步化简为:∑(i=1 to n-1) 1 = (n-1)牛顿-科特斯求积公式中系数之和的表达式可以写为:Cn = 2*(n-1)这就是牛顿-科特斯求积公式中系数之和的具体表达式。
newton-cotes计算积分近似值
Newton-Cotes求积公式是一种数值积分方法,用于近似计算定积分的值。
其基本思想是将积分区间分成若干个子区间,然后在每个子区间上选择一个点作为代表点,用该点的函数值乘以子区间的宽度,再将所有代表点的函数值乘以相应子区间的宽度求和,最后将求和结果作为积分值的近似值。
具体来说,Newton-Cotes求积公式可以分为以下几种形式:
梯形公式:将积分区间分成n个等长的子区间,每个子区间的宽度为h,然后在每个子区间的中点处取值并乘以相应的宽度h/2,将所有中点的函数值乘以相应子区间的宽度求和,即可得到积分值的近似值。
辛普森公式:将积分区间分成n个等长的子区间,每个子区间的宽度为h,然后在每个子区间的左端点和右端点处取值并乘以相应的宽度h/3,将所有端点的函数值乘以相应子区间的宽度求和,即可得到积分值的近似值。
复合梯形公式:将整个积分区间分成若干个子区间,然后在每个子区间上采用梯形公式进行计算,最后将所有子区间的近似值相加即可得到积分值的近似值。
复合辛普森公式:将整个积分区间分成若干个子区间,然后在每个子区间上采用辛普森公式进行计算,最后将所有子区间的近似值相加即可得到积分值的近似值。
需要注意的是,Newton-Cotes求积公式的收敛性和误差估计取决于子区间的数目和选择的位置,因此在实际应用中需要选择适当的子区间数目和位置以提高近似值的精度。
此外,Newton-Cotes求积公式适用于被积函数在积分区间上连续的情况,如果被积函数在积分区间上不连续或者存在奇点,则可能需要采用其他数值积分方法进行处理。
教案一 牛顿-科特斯(Newton-Cotes )求积公式基本内容提要1 数值积分的基本思想2 代数精度的概念3 牛顿-科特斯求积公式及其余项4 牛顿-科特斯求积公式的稳定性和收敛性教学目的和要求1 理解机械型求积公式的意义及代数精度的概念2 掌握插值型求积公式基本思想及基本的牛顿-科特斯求积公式: 梯形求积公式、辛普森(Simpson)求积公式或抛物线求积公式、牛顿求积公式、柯特斯求积公式及其余项公式3 了解牛顿-科特斯求积公式的稳定性和收敛性教学重点1 插值型求积公式的基本思想2 牛顿-科特斯求积公式的构造过程3 分析牛顿-科特斯求积公式的稳定性和收敛性4 低阶牛顿-科特斯求积公式及其积分余项公式教学难点1 数值积分公式代数精度概念的理解和应用2 牛顿-科特斯求积公式的稳定性和收敛性的证明课程类型新知识理论课教学方法结合提问,以讲授法为主教学过程问题引入我们可以构造一个多项式近似代替某个未知函数或复杂函数。
据此,可以推导用来近似计算该未知函数或复杂函数的定积分或导数的公式。
这就是数值积分与数值微分的基本内容.推导积分和导数的数值计算公式的重要性是显而易见的。
以定积分的计算为例,要计算定积分∫b a dx x f )( 理论上可以用Newton-Leibniz 公式: ()()()ba f x dx Fb F a =−∫其中)(x F 是被积函数的某个原函数。
但对很多实际问题,上述公式却无能为力。
这是因为:1) 被积函数)(x f 的原函数理论上存在,但无法知道它可用于计算的表达式,如2x e sin ,x x等初等函数。
2) 被积函数)(x f 本身没有可用于计算的表达式,而仅仅是一种数表函数,即只知道该函数在部分特殊点的函数值。
因此,借助于插值理论是解决数值计算定积分的有效途径之一。
§3.1 牛顿-柯特斯求积公式3.1.1 数值积分的基本思想首先利用积分中值定理:()()(),[,]ba f x dx fb a a b ξξ=−∈∫导出矩形求积公式、梯形求积公式。
牛顿-柯特斯公式牛顿-柯特斯公式是数值分析中重要的求积公式之一,它可以用于近似计算定积分的值。
牛顿-柯特斯公式是利用插值多项式的积分公式,在积分节点选取相同的情况下,通过不同的插值多项式形式,可以达到不同的精度要求。
牛顿-柯特斯公式的一般形式可以表示为:∫[a,b]f(x)dx = w_0f(x_0)+w_1f(x_1)+...+w_nf(x_n)+R_n其中,x_0, x_1,...,x_n 是n+1个等距节点,a = x_0 < x_1< ... < x_n = b,f(x)是要求积分的函数,w_i是相应的权重系数,R_n是余项,用于表示估计误差。
牛顿-柯特斯公式的权重系数w_i和余项R_n与插值多项式的形式有关。
下面将介绍牛顿-柯特斯公式的一些常见形式。
1. 矩形公式当n = 0时,牛顿-柯特斯公式的形式为:∫[a,b]f(x)dx ≈ (b-a)f(a)这个公式称为矩形公式或矩形法则。
它的准确度为一阶,即误差为O((b-a)^2)。
2. 梯形公式当n = 1时,牛顿-柯特斯公式的形式为:∫[a,b]f(x)dx ≈ (b-a)[(f(a)+f(b))/2]这个公式称为梯形公式或梯形法则。
它的准确度为一阶,即误差为O((b-a)^2)。
3. 辛普森公式当n = 2时,牛顿-柯特斯公式的形式为:∫[a,b]f(x)dx ≈ (b-a)[(f(a)+4f((a+b)/2)+f(b))/6]这个公式称为辛普森公式或辛普森法则。
它的准确度为二阶,即误差为O((b-a)^3)。
4. 三点闭合公式当n = 3时,牛顿-柯特斯公式的形式为:∫[a,b]f(x)dx ≈ (b-a)[(f(a)+3f(a+h)+3f(b-h)+f(b))/8]其中,h = (b-a)/3。
这个公式的准确度为三阶,即误差为O((b-a)^4)。
通过不断增加插值节点的数量n,可以得到更高阶的牛顿-柯特斯公式。