第二章热传导方程
- 格式:doc
- 大小:2.20 MB
- 文档页数:25
热传导方程式(或称热方程)是一个重要的偏微分方程,它描述一个区域内的温度如何随时间变化。
物理动机一维热方程图解(观看动画版)热传导在三维的等方向均匀介质里的传播可用以下方程式表达:其中:u=u(t, x, y, z) 表温度,它是时间变量t 与空间变量(x, y,z) 的函数。
/是空间中一点的温度对时间的变化率。
uxx, uy y与uzz温度对三个空间座标轴的二次导数。
k决定于材料的热传导率、密度与热容。
热方程是傅立叶冷却律的一个推论(详见条目热传导)。
如果考虑的介质不是整个空间,则为了得到方程的唯一解,必须指定u 的边界条件。
如果介质是整个空间,为了得到唯一性,必须假定解的增长速度有个指数型的上界,此假定吻合实验结果。
热方程的解具有将初始温度平滑化的特质,这代表热从高温处向低温处传播。
一般而言,许多不同的初始状态会趋向同一个稳态(热平衡)。
因此我们很难从现存的热分布反解初始状态,即使对极短的时间间隔也一样。
热方程也是抛物线偏微分方程最简单的例子。
利用拉普拉斯算子,热方程可推广为下述形式其中的Δ 是对空间变量的拉普拉斯算子。
热方程支配热传导及其它扩散过程,诸如粒子扩散或神经细胞的动作电位。
热方程也可以作为某些金融现象的模型,诸如布莱克-斯科尔斯模型与Ornstein-Uhlenbeck 过程。
热方程及其非线性的推广型式也被应用于影像分析。
量子力学中的薛定谔方程虽然有类似热方程的数学式(但时间参数为纯虚数),本质却不是扩散问题,解的定性行为也完全不同。
就技术上来说,热方程违背狭义相对论,因为它的解表达了一个扰动可以在瞬间传播至空间各处。
扰动在前方光锥外的影响通常可忽略不计,但是若要为热传导推出一个合理的速度,则须转而考虑一个双曲线型偏微分方程。
[编辑本段]以傅立叶级数解热方程在理想状态下一根棍子的热传导,配上均匀的边界条件。
以下解法首先由约瑟夫·傅里叶在他于1822年出版的著作Théorie analytique de la chaleur(中译:解析热学)给出。
第 二 章 热 传 导 方 程§1 热传导方程及其定解问题的提1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律dsdt u u k dQ )(11-= 又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。
解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。
记杆的截面面积42l π为S 。
由假设,在任意时刻t 到t t ∆+内流入截面坐标为x 到x x ∆+一小段细杆的热量为t x s xuk t s x u k t s x u k dQ x x x x ∆∆∂∂=∆∂∂-∆∂∂=∆+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。
由假设,在时刻t 到t t ∆+在截面为x 到x x ∆+一小段中产生的热量为()()t x s u u lkt x l u u k dQ ∆∆--=∆∆--=111124π又在时刻t 到t t ∆+在截面为x 到x x ∆+这一小段内由于温度变化所需的热量为()()[]t x s tuc x s t x u t t x u c dQ t ∆∆∂∂=∆-∆+=ρρ,,3由热量守恒原理得:()t x s u u lk t x s x uk t x s t u c x t ∆∆--∆∆∂∂=∆∆∂∂11224ρ消去t x s ∆∆,再令0→∆x ,0→∆t 得精确的关系:()11224u u l kxu k t u c --∂∂=∂∂ρ或 ()()11222112244u u l c k xu a u u l c k x u c k t u --∂∂=--∂∂=∂∂ρρρ 其中 ρc k a =22. 试直接推导扩散过程所满足的微分方程。
解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt nuDdM ∂∂-=,其中D 为扩散系数,得 ⎰⎰⎰∂∂=21t t sdsdt nuDM 浓度由u 变到2u 所需之溶质为()()[]⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ∂∂=∂∂=-=2121121,,,,,,t t tt dvdt t uC dtdv t u C dxdydz t z y x u t z y x u C M两者应该相等,由奥、高公式得:⎰⎰⎰⎰⎰⎰⎰⎰ΩΩ∂∂==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=21211t t t t dvdt t uC M dvdt z uD z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。
第二章热传导一、名词解释1.温度场:某一瞬间物体内各点温度分布的总称。
一般来说,它是空间坐标和时间坐标的函数。
2.等温面(线):由物体内温度相同的点所连成的面(或线)。
3.温度梯度:在等温面法线方向上最大温度变化率。
4.热导率:物性参数,热流密度矢量与温度降度的比值,数值上等于1 K/m的温度梯度作用下产生的热流密度。
热导率是材料固有的热物理性质,表示物质导热能力的大小。
5.导温系数:材料传播温度变化能力大小的指标。
6.稳态导热:物体中各点温度不随时间而改变的导热过程。
7.非稳态导热:物体中各点温度随时间而改变的导热过程。
8.傅里叶定律:在各向同性均质的导热物体中,通过某导热面积的热流密度正比于该导热面法向温度变化率。
9.保温(隔热)材料:λ≤0.12 W/(m·K)(平均温度不高于350℃时)的材料。
10.肋效率:肋片实际散热量与肋片最大可能散热量之比。
11.接触热阻:材料表面由于存在一定的粗糙度使相接触的表面之间存在间隙,给导热过程带来额外热阻。
12.定解条件(单值性条件):使微分方程获得适合某一特定问题解的附加条件,包括初始条件和边界条件。
二、填空题1.导热基本定律是_____定律,可表述为。
(傅立叶,)2.非稳态导热时,物体内的_____场和热流量随_____而变化。
(温度,时间)3.导温系数的表达式为_____,单位是_____,其物理意义为_____。
(a=λ/cρ,m2/s,材料传播温度变化能力的指标)4.肋效率的定义为_______。
(肋片实际散热量与肋片最大可能散热量之比。
)5.按照导热机理,水的气、液、固三种状态中_______态下的导热系数最小。
(气)6.一般,材料的导热系数与_____和_____有关。
(种类,温度)7.保温材料是指_____的材料.(λ≤0.12 W/(m·K)(平均温度不高于350℃时))8.已知材料的导热系数与温度的关系为λ=λ0(1+bt),当材料两侧壁温分别为t1、t2时,其平均导热系数可取下的导热系数。
热传导公式第二节传导传热传导传热也称热传导,简称导热。
导热是依靠物质微粒的热振动而实现的。
产生导热的必要条件是物体的内部存在温度差,因而热量由高温部分向低温部分传递。
热量的传递过程通称热流。
发生导热时,沿热流方向上物体各点的温度是不相同的,呈现出一种温度场,对于稳定导热,温度场是稳定温度场,也就是各点的温度不随时间的变化而变化。
本课程所讨论的导热,都是在稳定温度场的情况下进行的。
一、传导传热的基本方程式----傅立叶定律在一质量均匀的平板内,当t1 > t2热量以导热方式通过物体,从t1向t2方向传递,如图3-7所示。
图3-7 导热基本关系取热流方向微分长度dn,在dt的瞬时传递的热量为Q,实验证明,单位时间内通过平板传导的热量与温度梯度和传热面积成正比,即:dQ∝dA·dt/dn写成等式为:dQ=-λdA·dt/dn (3-2)式中 Q-----导热速率,w;A------导热面积,m2;dt/dn-----温度梯度,K/m;λ------比例系数,称为导热系数,w/m·K;由于温度梯度的方向指向温度升高的方向,而热流方向与之相反,故在式(3-2)乘一负号。
式(3-2)称为导热基本方程式,也称为傅立叶定律,对于稳定导热和不稳定导热均适用。
二、导热系数λ导热系数是物质导热性能的标志,是物质的物理性质之一。
导热系数λ的值越大,表示其导热性能越好。
物质的导热性能,也就是λ数值的大小与物质的组成、结构、密度、温度以及压力等有关。
λ的物理意义为:当温度梯度为1K/m时,每秒钟通过1m2的导热面积而传导的热量,其单位为W/m·K或W/m·℃。
各种物质的λ可用实验的方法测定。
一般来说,金属的λ值最大,固体非金属的λ值较小,液体更小,而气体的λ值最小。
各种物质的导热系数的大致范围如下:金属 2.3~420 w/m·K建筑材料 0.25~3 w/m·K绝缘材料 0.025~0.25 w/m·K液体 0.09~0.6 w/m·K气体 0.006~0.4 w/m·K固体的导热在导热问题中显得十分重要,本章有关导热的问题大多数都是固体的导热问题。
前言本文只是针对小白而写,可以使新手对热传导理论由很浅到不浅的认识,如想更深学习热传导知识,请转其它文档。
一、概念与常量1、温度场:指某一时刻τ下,物体内各点的温度分布状态。
在直角坐标系中:t=f(x,y,z,τ);在柱坐标系中:t=f(r,θ,z,τ);在球坐标系中:t=f(r,θ,∅,τ)。
补充:根据温度场表达式,可分析出导热过程是几维、稳态或非稳态的现象,温度场是几维的、稳态的或非稳态的。
2、等温面与等温线:三维物体内同一时刻所有温度相同的点的集合称为等温面;一个平面与三维物体等温面相交所得的的曲线线条即为平面温度场中的等温线。
3、温度梯度:在具有连续温度场的物体内,过任意一点P温度变化率最大的方向位于等温线的法线方向上。
称过点P的最大温度变化率为温度梯度(temperature gradient)。
用grad t表示。
定义为:grad t=∂t∂nn补充:温度梯度表明了温度在空间上的最大变化率及其方向,是向量,其正向与热流方向恰好相反。
对于连续可导的温度场同样存在连续的温度梯度场。
在直角坐标系中:grad t=∂t∂xi+∂t∂yj+∂t∂zk3、导热系数定义式:λ=q-grad t单位W/(m⋅K)导热系数在数值上等于单位温度降度(即1K/m)下,在垂直于热流密度的单位面积上所传导的热流量。
导热系数是表征物质导热能力强弱的一个物性参数。
补充:由物质的种类、性质、温度、压力、密度以及湿度影响。
二、热量传递的三种基本方式热量传递共有三种基本方式:热传导;热对流;热辐射三、导热微分方程式(统一形式:ρc∂t∂τ=λ∇2t+q)直角坐标系:ρc∂t∂τ=∂∂x(λ∂t∂x)+∂∂y(λ∂t∂y)+∂∂z(λ∂t∂z)+q圆柱坐标系:ρc∂t∂τ=1r∂∂r(λr∂t∂r)+1r2∂∂ϕ(λ∂t∂ϕ)+∂∂z(λ∂t∂z)+q球坐标系:ρc∂t∂τ=1r2∂∂r(λr2∂t∂r)+1r2sinθ∂∂θ(λsinθ∂t∂θ)+1r2sin2θ∂∂ϕ(λ∂t∂ϕ)+ q其中,称α=λρc为热扩散系数,单位m2/s,ρ为物质密度,c为物体比热容,λ为物体导热系数,q为热源的发热率密度,h为物体与外界的对流交换系数。
热传导热传导方程的推导热传导是指物质内部由高温区向低温区传递热量的过程。
热传导广泛应用于各个领域,如工程、物理学和地球科学等。
热传导方程是描述热传导过程的数学表达式。
本文将通过推导展示如何得到热传导方程。
1. 热传导基本原理热传导的基本原理是根据热量传递的分子动力学理论。
在物质内部,分子之间存在着热运动,高温区的分子会以更高的速度振动,从而传递给低温区的分子。
这种热传递是通过分子之间的碰撞和能量传递来实现的。
2. 热传导方程的推导为了推导热传导方程,我们首先需要定义一些物理量:- 温度:表示物体的热状态,用T表示。
- 热流密度:表示单位时间内通过单位面积的热量,用q表示。
- 热导率:表示物质传导热量的能力,用λ表示。
- 热传导方程:用于描述热传导过程的方程,用符号形式表示如下: q = -λ∇T其中,∇T表示温度的梯度,即温度变化的速率。
为了推导热传导方程,我们需要考虑热量在物质内部的传递过程。
假设一个空间区域Ω内的物体,我们可以将其划分为无数个小体积元,每个小体积元的体积为dV。
在Ω内,热量总是从高温区向低温区传递,而且传递的热量正比于温度梯度。
考虑Ω内任意一个小体积元dV,在时间t时刻,该小体积元所受到的热流密度q可以表示为:q = -λ∇T dV根据物质的连续性,Ω内的热量变化率等于通过Ω的表面流出的热量,即:dQ = -∇·(λ∇T) dV其中,∇·表示散度运算符,表示向各个方向上的热量流出。
根据高斯公式,上式可以进一步变形为:dQ = -λ∇^2T dV其中,∇^2表示拉普拉斯运算符,表示温度的二阶偏导数。
由于dV是任意小体积元的体积,所以可以将上式中的dV移至等式右侧,得到:dQ/dV = -λ∇^2T因为dQ/dV等于单位体积内的热量变化率,即ρc∂T/∂t(其中,ρ表示物体的密度,c表示物体的比热容),所以我们可以将上式改写为:ρc∂T/∂t = λ∇^2T这就是热传导方程的推导过程。
热传导的计算方法热传导是热量从高温区域向低温区域传递的过程。
在工程领域中,了解和计算热传导非常重要,因为它直接关系到热能的利用和传递效率。
本文将介绍一些常用的热传导计算方法,并通过具体示例来说明它们的应用。
1.导热方程导热方程是最基本的热传导计算方法之一。
它描述了热传导过程中的温度变化,并利用热扩散系数、温度梯度和物质的热容量等参数进行计算。
导热方程的通用形式为:q = -k * A * ΔT/Δx,其中q表示热流量,A表示传热面积,ΔT表示温度差,Δx表示距离,k表示热导率。
例如,假设我们要计算热量从金属块的一侧传导到另一侧的情况。
已知金属块的热导率为0.2W/(m·K),距离为0.5m,温度差为50℃,传热面积为1m²。
利用导热方程,我们可以计算出热流量为q = -0.2 * 1 * 50/0.5 = -20W。
2.热传导方程热传导方程是导热方程的一种特殊形式,适用于热传导速率与温度变化成正比的情况。
具体来说,热传导方程可以通过考虑温度分布的变化来计算热传导速率。
它的通用形式为:q = -k * A * dT/dx,其中q表示热流量,A表示传热面积,dT表示温度变化,dx表示位置的变化,k表示热导率。
以一个简单的例子来说明,假设我们要计算热量从一段铁棒的一端传导到另一端的情况。
已知铁的热导率为80W/(m·K),位置变化为1m,温度变化为100℃,传热面积为2m²。
利用热传导方程,我们可以计算出热流量为q = -80 * 2 * 100/1 = -16000W。
3.有限元法有限元法是一种基于数值模拟的热传导计算方法。
它将连续介质离散化为多个小单元,并利用数学建模和计算技术进行模拟。
有限元法可以用来计算复杂几何形状和非线性材料的热传导问题。
例如,假设我们要计算一个复杂形状的导热板的热传导问题。
我们可以将导热板离散化为多个小单元,并在每个单元内进行温度和热量分布的计算。
第二章热传导方程§ 1热传导方程及其定解问题的提1. 一均匀细杆直径为 l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律dQ k 1(u u 1 )dsdt又假设杆的密度为,比热为 c ,热传导系数为 k ,试导出此时温度 u 满足的方程。
解:引坐标系:以杆的对称轴为x 轴,此时杆为温度u u( x,t) 。
记杆的截面面积 l 2为 S 。
t 到 tt 内流入截面坐标为 x 到 xx 一小段细杆的热量为 4由假设,在任意时刻dQu s t k u2u s x tkxs t k1x x x xx 2 xt 到 tt 在截面为杆表面和周围介质发生热交换,可看作一个“被动”的热源。
由假设,在时刻x 到 xx 一小段中产生的热量为4k 1dQ2k 1 u u l x tu u s x t1l1又在时刻 t 到 tt 在截面为 x 到 xx 这一小段内由于温度变化所需的热量为dQc u x,tt u x,t s x c u s x t由热量守恒原理得:3t tcu s x t k2us x t4k 1u u s x tt tx2 xl1消去 sx t ,再令x 0 , t 2 u 0 得精确的关系:cuk 4k 1 u ut x 2 l1u k 2u 4ka 22 u4k或t cx2c 1u u 1x2c 1u u 1ll其中a2kc2. 试直接推导扩散过程所满足的微分方程。
解:在扩散介质中任取一闭曲面s ,其包围的区域 为 ,则从时刻 t 1 到 t 2 流入此闭曲面的溶 质,由 dMDudsdt ,其中 D 为扩散系数,得nt 2D udsdtMt 1 snt 2t 2C udvdtM 1C u x, y, z, t 2 u x, y, z, t 1 dxdydzCudtdvt 1tt 1t两者应该相等,由奥、高公式得:t 2uuut 2C udvdtMD D D dvdt M 1t 1xx y y z zt 1t其中 C 叫做孔积系数 =孔隙体积。