2018-2019学年人教A版必修二直线与方程的应用教案
- 格式:docx
- 大小:1.90 MB
- 文档页数:14
3.2.1 直线的点斜式方程一、教学目标1、知识与技能(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;(2)能正确利用直线的点斜式、斜截式公式求直线方程。
(3)体会直线的斜截式方程与一次函数的关系.2、过程与方法在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。
3、情态与价值观通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。
二、教学重点、难点:(1)重点:直线的点斜式方程和斜截式方程。
(2)难点:直线的点斜式方程和斜截式方程的应用。
满足的关系式,43.2.2 直线的两点式方程一、教学目标1、知识与技能(1)掌握直线方程的两点的形式特点及适用范围;(2)了解直线方程截距式的形式特点及适用范围。
2、过程与方法让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点。
3、情态与价值观(1)认识事物之间的普遍联系与相互转化;(2)培养学生用联系的观点看问题。
二、教学重点、难点:1、重点:直线方程两点式。
2、难点:两点式推导过程的理解。
斜式解答如下问教师指C(3.2.3 直线的一般式方程一、教学目标1、知识与技能(1)明确直线方程一般式的形式特征(2)会把直线方程的一般式化为斜截式,进而求斜率和截距;(3)会把直线方程的点斜式、两点式化为一般式。
2、过程与方法学会用分类讨论的思想方法解决问题。
3、情态与价值观(1)认识事物之间的普遍联系与相互转化;(2)用联系的观点看问题。
二、教学重点、难点:1、重点:直线方程的一般式。
2、难点:对直线方程一般式的理解与应用。
高中数学必修二《直线与方程》教案设计一、教学目标1.知识目标:o学生能够掌握直线的点斜式、两点式和一般式方程的表达形式及其相互转换。
o学生能够理解直线方程中斜率、截距的概念,并能根据给定条件求出直线方程。
o学生能够运用直线方程解决简单的几何问题,如求两直线的交点、判断两直线是否平行或垂直。
2.能力目标:o培养学生的逻辑思维能力和抽象思维能力,通过直线方程的学习,提高数学建模能力。
o提高学生的运算能力,能够熟练进行直线方程的推导和计算。
o增强学生的问题解决能力,能够运用所学知识解决实际问题。
3.情感态度价值观目标:o培养学生严谨的数学学习态度,注重逻辑推理和证明过程。
o激发学生的学习兴趣,鼓励学生积极探索数学奥秘,培养数学学习的自信心。
o培养学生的合作精神,通过小组讨论和合作学习,提高团队协作能力。
二、教学内容-重点:直线的点斜式、两点式和一般式方程的表达及相互转换;斜率、截距的概念及应用。
-难点:直线方程的应用,如求两直线的交点、判断两直线的位置关系。
三、教学方法-讲授法:用于直线方程的基本概念和理论的讲解。
-讨论法:通过小组讨论,加深学生对直线方程的理解和应用。
-案例分析法:通过具体案例分析,提高学生解决实际问题的能力。
-多媒体教学法:利用多媒体资源,如、动画等,直观展示直线方程的图形和推导过程。
四、教学资源-教材:《高中数学必修二》-教具:黑板、粉笔、直尺、圆规-多媒体资源:课件、直线方程推导动画、几何画板软件-实验器材:无需特定实验器材五、教学过程六、课堂管理1.小组讨论:每组4-5人,确保每组成员水平均衡,指定小组长负责协调讨论和记录。
2.维持纪律:明确课堂规则,如举手发言、不打断他人讲话等,对违规行为及时提醒和处理。
3.激励策略:对积极参与讨论、表现突出的学生给予表扬和奖励,如加分、小礼品等。
七、评价与反馈1.课堂小测验:每节课结束前进行小测验,检查学生对本节课内容的掌握情况。
2.课后作业:布置适量的课后作业,巩固所学知识,要求学生按时完成并提交。
教学准备1. 教学目标1.掌握直线与平面垂直的概念并能用三种语言表示;2.掌握直线与平面垂直的判定定理及语言表示;3.会用线面垂直的定义和判定定理证明简单命题.2. 教学重点/难点1.掌握直线与平面垂直的概念并能用三种语言表示;2.掌握直线与平面垂直的判定定理及语言表示;3.会用线面垂直的定义和判定定理证明简单命题.3. 教学用具4. 标签教学过程从源于身边的图片中寻找并感知直线与平面的垂直关系.1.旗杆与地面的位置关系2.将一本书打开直立在桌面上,观察书脊(想象成一条直线)与桌面的位置关系呈什么状态?此时书脊与每页书和桌面的交线的位置关系如何?直线与平面垂直的定义1.铅垂线与地面上的任意一条直线的关系?(演示实验)2.如果一条直线和平面a相交,并且和这个平面内过交点O的任何直线都垂直,我们就说这条直线和这个平面互相垂直.如右图直线垂直于平面a3.直线与平面垂直的画法画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.例1 已知下列命题:探究直线与平面垂直的判定定理1.旗杆与比萨斜塔对比直观感觉塔与地面不垂直,旗杆是与地面垂直的,但是如何测定旗杆与地面垂直?(分组讨论)2.如下图,请同学们准备一块三角形的纸片,过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD,DC与桌面接触).(1)折痕AD与桌面垂直吗?(2)如何翻折才能使折痕与桌面所在的平面α垂直?3.直线与平面垂直的判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.图形语言:归纳小结1、直线与平面垂直的定义及应用;2、直线与平面垂直判定定理证明及应用;3、数学思想:转化的思想课外小组探究1.你认为三棱锥中最多有几个直角三角形?2.四棱锥最多有几个直角三角形呢?布置作业P74 习题2.3 B组:2,4.。
人教版高中必修二《直线与方程》教学案例《人教版高中必修二《直线与方程》教学案例》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!第1节直线与方程复习目标:1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握确定直线位置的几何要素,掌握直线方程的几种形式,了解斜截式与一次函数的关系.一、课前预习基础回顾考点1 直线的倾斜角与斜率1.直线的倾斜角(1)定义:x轴_____与直线_____的方向所成的角叫做这条直线的倾斜角.当直线与x轴平行或重合时,规定它的倾斜角为0°.动态定义:旋转(2)倾斜角的范围为_______________.2.直线的斜率(1)定义:一条直线的倾斜角α的________叫做这条直线的斜率,斜率常用小写字母k表示,即k=______,倾斜角是90°的直线没有斜率.(2)过两点的直线的斜率公式经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=_________.考点2 直线方程的几种形式关键要素:点,斜率,截距名称条件方程适用范围点斜式斜率k与点(x1,y1)y-y1=k(x-x1)不含直线x=x1斜截式斜率k与直线在y轴上的截距by=kx+b不含垂直于x轴的直线两点式两点(x1,y1),(x2,y2)=不含直线x=x1(x1=x2)和直线y=y1(y1=y2)截距式直线在x轴、y轴上的截距分别为a、b+=1不含垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A,B不同时为0)平面直角坐标系内的直线都适用[双基夯实]一、疑难辨析判断下列结论的正误.(正确的打“√”,错误的打“×”)1.直线的倾斜角越大,其斜率越大.( )2.当直线的斜率不存在时,其倾斜角存在.( )3.过点P(x1,y1)的直线方程一定可设为y-y1=k(x-x1).( )4.直线方程的截距式+=1中,a,b均应大于0.( )二、小题快练1.[2017·贵州模拟]已知直线l经过点P(-2,5),且斜率为-,则直线l的方程为( )A.3x+4y-14=0B.3x-4y+14=0C.4x+3y-14=0D.4x-3y+14=02.[课本改编]直线x+y+1=0的倾斜角是( )A.B.C.D.3.[课本改编]过两点(0,3),(2,1)的直线方程为( )A.x-y-3=0B.x+y-3=0C.x+y+3=0D.x-y+3=04.若点A(4,3),B(5,a),C(6,5)三点共线,则a的值为______.考向1 直线的倾斜角与斜率看菜如图,比较直线,,的斜率、、的大小.1.直线2x-y+4=0同时过第()象限A.一,二,三B.二,三,四C.一,二,四D.一,三,四2.直线l1:ax-y+b=0,l2:bx-y+a=0,在同一坐标系下l1和l2的图像是()3.如图,已知直线l1:y=-2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(-2,0),则k的取值范围是_______.拓展:(1)若M在第二象限,则k的取值范围是_______.(2)若M在第四象限,则k的取值范围是_______.【变式训练3】已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;例1 直线l过点P(1,0),且与以A(2,1),B(0,)为端点的线段有公共点,则直线l斜率的取值范围为_______________________.探究1若将题中P(1,0)改为P(-1,0),其他条件不变,求直线l斜率的取值范围.直线l的斜率直线l的倾斜角α区别直线l垂直于x轴时l的斜率不存在直线l垂直于x轴时l的倾斜角是90°联系①直线的斜率与直线的倾斜角(90°除外)为一一对应关系.②当α∈[0°,90°)时,α越大,l的斜率越大;当α∈(90°,180°)时,α越大,l的斜率越大.③所有直线都有倾斜角,但不是所有直线都有斜率.【变式训练1】如果直线l经过A(2,1),B(1,m2)(m∈R)两点,那么直线l的倾斜角α的取值范围是( )A.0≤α≤πB.0≤α≤或<α<πC.0≤α≤D.≤α<或<α<π考向2 求直线的方程例2 根据所给条件求直线的方程:(1)直线过点(-4,0),倾斜角的正弦值为;(2)直线过点(-3,4),且在两坐标轴上的截距之和为12;(3)直线过点(5,10),且到原点的距离为5.【变式训练2】已知△ABC的三个顶点分别为A(-3,0),B(2,1),C(-2,3),求:(1)BC边所在直线的方程;(2)BC边上中线AD所在直线的方程;(3)BC边的垂直平分线DE的方程.触类旁通求直线方程的两种方法(1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程,选择时,应注意各种形式的方程的适用范围,必要时要分类讨论.(2)待定系数法,即设定含有参数的直线方程,由条件列出方程(组),再求出参数,最后将其代入直线方程.考向3 直线方程的应用例3 已知直线l过点M(1,1),且与x轴,y轴的正半轴分别相交于A,B两点,O为坐标原点.求:(1)当|OA|+|OB|取得最小值时,直线l的方程;(2)当|MA|2+|MB|2取得最小值时,直线l的方程.【变式训练3】已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S(O为坐标原点),求S的最小值并求此时直线l的方程.核心规律1.明确直线方程各种形式的适用条件点斜式、斜截式方程适用于不垂直于x轴的直线;两点式方程不能表示垂直于x、y轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线.2.求直线方程中一种重要的方法就是先设直线方程,再求直线方程中的系数,这种方法叫待定系数法.满分策略1.求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.2.根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点.1.直线的倾斜角与斜率(1)在平面直角坐标系中,对于一条与x轴相交的直线,把x轴所在的直线绕着交点按__________方向旋转到和直线重合时所转过的____________称为这条直线的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为__________.(2)倾斜角的范围为________________.(3)倾斜角与斜率的关系:α≠90°时,k=________,倾斜角是90°的直线斜率________.(4)过两点的直线的斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=_____________________.2.直线方程的五种基本形式名称方程适用范围点斜式不含直线x=x0斜截式不含垂直于x轴的直线两点式不含直线x=x1(x1≠x2)和直线y=y1(y1≠y2)截距式不含垂直于坐标轴和过原点的直线一般式平面直角坐标系内的直线都适用自我检测1.若A(-2,3),B(3,-2),C三点共线,则m的值为________.2.直线l与两条直线x-y-7=0,y=1分别交于P、Q两点,线段PQ的中点为(1,-1),则直线l的斜率为_______________________________________________________.3.下列四个命题中,假命题是________(填序号).①经过定点P(x0,y0)的直线不一定都可以用方程y-y0=k(x-x0)表示;②经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示;③与两条坐标轴都相交的直线不一定可以用方程+=1表示;④经过点Q(0,b)的直线都可以表示为y=kx+b.4.如果A·C<0,且B·C<0,那么直线Ax+By+C=0不通过第________象限.5.已知直线l的方向向量与向量a=(1,2)垂直,且直线l过点A(1,1),则直线l的方程为______________.二、教学过程探究点一倾斜角与斜率例1 已知两点A(-1,-5)、B(3,-2),直线l的倾斜角是直线AB 倾斜角的一半,求l的斜率.变式迁移1直线xsinα-y+1=0的倾斜角的变化范围是______________.探究点二直线的方程例2 过点M(0,1)作直线,使它被两直线l1:x-3y+10=0,l2:2x+y-8=0所截得的线段恰好被M所平分,求此直线方程.变式迁移2 求适合下列条件的直线方程:(1)经过点P(3,2)且在两坐标轴上的截距相等;(2)经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍.探究点三直线方程的应用例3 过点P(2,1)的直线l交x轴、y轴正半轴于A、B两点,求使:(1)△AOB面积最小时l的方程;(2)PA·PB最小时l的方程.变式迁移3 为了绿化城市,拟在矩形区域ABCD内建一个矩形草坪(如图),另外△EFA内部有一文物保护区不能占用,经测量AB=100m,BC=80m,AE=30m,AF=20m,应如何设计才能使草坪面积最大?拓展延伸:例4 已知实数x,y满足y=x2-2x+2(-1≤x≤1).试求的最大值与最小值.三、回顾与反思:人教版高中必修二《直线与方程》教学案例这篇文章共9802字。
教学准备1. 教学目标(一)知识教学点掌握直线方程的一般形式。
.(二)能力训练点1、明确直线方程一般式的形式特征;2、会根据直线方程的一般式求斜率和截距;3、会把直线方程的点斜式、两点式化为一般式。
(三)德育渗透点通过对直线方程的几种形式的特点的分析,认识事物之间的普遍联系与相互转化,培养学生看问题一分为二的辩证唯物主义观点.2. 教学重点/难点掌握直线方程的一般形式3. 教学用具4. 标签教学过程(一)引入新课点斜式、斜截式不能表示与x轴垂直的直线;两点式不能表示与坐标轴平行的直线;截距式既不能表示与坐标轴平行的直线,又不能表示过原点的直线.与x轴垂直的直线可表示成x=x0,与x轴平行的直线可表示成y=y0。
它们都是二元一次方程.我们问:直线的方程都可以写成二元一次方程吗?反过来,二元一次方程都表示直线吗?(二)直线方程的一般形式我们知道,在直角坐标系中,每一条直线都有倾斜角α.当α≠90°时,直线有斜率,方程可写成下面的形式:y=kx+b当α=90°时,它的方程可以写成x=x0的形式.由于是在坐标平面上讨论问题,上面两种情形得到的方程均可以看成是二元一次方程.这样,对于每一条直线都可以求得它的一个二元一次方程,就是说,直线的方程都可以写成关于x、y的一次方程.反过来,对于x、y的一次方程的一般形式Ax+By+C=0.(1)其中A、B不同时为零.(1)当B≠0时,方程(1)可化为这里,我们借用了前一课y=kx+b表示直线的结论,不弄清这一点,会感到上面的论证不知所云.(2)当B=0时,由于A、B不同时为零,必有A≠0,方程(1)可化为它表示一条与y轴平行的直线.这样,我们又有:关于x和y的一次方程都表示一条直线.我们把方程写为Ax+By+C=0这个方程(其中A、B不全为零)叫做直线方程的一般式.引导学生思考:直线与二元一次方程的对应是什么样的对应?直线与二元一次方程是一对一的,既一一对应。
7.2直线的方程一、素质教育目标1、知识教学点⑴直线方程的点斜式、斜截式、两点式、截距式和一般式,它们之间的内在联系⑵直线与二元一次方程之间的关系⑶由已知条件写出直线的方程⑷根据直线方程求出直线的斜率、倾斜角、截距,能画方程表示的直线2、能力训练点(1)通过对直线方程的点斜式的研究,培养学生由特殊到一般的研究方法(2)通过对二元一次方程与直线的对应关系的认识和理解,培养学生的数、形转化能力(3)通过运用直线方程的知识解答相关问题的训练,培养学生灵活运用知识分析问题、解决问题的能力。
二、学法指导本节主要学习直线方程的五种形式,应理解并记忆公式的内容,特别要搞清各个公式的适用范围:点斜式和斜截式需要斜率存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示过原点及与坐标轴垂直的直线。
一般式虽然可表示任意直线但它所含的变量多,故在运用时要灵活选择公式,不丢解不漏解。
三、教学重点、难点1、重点:直线的点斜式和一般式的推导,由已知条件求直线的方程2、难点:直线的点斜式和一般式的推导,如何选择方程的形式,如何简化运算过程。
四、课时安排本课题安排3课时五、教与学过程设计第一课时直线的方程-点斜式、斜截式●教学目标1.理解直线方程点斜式的形式特点和适用范围.2.了解求直线方程的一般思路.3.了解直线方程斜截式的形式特点.●教学重点直线方程的点斜式●教学难点点斜式推导过程的理解.●教学方法学导式●教具准备幻灯片●教学过程1、创设情境已知直线l过点(1,2),斜率为2,则直线l上的任一点应满足什么条件?分析:设Q(x,y)为直线l上的任一点,则k PQ= 1,即(y―1)/(x―1)= 2(x≠1),整理得y―2=2(x―1)又点(1,2)符合上述方程,故直线l 上的任一点应满足条件y ―2=2(x ―1)回顾解题用到的知识点:过两点的斜率的公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线的斜率公式是:)(211212x x x x y y k ≠--= 2、提出问题问:直线l 过点(1,2),斜率为2,则直线l 的方程是y ―2=2(x ―1)吗?回想一下直线的方程与方程的直线的概念:以一个方程的解为坐标的点都是某条直线上的点,反过来,这条直线上的点的坐标都是这个方程的解,这时,这个方程叫做这条直线的方程,这条直线叫做这个方程的直线。
备课资料已知直线的倾斜角的取值范围,利用正切函数的性质,讨论直线斜率及其绝对值的变化情况:当0°≤α<90°时,作出y=tanα在[0°,90°)区间内的函数图象;由图象观察可知:当α∈[0°,90°),y=tanα>0,并且随着α的增大,y不断增大,|y|也不断增大.所以,当α∈[0°,90°)时,随着倾斜角α的不断增大,直线斜率不断增大,直线斜率的绝对值也不断增大.当90°<α<180°时,作出y=tanα在(90°,180°)区间内的函数图象;由图象观察可知:当α∈(90°,180°),y=tanα<0,并且随着α的增大,y=tanα不断增大,|y|不断减小.所以,当α∈(90°,180°)时,随着倾斜角α的不断增大,直线的斜率不断增大,但直线斜率的绝对值不断减小.第三章直线与方程本章教材分析直线与方程是平面解析几何初步的第一章,用坐标法研究平面上最简单的图形——直线.本章首先在平面直角坐标系中,介绍直线的倾斜角、斜率等概念;然后建立直线的方程:点斜式、斜截式、两点式、截距式等;通过直线的方程,研究直线间的位置关系:平行和垂直,以及两条直线的交点坐标、点到直线的距离公式等.解析几何研究问题的主要方法是坐标法,它是解析几何中最基本的研究方法.坐标法的基本特点是,首先用代数语言(坐标及其方程)描述几何元素及其关系,将几何问题代数化;解决代数问题,得到结果;分析代数结果的几何含义,最终解决几何问题.本章自始至终贯穿数形结合的思想.在图形的研究过程中,注意代数方法的使用;在代数方法的使用过程中,加强与图形的联系.直线是最基本、最简单的几何图形,它既能为进一步学习做好知识上的必要准备,又能为今后灵活地运用解析几何的基本思想和方法打好坚实的基础.只有学好本章才能为第四章的圆与方程做好准备和铺垫.教学中一定要注重由浅及深的学习规律,多采用变式教学,同时渗透常用的数学思想方法(数形结合、分类讨论、类比、推广、特殊化、化归等),体现由特殊到一般的研究方法,化难为易、化抽象为具体,深入浅出的引导学生自己发现规律,大胆质疑、积极思考、合作探究、激发他们学习的兴趣,教师合理诱导并且及时鼓励,使同学们能愉快的、轻松的学习,并且提高他们应用所学知识解决问题(尤其是实际问题)的能力,真正体现出“在用中学,在学中用,为用而学,学而能用”,这一点也正符合新课标的要求和精神.3.1 直线的倾斜角与斜率 3.1.1 倾斜角与斜率整体设计教学分析直线是最基本、最简单的几何图形,它既能为进一步学习作好知识上的必要准备,又能为今后灵活地运用解析几何的基本思想和方法打好坚实的基础.事实上,只有透彻理解并熟练掌握直线的倾斜角和斜率这两个基本概念,学生才能对直线及其位置进行定量的研究.对直线的倾斜角和斜率,必须要求学生理解它们的准确涵义和作用,掌握它们的导出,并在运用上形成相应的技能和熟练的技巧.本小节从一个具体的一次函数与它的图象入手,引入直线的倾斜角概念,注重了由浅及深的学习规律,并体现了由特殊到一般的研究方法.引导学生认识到之所以引入直线在平面直角坐标系中的倾斜角和斜率概念,是进一步研究直线方程的需要. 三维目标1.理解直线的倾斜角和斜率的定义,充分利用斜率和倾斜角是从数与形两方面刻划直线相对于x 轴倾斜程度的两个量这一事实,在教学中培养学生数形结合的数学思想.2.掌握经过两点P 1(x 1,y 1)和P 2(x 2,y 2)的直线的斜率公式:k=1212x x y y --(x 1≠x 2),培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.3.培养和提高学生联系、对应、转化等辩证思维能力,认识事物之间的相互联系,培养相互合作意识,培养学生思维的严谨性,注意学生语言表述能力的训练. 重点难点教学重点:直线的倾斜角和斜率概念以及过两点的直线的斜率公式. 教学难点:斜率公式的推导. 课时安排 1课时教学过程导入新课思路1.如图1所示,在直角坐标系中,过点P 的一条直线绕P 点旋转,不管旋转多少周,它对x 轴的相对位置有几种情形?教师引入课题:直线的倾斜角和斜率.图1思路2.我们知道,经过两点有且只有(确定)一条直线.那么,经过一点P 的直线l 的位置能确定吗?这些直线有什么联系和区别呢?教师引入课题:倾斜角与斜率. 推进新课 新知探究 提出问题①怎样描述直线的倾斜程度呢?②图2中标出的直线的倾斜角α对不对?如果不对,违背了定义中的哪一条?图2③直线的倾斜角能不能是0°?能不能是锐角?能不能是直角?能不能是钝角?能不能是平角?能否大于平角?④日常生活中,还有没有表示倾斜程度的量? ⑤正切函数的定义域是什么? ⑥任何直线都有斜率么?⑦我们知道两点确定一条直线,那么已知直线上两点坐标,如何才能求出它的倾斜角和斜率呢?如:已知A(2,3)、B(-1,4),则直线AB 的斜率是多少?活动:①与交角有关.当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.可见:平面上的任一直线都有唯一的一个倾斜角,并且倾斜角定了,直线的方向也就定了. ②考虑正方向.③动手在坐标系中作多条直线,可知倾斜角的取值范围是0°≤α<180°.在此范围内,坐标平面上的任何一条直线都有唯一的倾斜角,而每一个倾斜角都能确定一条直线的方向.倾斜角直观地表示了直线对x 轴正方向的倾斜程度.规定:当直线和x 轴平行或重合时,直线倾斜角为0°,所以倾斜角的范围是0°≤α<180°. ④联想小时候玩的滑梯,结合坡度比给出斜率定义,直线斜率的概念. 倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示,即k=tanα. ⑤教师介绍正切函数的相关知识.⑥说明:直线与斜率之间的对应不是映射,因为垂直于x 轴的直线没有斜率. (倾斜角是90°的直线没有斜率)⑦已知直线l 上的两点P 1(x 1,y 1),P 2(x 2,y 2),且直线l 与x 轴不垂直,如何求直线l 的斜率?教学时可与教材上的方法一样推出. 讨论结果:①用倾斜角.②都不对.与定义中的x 轴正方向、直线向上方向相违背. ③直线的倾斜角能是0°,能是锐角,能是直角,能是钝角,不能是平角,不能大于平角. ④有,常用的有坡度比. ⑤90°的正切值不存在. ⑥倾斜角是90°的直线没有斜率.⑦过两点P 1(x 1,y 1)、P 2(x 2,y 2)的直线的斜率公式k=1212x x y y --.应用示例思路1例1 已知A(3,2),B(-4,1),C(0,-1),求直线AB,BC,CA 的斜率,并判断它们的倾斜角是钝角还是锐角.活动:引导学生明确已知两点坐标,由斜率公式代入即可求得k 的值; 而当k=tanα<0时,倾斜角α是钝角; 而当k=tanα>0时,倾斜角α是锐角;而当k=tanα=0时,倾斜角α是0°.解:直线AB 的斜率k 1=71>0,所以它的倾斜角α是锐角;直线BC 的斜率k 2=-0.5<0,所以它的倾斜角α是钝角; 直线CA 的斜率k 3=1>0,所以它的倾斜角α是锐角. 变式训练已知A(1,33),B(0,23),求直线AB 的斜率及倾斜角.解:k AB =3013233=--,∵直线倾斜角的取值范围是0°—180°,∴直线AB 的倾斜角为60°.例2 在平面直角坐标系中,画出经过原点且斜率分别为1,-1,2及-3的直线a,b,c,l.活动:要画出经过原点的直线a,只要再找出a 上的另外一点M.而M 的坐标可以根据直线a 的斜率确定.解:设直线a 上的另外一点M 的坐标为(x,y),根据斜率公式有:1=00--x y ,所以x=y.可令x=1,则y=1,于是点M 的坐标为(1,1).此时过原点和点M(1,1),可作直线a. 同理,可作直线b,c,l. 变式训练1.已知直线的倾斜角,求直线的斜率: (1)α=0°;(2)α=60°;(3)α=90°. 活动:指导学生根据定义直接求解. 解:(1)∵tan0°=0, ∴倾斜角为0°的直线斜率为0. (2)∵tan60°=3,∴倾斜角为60°的直线斜率为3.(3)∵tan90°不存在,∴倾斜角为90°的直线斜率不存在. 点评:通过此题训练,意在使学生熟悉特殊角的斜率.2.关于直线的倾斜角和斜率,下列哪些说法是正确的( ) A.任一条直线都有倾斜角,也都有斜率 B.直线的倾斜角越大,它的斜率就越大C.平行于x 轴的直线的倾斜角是0或π;两直线的倾斜角相等,它们的斜率也相等D.直线斜率的范围是(-∞,+∞) 答案:D思路2例1 求经过点A(-2,0),B(-5,3)的直线的斜率和倾斜角.解:k AB =)2(503----=1,即tanα=-1,又∵0°≤α<180°,∴α=135°.∴该直线的斜率是-1,倾斜角是135°.点评:此题要求学生会通过斜率公式求斜率,并根据斜率求直线的倾斜角. 变式训练求过下列两点的直线的斜率k 及倾斜角α. (1)P 1(-2,3),P 2(-2,8); (2)P 1(5,-2),P 2(-2,-2). 解:(1)∵P 1P 2与x 轴垂直,∴直线斜率不存在,倾斜角α=90°.(2)k=tanα=52)2(2-----=0,∴直线斜率为0,倾斜角α=0°.例2 已知三点A 、B 、C ,且直线AB 、AC 的斜率相同,求证:这三点在同一条直线上. 证明:由直线的斜率相同,可知直线AB 的倾斜角与AC 的倾斜角相等,而两直线过公共点A ,所以直线AB 与AC 重合,因此A 、B 、C 三点共线.点评:此题反映了斜率公式的应用,即若有共同点的两直线斜率相同,则可以判断三点共线. 变式训练1.若三点A(2,3),B(3,2),C(21,m)共线,求实数m 的值.解:k AB =2332--=-1,k AC =2213--m ,∵A 、B 、C 三点共线,∴k AB =k AC .∴2213--m =-1.∴m=29.2.若三点A(2,2),B(a,0),C(0,b)(ab≠0)共线,则a 1+b 1的值等于_____________. 答案:21例 3 已知三角形的顶点A(0,5),B(1,-2),C(-6,m),BC 的中点为D ,当AD 斜率为1时,求m 的值及|AD|的长.分析:应用斜率公式、中点坐标公式、两点间距离公式.解:D 点的坐标为(-25,22-m ),∴k AD =025522----m =1.∴m=7.∴D 点坐标为(-25,25).∴|AD|=225)255()25(22=-+. 变式训练过点P(-1,-1)的直线l 与x 轴和y 轴分别交于A 、B 两点,若P 恰为线段A 的中心,求直线l 的斜率和倾斜角.答案:k=-1,倾斜角为43π.知能训练课本本节练习1、2、3、4. 拓展提升已知点A(-2,3),B(3,2),过点P(0,-2)的直线l 与线段AB 有公共点,求直线l 的斜率k 的取值范围.分析:利用数形结合同时注意直线斜率不存在的特殊情形.答案:(-∞,34)∪(-25,+∞).课堂小结通过本节学习,要求大家:(1)掌握已知直线的倾斜角求斜率;(2)直线倾斜角的概念及直线倾斜角的范围; (3)直线斜率的概念;(4)已知直线的倾斜角(或斜率),求直线的斜率(或倾斜角)的方法. 作业习题3.1 A 组3、4、5.设计感想本节教学设计注重引导学生通过观察来获得新知,在实际教学中教师要及时引导,加强师生交流,学生通过自主观察、分析还是能得到正确结论的,要给学生充分的思考时间.备课资料备用习题1.已知A(-6,0),B(3,6),P(0,3),Q(-2,6),试判断直线AB 与PQ 的位置关系.解:直线AB 的斜率k 1=32,直线PQ 的斜率k 2=-23,因为k 1·k 2=-1,所以AB ⊥PQ.2.求m 值,使过点A(m,1),B(-1,m)的直线与过点P(1,2),Q(-5,0)的直线, (1)平行;(2)垂直.答案:(1)21;(2)-2.3.已知A(5,-1),B(1,1),C(2,3)三点,试判断△ABC 的形状. 活动:先让学生作图猜想,然后给出证明. 答案:由斜率乘积为-1易知为直角三角形.4.已知两直线l 1:y=2k(x+2),l 2:y=3k(x-2),它们与x 轴围成一个三角形,若使P(3,3)在这三角形内,求k 的范围.图5解:如图5,l 1、l 2分别是过定点A(-2,0),B(2,0)的动直线,易知k AP =53,k BP =3,k AQ =143,k BQ =103.要使P(3,3)在三角形内必有⎪⎩⎪⎨⎧<>,2,3k k k k AP PB 得103<k <1.(设计者:高建勇、杨海燕)3.1.2 两条直线平行与垂直的判定整体设计教学分析直线的平行和垂直是两条直线的重要位置关系,它们的判定,又都是由相应的斜率之间的关系来确定的,并且研究讨论的手段和方法也相类似,因此,在教学时采用对比方法,以便弄清平行与垂直之间的联系与区别.值得注意的是,当两条直线中有一条不存在斜率时,容易得到两条直线垂直的充要条件,这也值得略加说明. 三维目标1.掌握两条直线平行的充要条件,并会判断两条直线是否平行.掌握两条直线垂直的充要条件,并会判断两条直线是否垂直.培养和提高学生联系、对应、转化等辩证思维能力.2.通过教学,提倡学生用旧知识解决新问题,注意解析几何思想方法的渗透,同时注意思考要严密,表述要规范,培养学生探索、概括能力. 重点难点教学重点:掌握两条直线平行、垂直的充要条件,并会判断两条直线是否平行、垂直. 教学难点:是斜率不存在时两直线垂直情况的讨论(公式适用的前提条件). 课时安排 1课时教学过程导入新课思路1.设问(1)平面内不重合的两条直线的位置关系有哪几种?(2)两条直线的倾斜角相等,这两条直线是否平行?反过来是否成立?(3)“α=β”是“tanα=tanβ”的什么条件?根据倾斜角和斜率的关系,能否利用斜率来判定两条直线平行呢?思路2.上节课我们学习的是什么知识?想一想倾斜角具备什么条件时两条直线会平行、垂直呢?你认为能否用斜率来判断.这节课我们就来专门来研究这个问题.推进新课新知探究提出问题①平面内不重合的两条直线的位置关系有几种?②两条直线的倾斜角相等,这两条直线是否平行?反过来是否成立?③“α=β”是“tanα=tanβ”的什么条件?④两条直线的斜率相等,这两条直线是否平行?反过来是否成立?⑤l1∥l2时,k1与k2满足什么关系?⑥l1⊥l2时,k1与k2满足什么关系?活动:①教师引导得出平面内不重合的两条直线的位置关系有平行和相交,其中垂直是相交的特例.②数形结合容易得出结论.③注意到倾斜角是90°的直线没有斜率,即tan90°不存在.④注意到倾斜角是90°的直线没有斜率.⑤必要性:如果l1∥l2,如图1所示,它们的倾斜角相等,即α1=α2,tanα1=tanα2,即k1=k2.图1充分性:如果k1=k2,即tanα1=tanα2,∵0°≤α1<180°,0°≤α2<180°,∴α1=α2.于是l1∥l2.⑥学生讨论,采取类比方法得出两条直线垂直的充要条件.讨论结果:①平面内不重合的两条直线的位置关系有平行和相交,其中垂直是相交的特例.②两条直线的倾斜角相等,这两条直线平行,反过来成立.③“α=β”是“tanα=tanβ”的充要条件.④两条直线的斜率相等,这两条直线平行,反过来成立.⑤l1∥l2⇔k1=k2.⑥l1⊥l2⇔k1k2=-1.应用示例例1 已知A(2,3),B(-4,0),P(-3,1),Q(-1,2),判断直线BA与PQ的位置关系,并证明你的结论.解:直线BA的斜率k BA=)4(23---=0.5,直线PQ的斜率k PQ=)3(112----=0.5,因为k BA =k PQ .所以直线BA ∥PQ. 变式训练若A(-2,3),B(3,-2),C(21,m)三点共线,则m 的值为( )A.21B.-21C.-2D.2分析:k AB =k BC ,32122332-+=+--m ,m=21.答案:A例2 已知四边形ABCD 的四个顶点分别为A (0,0),B (2,-1),C(4,2),D(2,3),试判断四边形ABCD 的形状,并给出证明.解:AB 边所在直线的斜率k AB =-21, CD 边所在直线的斜率k CD =-21, BC 边所在直线的斜率k BC =23, DA 边所在直线的斜率k DA =23.因为k AB =k CD ,k BC =k DA ,所以AB ∥CD,BC ∥DA. 因此四边形ABCD 是平行四边形. 变式训练直线l 1:ax+3y+1=0,l 2:x+(a-2)y+a=0,它们的倾斜角及斜率依次分别为α1,α2,k 1,k 2.(1)a=_____________时,α1=150°; (2)a=_____________时,l 2⊥x 轴; (3)a=_____________时,l 1∥l 2;(4)a=_____________时,l 1、l 2重合; (5)a=_____________时,l 1⊥l 2.答案:(1)3 (2)2 (3)3 (4)-1 (5)1.5知能训练习题3.1 A 组6、7. 拓展提升问题:已知P (-3,2),Q (3,4)及直线ax+y+3=0.若此直线分别与PQ 的延长线、QP 的延长线相交,试分别求出a 的取值范围.(图2)图2解:直线l :ax+y+3=0是过定点A (0,-3)的直线系,斜率为参变数-a ,易知PQ 、AQ 、AP 、l 的斜率分别为:k PQ =31,k AQ =37,k AP =35,k 1=-a.若l 与PQ 延长线相交,由图,可知k PQ <k 1<k AQ ,解得-37<a <-31; 若l 与PQ 相交,则k 1>k AQ 或k 1<k AP ,解得a <-37或a >35; 若l 与QP 的延长线相交,则k PQ >k 1>k AP ,解得-31<a <35.课堂小结通过本节学习,要求大家:1.掌握两条直线平行的充要条件,并会判断两条直线是否平行.2.掌握两条直线垂直的充要条件,并会判断两条直线是否垂直.3.注意解析几何思想方法的渗透,同时注意思考要严密,表述要规范,培养学生探索、概括能力.4.认识事物之间的相互联系,用联系的观点看问题. 作业习题3.1 A 组4、5.设计感想本课通过探究两直线平行或垂直的条件,力求培养学生运用已有知识解决新问题的能力,以及数形结合能力.通过对两直线平行与垂直的位置关系的研究,培养了学生的成功意识,合作交流的学习方式,激发学生的学习兴趣.组织学生充分讨论、探究、交流,使学生自己发现规律,自己总结出两直线平行与垂直的判定依据,教师要及时引导、及时鼓励.备课资料 解析几何的应用解析几何又分为平面解析几何和空间解析几何.在平面解析几何中,除了研究有关直线的性质外,主要是研究圆锥曲线(圆、椭圆、抛物线、双曲线)的有关性质.在空间解析几何中,除了研究平面、直线有关性质外,主要研究柱面、锥面、旋转曲面.椭圆、双曲线、抛物线的有些性质,在生产或生活中被广泛应用.比如电影放映机的聚光灯泡的反射面是椭圆面,灯丝在一个焦点上,影片门在另一个焦点上;探照灯、聚光灯、太阳灶、雷达天线、卫星的天线、射电望远镜等都是利用抛物线的原理制成的.总的来说,解析几何运用坐标法可以解决两类基本问题:一类是满足给定条件点的轨迹,通过坐标系建立它的方程;另一类是通过方程的讨论,研究方程所表示的曲线性质.运用坐标法解决问题的步骤是:首先在平面上建立坐标系,把已知点的轨迹的几何条件“翻译”成代数方程;然后运用代数工具对方程进行研究;最后把代数方程的性质用几何语言叙述,从而得到原先几何问题的答案.(设计者:王清娥、杨海燕)3.2 直线的方程3.2.1 直线的点斜式方程整体设计教学分析直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径.在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的.从一次函数y=kx+b(k≠0)引入,自然地过渡到本节课想要解决的问题——求直线的方程问题.在引入过程中,要让学生弄清直线与方程的一一对应关系,理解研究直线可以从研究方程及方程的特征入手.在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线的方程.三维目标1.掌握由一点和斜率导出直线方程的方法,掌握直线的点斜式方程,了解直线方程的斜截式是点斜式的特例;培养学生思维的严谨性和相互合作意识,注意学生语言表述能力的训练.2.引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.培养学生形成严谨的科学态度和求简的数学精神.3.掌握直线方程的点斜式的特征及适用范围,培养和提高学生联系、对应、转化等辩证思维能力.重点难点教学重点:引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.教学难点:在理解的基础上掌握直线方程的点斜式的特征及适用范围.课时安排1课时教学过程导入新课思路1.方程y=kx+b与直线l之间存在着什么样的关系?让学生边回答,教师边适当板书.它们之间存在着一一对应关系,即(1)直线l上任意一点P(x1,y1)的坐标是方程y=kx+b的解.(2)(x1,y1)是方程y=kx+b的解 点P(x1,y1)在直线l上.这样好像直线能用方程表示,这节课我们就来学习、研究这个问题——直线的方程(宣布课题).思路2.在初中,我们已经学习过一次函数,并接触过一次函数的图象,现在,请同学们作一下回顾:一次函数y=kx+b的图象是一条直线,它是以满足y=kx+b的每一对x、y的值为坐标的点构成的.由于函数式y=kx+b也可以看作二元一次方程,所以我们可以说,这个方程的解和直线上的点也存在这样的对应关系.这节课我们就来学习直线的方程(宣布课题).推进新课 新知探究 提出问题①如果把直线当做结论,那么确定一条直线需要几个条件?如何根据所给条件求出直线的方程?②已知直线l 的斜率k 且l 经过点P 1(x 1,y 1),如何求直线l 的方程? ③方程导出的条件是什么?④若直线的斜率k 不存在,则直线方程怎样表示?⑤k=11x x y y --与y-y 1=k(x-x 1)表示同一直线吗? ⑥已知直线l 的斜率k 且l 经过点(0,b),如何求直线l 的方程? 讨论结果:①确定一条直线需要两个条件: a.确定一条直线只需知道k 、b 即可;b.确定一条直线只需知道直线l 上两个不同的已知点.②设P(x ,y)为l 上任意一点,由经过两点的直线的斜率公式,得k=11x x y y --,化简,得y -y 1=k(x -x 1).③方程导出的条件是直线l 的斜率k 存在. ④a.x=0;b.x=x 1.⑤启发学生回答:方程k=11x x y y --表示的直线l 缺少一个点P 1(x 1,y 1),而方程y -y 1=k(x -x 1)表示的直线l 才是整条直线. ⑥y=kx+b. 应用示例思路1例1 一条直线经过点P 1(-2,3),倾斜角α=45°,求这条直线方程,并画出图形.图1解:这条直线经过点P 1(-2,3),斜率是k=tan45°=1.代入点斜式方程,得y-3=x+2,即x-y+5=0, 这就是所求的直线方程,图形如图1所示.点评:此例是点斜式方程的直接运用,要求学生熟练掌握,并具备一定的作图能力. 变式训练求直线y=-3(x-2)绕点(2,0)按顺时针方向旋转30°所得的直线方程. 解:设直线y=-3(x-2)的倾斜角为α,则tanα=-3,又∵α∈[0°,180°), ∴α=120°.∴所求的直线的倾斜角为120°-30°=90°.∴直线方程为x=2.例2 如果设两条直线l 1和l 2的方程分别是l 1:y=k 1x+b 1,l 2:y=k 2x+b 2,试讨论:(1)当l 1∥l 2时,两条直线在y 轴上的截距明显不同,但哪些量是相等的?为什么? (2)l 1⊥l 2的条件是什么?活动:学生思考:如果α1=α2,则tanα1=tanα2一定成立吗?何时不成立?由此可知:如果l 1∥l 2,当其中一条直线的斜率不存在时,则另一条直线的斜率必定不存在.反之,问:如果b 1≠b 2且k 1=k 2,则l 1与l 2的位置关系是怎样的?由学生回答,重点说明α1=α2得出tanα1=tanα2的依据.解:(1)当直线l 1与l 2有斜截式方程l 1:y=k 1x+b 1,l 2:y=k 2x+b 2时,直线l 1∥l 2⇔k 1=k 2且b 1≠b 2.(2)l 1⊥l 2⇔k 1k 2=-1. 变式训练判断下列直线的位置关系:(1)l 1:y=21x+3,l 2:y=21x-2; (2)l 1:y=35x,l 2:y=-53x.答案:(1)平行;(2)垂直.思路2例1 已知直线l 1:y=4x 和点P(6,4),过点P 引一直线l 与l 1交于点Q ,与x 轴正半轴交于点R ,当△OQR 的面积最小时,求直线l 的方程.活动:因为直线l 过定点P(6,4),所以只要求出点Q 的坐标,就能由直线方程的两点式写出直线l 的方程.解:因为过点P(6,4)的直线方程为x=6和y -4=k(x -6), 当l 的方程为x=6时,△OQR 的面积为S=72;当l 的方程为y -4=k(x -6)时,有R(k k 46-,0),Q (k k 46-,41624--k k ), 此时△OQR 的面积为S=21×k k 46-×41624--k k =)4()23(82--k k k .变形为(S -72)k 2+(96-4S)k -32=0(S≠72). 因为上述方程根的判别式Δ≥0,所以得S≥40. 当且仅当k=-1时,S 有最小值40.因此,直线l 的方程为y -4=-(x -6),即x +y -10=0.点评:本例是一道有关函数最值的综合题.如何恰当选取自变量,建立面积函数是解答本题的关键.怎样求这个面积函数的最值,学生可能有困难,教师宜根据学生的实际情况进行启发和指导. 变式训练如图2,要在土地ABCDE 上划出一块长方形地面(不改变方向),问如何设计才能使占地面积最大?并求出最大面积(精确到1 m 2)(单位:m ).图2解:建立如图直角坐标系,在线段AB 上任取一点P 分别向CD 、DE 作垂线,划得一矩形土地.∵AB 方程为2030x x +=1,则设P(x,20-32x )(0≤x≤30), 则S 矩形=(100-x)[80-(20-32x)] =-32(x-5)2+6 000+350(0≤x≤30),当x=5时,y=350,即P (5,350)时,(S 矩形)max =6 017(m 2).例2 设△ABC 的顶点A(1,3),边AB 、AC 上的中线所在直线的方程分别为x -2y +1=0,y=1,求△ABC 中AB 、AC 各边所在直线的方程.活动:为了搞清△ABC 中各有关元素的位置状况,我们首先根据已知条件,画出简图3,帮助思考问题.解:如图3,设AC 的中点为F ,AC 边上的中线BF :y=1.图3AB 边的中点为E ,AB 边上中线 CE :x -2y +1=0.设C 点坐标为(m ,n),则F(23,21++n m ). 又F 在AC 中线上,则23+n =1,∴n=-1.又C 点在中线CE 上,应当满足CE 的方程,则m -2n +1=0. ∴m=-3.∴C 点为(-3,-1).设B 点为(a,1),则AB 中点E(213,21++a ),即E(21a+,2). 又E 在AB 中线上,则21a+-4+1=0.∴a=5.∴B 点为(5,1).由两点式,得到AB ,AC 所在直线的方程AC :x -y +2=0,AB :x +2y -7=0. 点评:此题思路较为复杂,应使同学们做完后从中领悟到两点: (1)中点分式要灵活应用;(2)如果一个点在直线上,则这点的坐标满足这条直线的方程,这一观念必须牢牢地树立起来. 变式训练已知点M (1,0),N (-1,0),点P 为直线2x-y-1=0上的动点,则|PM|2+|PN|2的最小值为何?解:∵P 点在直线2x-y-1=0上,∴设P (x 0,2x 0-1).∴|PM|2+|PN|2=10(x 0-52)2+512≥512. ∴最小值为512.知能训练课本本节练习1、2、3、4. 拓展提升已知直线y=kx +k +2与以A(0,-3)、B(3,0)为端点的线段相交,求实数k 的取值范围.图4活动:此题要首先画出图形4,帮助我们找寻思路,仔细研究直线y=kx +k +2,我们发现它可以变为y -2=k(x +1),这就可以看出,这是过(-1,2)点的一组直线.设这个定点为P(-1,2).解:我们设PA 的倾斜角为α1,PC 的倾斜角为α,PB 的倾斜角为α2,且α1<α<α2. 则k 1=tanα1<k <k 2=tanα2.。
课题:2.3.3.6直线方程的综合应用(2)课 型:习题课教学目标:进一步加深掌握直线知识,并能灵活运用知识解决有关问题教学重点:直线方程的综合运用教学难点:解决问题的方法与策略教学过程:一、知识练习1. 已知点A(1,2)、B (3,1),线段AB 的垂直平分线的方程是(A). 524=+y x (B). 524=-y x(C). 52=+y x (D). 52=-y x2. 已知点(a,2)(a>0)到直线l :x-y+3=0的距离为1,则a 等于 (A).2 (B). 22- (C).12- (D). 1+23. 直线()323=+-y x 和直线2)32(=-+y x 的位置关系是 (A).相交但不垂直 (B).垂直 (C). 平行 (D).重合4. 直线1=y 与直线33+=x y 的夹角为(A).︒30 (B).︒60 (C).︒90 (D).︒455.过点M (2, 1)的直线与x 轴、y 轴分别交于P 、Q 两点,若M 为线段PQ 的中点,则这条直线的方程为(A )2x –y –3=0 (B )2x +y –5=0 (C )x +2y –4=0 (D )x –2y +3=06.点P (a +b , ab )在第二象限内,则bx +ay –ab =0直线不经过的象限是(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限7.被两条直线21x –y =1, y =–x –3截得的线段的中点是P (0, 3)的直线l 的方程为 .8.直线l 1:3x +4y –12=0与x 轴、y 轴的正半轴分别交于A 、B 两点,过P (1,0)点作直线l 平分△AOB 的面积,则直线l 的方程是 .二、例题分析例1.已知定点)5,2(-A ,动点B 在直线032=+-y x 上运动,当线段AB 最短时,求B 的坐标.解:如图。
易知当AB 的连线与已知直线垂直时,AB 的长度最短。
直线的方程教学目标(1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.(2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.(3)掌握直线方程各种形式之间的互化.(4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.(5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.(6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.教学建议1.教材分析(1)知识结构由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.(2)重点、难点分析①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程.解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线.本节内容就是求直线的方程,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用.直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头.学生对点斜式学习的效果将直接影响后继知识的学习.②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明.2.教法建议(1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬.(2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础.直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证.教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点(3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解.(4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件.两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率.因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要.教学中应突出点斜式、两点式和一般式三个教学高潮.求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程.根据两个条件运用待定系数法和方程思想求直线方程.(5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数).(6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力.(7)直线方程的理论在其他学科和生产生活实际中有大量的应用.教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力.(8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上.教学设计示例直线方程的一般形式教学目标:(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.(2)理解直线与二元一次方程的关系及其证明(3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.教学重点、难点:直线方程的一般式.直线与二元一次方程(、不同时为0)的对应关系及其证明.教学用具:计算机教学方法:启发引导法,讨论法教学过程:下面给出教学实施过程设计的简要思路:教学设计思路:(一)引入的设计前边学习了如何根据所给条件求出直线方程的方法,看下面问题:问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?答:直线方程是,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.肯定学生回答,并纠正学生中不规范的表述.再看一个问题:问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次.肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”.启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:【问题1】“任意直线的方程都是二元一次方程吗?”(二)本节主体内容教学的设计这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.学生或独立研究,或合作研究,教师巡视指导.经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:思路一:…思路二:………教师组织评价,确定最优方案(其它待课下研究)如下:按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在.当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程.当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.综合两种情况,我们得出如下结论:在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程.至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”.同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?学生们不难得出:二者可以概括为统一的形式.这样上边的结论可以表述如下:在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程.启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢?师生共同讨论,评价不同思路,达成共识:回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程(其中、不同时为0)系数是否为0恰好对应斜率是否存在,即(1)当时,方程可化为这是表示斜率为、在轴上的截距为的直线.(2)当时,由于、不同时为0,必有,方程可化为这表示一条与轴垂直的直线.因此,得到结论:在平面直角坐标系中,任何形如(其中、不同时为0)的二元一次方程都表示一条直线.为方便,我们把(其中、不同时为0)称作直线方程的一般式是合理的.【动画演示】演示“直线各参数.gsp”文件,体会任何二元一次方程都表示一条直线.至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.(三)练习巩固、总结提高、板书和作业等环节的设计在此从略-->。
人教版高中必修2第三章直线与方程教学设计一、教学目标本章教学的主要目标是:1.了解直线的定义、性质、类型及方程;2.熟悉在直线上的点、向量、角、距离等概念及计算方法;3.掌握直线的位置关系及其运用。
二、教学重点和难点本章的教学重点是:1.直线的定义、性质、类型及方程;2.直线上的点、向量、角、距离等概念及计算方法。
这些内容需要学生掌握,才能进一步理解直线的位置关系及其运用。
而本章的教学难点则是:1.直线的方程,特别是斜率截距式、两点式的推导和运用;2.直线的位置关系分析及其运用。
这两个难点需要较高的数学思维能力和逻辑推理能力。
三、教学过程设计1. 导入环节引导学生回忆前面学过的知识,如点、直线、向量等的基本概念和运算规律,并提出本章的教学主题:直线与方程。
2. 知识讲解2.1 直线的定义、特征、斜率和截距首先,讲解直线的定义和特征,包括直线的起点和终点、无限延长性等特征。
然后,介绍直线的斜率和截距,包括斜率的概念、计算方法,截距的概念、计算方法和物理意义。
2.2 直线的类型及方程其次,讲解不同类型的直线和对应的方程,包括水平直线、竖直直线、倾斜直线、直线的一般式、点斜式、斜截式和两点式等,强调各种直线方程的适用范围和联系。
2.3 直线上的点、向量、角、距离的计算方法最后,讲解直线上的点、向量、角、距离等的计算方法,包括向量的投影、角度差、距离公式等,并结合实例让学生掌握具体的计算方法和应用场景。
3. 课堂练习通过让学生做例题、练习题和考试题,在实际练习中加深学生对知识点的理解和掌握程度,同时培养学生的解题能力和应用能力。
4. 总结点拨在教学过程的最后,进行综合梳理和总结点拨,回顾本章的主要内容和重点难点,重点强调学生需要理解并掌握直线的概念、特征、方程及其应用,以及直线上点、向量、距离等的计算方法。
四、教学反思1.教学方法:在教学中应尽量结合实例,解释直观易懂,以便学生更好地理解和运用。
2.教学重点:要重点讲解直线的方程,尤其是斜率截距式、两点式的推导和运用,这是学生比较难理解和掌握的内容,需要反复讲解和实践练习。
直线的一般式方程教学目标(1)掌握直线方程的一般式0=++C By Ax (,A B 不同时为0)理解直线方程的一般式包含的两方面的含义:①直线的方程是都是关于,x y 的二元一次方程;②关于,x y 的二元一次方程的图形是直线.(2)掌握直线方程的各种形式之间的互相转化.教学重点各种形式之间的互相转化.教学难点理解直线方程的一般式的含义.教学过程一、问题情境1.复习:直线方程的点斜式、斜截式、截距式、两点式方程.2.问题:(1)点斜式、斜截式、截距式、两点式方程是关于,x y 的什么方程(二元一次方程)?(2)平面直角坐标系中的每一条直线都可以用关于,x y 的二元一次方程表示吗?(3)关于,x y 的二元一次方程是否一定表示一条直线?二、建构数学1.一般式(1)直线的方程是都是关于,x y 的二元一次方程:在平面直角坐标系中,每一条直线都有倾斜角,在90α≠和90α=两种情况下,直线方程可分别写成y kx b =+及1x x =这两种形式,它们又都可变形为0=++C By Ax 的形式,且,A B 不同时为0,即直线的方程都是关于,x y 的二元一次方程.(2)关于,x y 的二元一次方程的图形是直线:因为关于,x y 的二元一次方程的一般形式为0=++C By Ax ,其中,A B 不同时为0.在0B ≠和0B =两种情况下,一次方程可分别化成B C x B A y --=和AC x -=,它们分别是直线的斜截式方程和与y 轴平行或重合的直线方程,即每一个二元一次方程的图形都是直线.这样我们就建立了直线与关于,x y 二元一次方程之间的对应关系.我们把0=++C By Ax (其中,A B 不同时为0)叫做直线方程的一般式.一般地,需将所求的直线方程化为一般式.三、数学运用1.例题:例1.已知直线过点(6,4)A -,斜率为43-,求该直线的点斜式和一般式方程及截距式方程. 解:经过点(6,4)A -且斜率43-的直线方程的点斜式44(6)3y x +=--,化成一般式,得:43120x y +-=,化成截距式,得:134x y +=. 例2.求直线:35150l x y +-=的斜率及x 轴, y 轴上的截距,并作图.解:直线:35150l x y +-=的方程可写成335y x =-+, ∴直线l 的斜率35k =-;y 轴上的截距为3; 当0y =时,5x =,∴ x 轴上的截距为5. 例3.设直线22:(23)(21)260(1)l m m x m m y m m --++--+=≠-,根据下列条件分别确定m 的值:(1)直线l 在 x 轴上的截距为3-;(2)直线l 的斜率为1.解:(1)令0y =得 22623m x m m -=--,由题知,226323m m m -=---,解得35-=m . (2)∵直线l 的斜率为222321m m k m m --=-+-,∴2223121m m m m ---=+-,解得43m =. 例4.求斜率为34,且与两坐标轴围成的三角形的面积为6的直线方程. 解:设直线方程为34y x b =+,令0y =,得43x b =-, ∴14|()|623b b ⋅-=,∴3b =±, 所以,所求直线方程为34120x y --=或34120x y -+=.例5.直线l 过点(6,3)P -,且它在x 轴上的截距是它在y 轴上的截距相等,求直线l 的方程. 分析:由题意可知,本题宜用截距式来解,但当截距等于零时,也符合题意,此时不能用截距式,应用点斜式来解.解:(1)当截距不为零时,由题意,设直线l 的方程为1x y b b +=, ∵直线l 过点(6,3)P -,∴631b b-+=,∴3b =-, ∴直线l 的方程为30x y ++=.(2)当截距为零时,则直线l 过原点,设其方程为y kx =,将6,3x y =-=代入上式,得36k =-,所以21-=k , ∴直线l 的方程为12y x =-,即20x y +=, 综合(1)(2)得,所求直线l 的方程为30x y ++=或20x y +=.352.练习:课本第79页练习第1、2、4题.四、回顾小结:1.什么是直线的一般式?直线方程的各种形式之间的如何互相转化?五、课外作业:课本第79练习页第3题、第80页第10题、第117页第3、4、5、6题.。
课题:2.3.3.6直线的综合应用(1)课型:习题课教学目标:巩固倾斜角、斜率等概念;熟练掌握直线方程的各种形式;能正确判定两直线的位置关系。
教学重点:直线知识的掌握及应用教学难点:数学思想方法在直线解题中的应用教学过程:一、知识回顾1、倾斜角、斜率等概念2、直线方程的各种形式3、两直线的位置关系4、距离公式二、课前练习1、直线0x的倾斜角是( )+y+53=(A)30°(B)120°(C)60°(D)150°2、直线x-2y-2k=0与2x-3y-k=0的交点在直线3x-y=0上,则k的值为()(A)1 (B)2 (C)1-(D)03、两直线3x+2y+m=0和(m2+1)x-3y-3m=0的位置关系是()(A)平行 (B)相交 (C)重合 (D)视M而定4、直线3x+4y-12=0和6x+8y+6=0间的距离是5.下列说法正确的是(A )若直线l 1与l 2的斜率相等,则l 1//l 2 (B )若直线l 1//l 2,则l 1与l 2的斜率相等(C )若一条直线的斜率存在,另一条直线的斜率不存在,则它们一定相交(D )若直线l 1与l 2的斜率都不存在,则l 1//l 2 6.下列说法中不正确的是(A )点斜式y –y 1=k (x –x 1)适用于不垂直于x 轴的任何直线 (B )斜截式y =kx +b 适用于不垂直于x 轴的任何直线 (C )两点式112121y y x x y y x x --=--适用于不垂直于x 轴和y 轴的任何直线 (D )截距式1x y ab+=适用于不过原点的任何直线7.下列四个命题中,真命题的个数是①经过定点P 0(x 0, y 0)的直线,都可以用方程y –y 0=k (x –x 0)来表示②经过任意两点的直线,都可以用方程(y –y 1)(x 2–x 1)=(x –x 1)(y 2–y 1)来表示③不经过原点的直线,都可以用方程1x y ab+=来表示 ④经过点A (0, b )的直线,都可以用方程y =kx +b 来表示 (A )0个 (B )1个 (C )2个 (D )4个8.经过点(–3, –2),在两坐标轴上截距相等的直线的方程为9.直线bx +ay =1在x 轴上的截距是 (A )1b(B )b (C )1||b (D )|b | 10.两条直线l 1: y =kx +b , l 2: y =bx +k ( k >0, b >0, k ≠b )的图象是下图中的(A )(B ) (C ) (D ) 三、例题分析例1.等腰直角三角形ABC 的直角顶点C 和顶点B 都在直线2x +3y –6=0上,顶点A 的坐标是(1, –2),求边AB , AC 所在的直线方程. 例2.光线沿直线l 1: x –2y +5=0的方向入射到直线l : 3x –2y +7=0上后反射出去,求反射光线l 2所在的直线方程. 例3.求函数228201y x x x =-+++的最小值 例4.已知直线L 过点M( 1 , 2 ),求L 的方程 (1)与坐标轴在第一象限所围成之三角形面积最小; (2)a 、b 分别为x 轴、y 轴上的截距,a+b 最小;(3)L 在x 轴、y 轴上的交点分别为A 、B ,|MA||MB|最小。
第三章直线与方程章末归纳提升α与斜率k的对应关系和单调性是解题的易错点,应引起特别重视.(1)对应关系①α≠90°时,k=tan α.②α=90°时,斜率不存在.(2)单调性当α由0°→90°→180°(不含180°)变化时,k由0(含0)逐渐增大到+∞,然后由-∞逐渐增大到0.经过A(x1,y1),B(x2,y2)(x1≠x2)两点的直线的斜率公式k=y2-y1x2-x1(x1≠x2),应注意其适用的条件x1≠x2,当x1=x2时,直线斜率不存在.已知直线l过点P(-1,2),且与以A(-2,-3),B(3,0)为端点的线段相交.求直线l的斜率的取值范围.【思路点拨】本题主要考查斜率公式及数形结合思想.根据题意知l介于P A和PB之间,由数形结合知k l≤k PB或k l≥k AP,故由斜率公式求出k P A,k PB即可解决问题.【规范解答】∵P(-1,2),A(-2,-3),B(3,0),∴k P A =2---1--=5,k PB =2-0-1-3=-12, 当l 由P A 变化到与y 轴平行时,其倾斜角由α增至90°,斜率变化范围为[5,+∞),当l 由与y 轴平行变化到PB 的位置时,其倾斜角由90°增至β,斜率变化范围为⎝ ⎛⎦⎥⎤-∞,-12, ∴直线l 的斜率的取值范围是⎝ ⎛⎦⎥⎤-∞,-12∪[5,+∞).已知坐标平面内三点A (-1,1),B (1,1),C (2,3+1).(1)求直线AB ,BC ,AC 的斜率和倾斜角;(2)若D 为△ABC 的边AB 上一动点,求直线CD 的斜率k 的变化范围.【解】 (1)由斜率公式得直线AB 的斜率k AB =1-11--1=0, 直线BC 的斜率k BC =3+1-12-1=3,直线AC 的斜率k AC =3+1-12--1=33. 故可得AB 的倾斜角为0°,BC 的倾斜角为60°,AC 的倾斜角为30°.(2)如图所示,当斜率k 变化时,直线CD 绕C 点旋转,当直线CD 由CA 逆时针转到CB 时,直线CD 与AB 恒有交点,即D 在线段AB 上,此时k 由k AC增大到k BC ,故k 的取值范围为⎣⎢⎡⎦⎥⎤33,3.示所有的直线.直线方程的一般式则可以表示所有直线.在解题的时候,如果没有特别说明,最后的结果都要化成一般式.已知在第一象限的△ABC 中,A (1,1),B (5,1),∠A =60°,∠B =45°,求:(1)AB 边所在直线的方程;(2)AC 边与BC 边所在直线的方程.【思路点拨】 利用A 、B 两点求AB 边的方程―→点斜式求AC 、BC 的方程.【规范解答】 (1)∵A (1,1),B (5,1).∴AB ∥x 轴,∴AB 方程为y =1.(2)∵∠A =60°,∴k AC =3,∴AC 方程为y -1=3(x -1),即3x -y +1-3=0.∵∠B =45°,∴k BC =-1,∴BC 方程为y -1=-(x -5),即x +y -6=0.过点A (4,1)且在两坐标轴上的截距相等的直线方程是 ( )A .x +y =5B .x -y =5C .x +y =5或x -4y =0D .x -y =5或x +4y =0【解析】 当直线在两坐标轴上的截距a ,b 都不为零时,可设所求方程为x a+y b =1,将点A (4,1)代入得:4a +1b=1,又a =b ,解之得:a =b =5,所以所求方程为x +y -5=0.当a =b =0时直线过原点,又过点A (4,1),此时所求方程为:y =14x ,即x -4y =0,所以C 对.【答案】 C型.求解时,可以利用斜率之间的关系判定;若方程都是一般式,知道平行或垂直关系,求参数的值时也可用如下方法:直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0.(1)l 1∥l 2时,可令A 1B 2-A 2B 1=0,解得参数的值后,再代入方程验证,排除重合的情况;(2)l 1⊥l 2时,可利用A 1A 2+B 1B 2=0直接求参数的值.已知直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,求m 的值,使得:(1)l 1⊥l 2;(2)l 1∥l 2.【思路点拨】 已知两直线的方程中都含有参数,求不同的位置关系时参数的取值,可以利用平行(或垂直)的条件列方程求解.【规范解答】 法一 当m =0或2时,两直线既不平行,也不垂直;当m ≠0且m ≠2时,直线l 1,l 2的斜率分别为:-1m ,2-m 3.(1)若l 1⊥l 2,则-1m ·2-m 3=-1,解得m =12.(2)若l 1∥l 2,则由-1m =2-m 3得m =-1或m =3.又当m =3时,l 1与l 2重合,故m =3舍去.故l 1∥l 2时,m =-1.法二 (1)∵l 1⊥l 2,∴m -2+3m =0,∴m =12.(2)∵l 1∥l 2,∴3-m (m -2)=0且2m ≠6(m -2),故m =-1.已知直线l 的方程为3x +4y -12=0,分别求满足下列条件直线l ′的方程.(1)过点(-1,3),且与l 平行;(2)过点(-1,3),且与l 垂直.【解】 法一 由题设l 的方程可化为y =-34x +3,∴l 的斜率为-34.(1)由l ′与l 平行,∴l ′的斜率为-34.又∵l ′过(-1,3),由点斜式知方程为y -3=-34(x +1),即3x +4y -9=0.(2)由l ′与l 垂直,∴l ′的斜率为43,又过(-1,3),由点斜式可得方程为y -3=43(x +1),即4x -3y +13=0.法二 (1)由l ′与l 平行,可设l ′方程为3x +4y +m =0.将点(-1,3)代入上式得m =-9.∴所求直线方程为3x +4y -9=0.(2)由l ′与l 垂直,可设其方程为4x -3y +n =0.将(-1,3)代入上式得n =13.∴所求直线方程为4x -3y +13=0.章中,对称主要有以下四种:点点对称、点线对称、线点对称、线线对称,其中后两种可以化归为前两种类型,所以“点关于直线对称”是最重要的类型.转化思想是解决对称问题的主要思想方法,其他问题如角的平分线、光线反射等也可转化成对称问题.光线沿直线l 1:x -2y +5=0射入,遇到直线l :3x -2y +7=0后反射,求反射光线所在的直线方程.【思路点拨】 本题用光学原理得入射光线与反射光线关于直线l 对称,用求对称点的方法求出入射线上一点P 关于l 的对称点,再由两点式写出方程.【规范解答】 法一 由⎩⎨⎧ 3x -2y +7=0,x -2y +5=0得⎩⎨⎧ x =-1,y =2,即反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P (-5,0),设点P 关于直线l 的对称点为P ′(x 0,y 0),由PP ′⊥l ,可知k PP ′=-23=y 0x 0+5, 而PP ′的中点Q 的坐标为⎝ ⎛⎭⎪⎫x 0-52,y 02,又Q 点在l 上,∴3·x 0-52-2·y 02+7=0. 联立⎩⎪⎨⎪⎧ y 0x 0+5=-23,32x 0-5-y 0+7=0,解得⎩⎪⎨⎪⎧ x 0=-1713,y 0=-3213,即P ′点坐标为⎝ ⎛⎭⎪⎫-1713,-3213. 反射光线过M (-1,2)和P ′⎝ ⎛⎭⎪⎫-1713,-3213. 根据直线的两点式方程可得反射光线所在直线的方程为29x -2y +33=0. 法二 设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点P ′(x ,y ),则y 0-y x 0-x =-23.又PP ′的中点Q ⎝ ⎛⎭⎪⎫x +x 02,y +y 02在l 上,∴3×x +x 02-2×y +y 02+7=0,由⎩⎪⎨⎪⎧ y 0-y x 0-x =-23,3×x +x 02-y +y 0+7=0,得⎩⎪⎨⎪⎧ x 0=-5x +12y -4213,y 0=12x +5y +2813,代入直线x -2y +5=0整理得29x -2y +33=0即为所求的直线方程.求直线l 1:2x +y -4=0关于直线l :3x +4y -1=0的对称直线l 2的方程.【解】 解方程组⎩⎨⎧ 2x +y -4=0,3x +4y -1=0,得⎩⎨⎧ x =3,y =-2,所以直线l 1与l 相交,且交点为E (3,-2),E 也在直线l 2上,在直线l 1:2x +y -4=0上取点A (2,0),设点A 关于直线l 的对称点为B (x 0,y 0),于是有⎩⎪⎨⎪⎧ 3×2+x 02+4×0+y 02-1=0,y 0-0x 0-2=43,解得⎩⎪⎨⎪⎧ x 0=45,y 0=-85,即B ⎝ ⎛⎭⎪⎫45,-85. 故由两点式得直线l 2的方程为2x +11y +16=0.需选定一个标准,根据这个标准划分成几个能用不同形式解决的小问题,从而使问题得到解决.在本章中涉及到分类讨论的问题主要是由直线的斜率是否存在及直线的点斜式、斜截式、两点式、截距式的局限性引起的分类讨论问题.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R )在两坐标轴上的截距相等,求直线l 的方程.【思路点拨】 分截距为零和不为零两类求解.【规范解答】 ①当2-a =0,即a =2时,直线经过原点,满足条件,此时直线的方程为:3x +y =0.②当a =-1时,直线在x 轴上无截距,不符合题意,故当a ≠-1且a ≠2时,由题意得:a -2a +1=a -2,解得:a =0.此时直线的方程为:x +y +2=0. 综上,所求直线方程为3x +y =0或x +y +2=0.过点P (-1,0),Q (0,2)分别作两条互相平行的直线,使它们在x 轴上的截距之差的绝对值为1,求这两条直线的方程.【解】 (1)当两条直线的斜率不存在时,两条直线的方程分别为x =-1,x =0,它们在x 轴上截距之差的绝对值为1,符合题意.(2)当两条直线的斜率存在时,设其斜率为k ,则两条直线的方程分别为y =k (x +1),y -2=kx .令y =0,得x =-1,x =-2k .由题意,得⎪⎪⎪⎪⎪⎪-1+2k =1,即k =1.所以所求直线的方程为y =x +1,y =x +2,即为x -y +1=0,x -y +2=0.综上可知,所求的直线方程为x =-1,x =0或x -y +1=0,x -y +2=0.。
4.2.2 直线与圆的方程的应用
(两个课时)
一、教学目标
1、知识与技能
(1)理解直线与圆的位置关系的几何性质;
(2)利用平面直角坐标系解决直线与圆的位置关系;
(3)会用“数形结合”的数学思想解决问题.
2、过程与方法
用坐标法解决几何问题的步骤:
第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;
第二步:通过代数运算,解决代数问题;
第三步:将代数运算结果“翻译”成几何结论.
3、情态与价值观
让学生通过观察图形,理解并掌握直线与圆的方程的应用,培养学生分析问题与解决问题的能力.
二、教学重点、难点:
重点与难点:直线与圆的方程的应用.
三、教学设想。
人教版高中数学必修二第三章直线与方程全章教案目标3.1.1倾斜角与斜率课型新课在这节课中,学生将研究直线的倾斜角和斜率的概念,并掌握直线倾斜角的唯一性和直线斜率的存在性。
他们还将研究斜率公式的推导过程,并掌握过两点的直线的斜率公式。
教学内容备注1.自主研究2.质疑提问3.问题探究4.课堂检测5.小结评价3.1.2两条直线平行与垂直的判定课型新课在这节课中,学生将理解并掌握两条直线平行与垂直的条件,并能够运用条件判定两直线是否平行或垂直。
通过探究两直线平行或垂直的条件,培养学生运用正确知识解决新问题的能力,以及数形结合能力。
通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,合作交流的研究方式,激发学生的研究兴趣。
教学内容备注1.自主研究2.质疑提问3.问题探究4.课堂检测5.小结评价3.2.1直线的点斜式方程课型新课在这节课中,学生将理解直线方程的点斜式、斜截式的形式特点和适用范围,能正确利用直线的点斜式、斜截式公式求直线方程,并体会直线的斜截式方程与一次函数的关系。
教学内容备注1.自主研究2.质疑提问3.问题探究4.课堂检测5.小结评价3.2.2直线的两点式方程课型新课在这节课中,学生将掌握直线方程的两点式的形式特点及适用范围,了解直线方程截距式的形式特点及适用范围。
让学生在应用旧知识的探究过程中获得新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点。
教学内容备注1.自主研究2.质疑提问3.问题探究4.课堂检测5.小结评价3.2.3直线的一般式方程课型新课在这节课中,学生将明确直线方程一般式的形式特征,会把直线方程的一般式化为斜截式,进而求斜率和截距,会把直线方程的点斜式、两点式化为一般式。
教学内容备注1.自主研究2.质疑提问3.问题探究4.课堂检测5.小结评价点斜式:y-y1=k(x-x1)。
斜截式:y=kx+b。
两点式:(y-y1)/(x-x1)=(y2-y1)/(x2-x1)。
第三章直线与方程1直线的交点坐标与距离公式复习课知识与技能:掌握解方程组的方法,求两条相交直线的交点坐标.掌握两点间距离公式,点到直线距离公式,会求两条平行直线间的距离.过程与方法:利用数形结合,结合思维变式对学生培养方法选择能力情感态度与价值观:(1)培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力.(2)进一步理解数形结合思想,培养树立辩证统一的观点,培养形成严谨的科学态度和求简的数学精神.学习重点:直线的交点求法及距离公式的应用学习难点:综合应用以及思想渗透学法指导及要求:1、重审教材,形成知识脉络.2、将直线的交点坐标与距离公式习部分曾做过的学案自己易忘、易出错的知识点和疑难问题以及解题方法规律,按照本习题课的要求进行重整.3、加强自主学习、审慎合作探究、着重能力提升.知识链接:1、如果已知平面上两点P1(x1,y1)、P2(x2,y2),2、两相交直线的交点的坐标3、点P(x0,y0)到直线Ax+By+C=0(A、B不同时为0)的距离为4、已知两条平行线l1:Ax+By+C1=0, l2:Ax+By+C2=0(C1=C2).则l1与l2之间的距离为:基本类型问题概要题型一:两点间距离公式的运用已知三角形的顶点A(-1,5)B(-2,-1)C(4,7)求BC边上的中线长.题型二:点到直线距离的应用求过点P(-1,2)且与点A(2,3)和B(-4,5)距离相等的直线l的方程.题型三:对称问题求直线y=-4x+1关于点M(2,3)对称的直线方程.题型四:直线方程的应用求经过直线l₁:3x+2y-1=0和l₂:5x+2y+1=0的交点,且垂直于直线l₃:3x-5y+6=0的直线l的方程题型五:直线过定点问题及应用1由“y-y0=k(x-x0)”求定点把含有参数的直线方程改写成y-y0=k(x-x0)的形式,这样就证明了它所表示的所有直线必过定点(x0,y0)2由“l1+λl2=0”求定点在平面上如果已知两条相交直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0,则过l1、l2交点的直线系方程是:A1x+B1y+C1+λ(A2x+B2y+C2)=0其中λ为参数,并简写为l1+λl2=0.根据这一道理,可知如果能把含有参数的直线方程改写成l1+λl2=0的形式,这就证明了它表示的直线必过定点,其定点的求法可由解得.达标训练()A 1. 已知直线和互相平行,则它们之间的距离是:A.4 B.C.D.()B 2. 入射光线线在直线:上,经过轴反射到直线上,再经过轴反射到直线上,则直线的方程为:A.B.C.D.()A3. 若直线与直线的交点在第四象限,则的取值范围是:A.B.C.D.()B 4. 直线经过一定点,则该定点的坐标为:A.B.C.D.A5. 设点在直线上,且到原点的距离与到直线的距离相等,则点坐标是.B 6. 已知中,,,点在直线上,若的面积为,则点坐标为.B 7. 直线在两坐标轴上的截距相等,且到直线的距离为,求直线的方程.B 8. 一直线过点,且点到该直线距离等于,求该直线倾斜角.A9. 求经过两直线:和:的交点,且与直线:垂直的直线的方程.B 10. 试求直线:,关于直线:对称的直线的方程.B 11. 直线与直线,分别交于点,,若的中点是,求直线的方程.B12.已知,,在轴上找一点,使,并求的值;小结与反思:第三章章末复习课2直线的方程复习课一、学习目标1、知识与技能:(1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.(2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.(3)掌握直线方程各种形式之间的互化.2、过程与方法:在应用旧知识的探究过程中获得新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点.3、情感态度与价值观; (1)认识事物之间的普遍联系与相互转化;(2)培养用联系的观点看问题.二、学习重点、难点:(1)重点:直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程.(2)难点:直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明.三、使用说明及学法指导:1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号.2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆.3、要求小班、重点班学生全部完成,平行班学生完成A、B类问题.4、A 类是自主探究,B类是合作交流.四、知识链接:1、求直线斜率的方法①定义法:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.②公式法:已知直线过两点P1(x1,y1)、P2(x2,y2),且x1≠x2,则斜率k=.2. 直线方程的点斜式、斜截式、两点式、截距式、一般式及适用范围.3、两条直线的位置关系注:与直线Ax+By+C=0 平行的直线的方程是Ax+By+m=0与直线Ax+By+C=0 垂直的直线的方程是Bx-Ay+n=0五、学习过程:A例1.(点斜式)直线在轴上的截距为3,且倾斜角的正弦值为,求直线的方程.注:1.求解本例时不要混淆概念,倾斜角应在内,从而有两个解.2.在求直线方程时,不论选取何种方法,最后为统一形式,均化为直线方程的一般式.A例2(截距式.斜截式. 两点式)已知△ABC的三个顶点是A(3,-4)、B(0,3)、C(-6,0),求它的三条边所在的直线方程.A例3. (注意直线方程的设法) 求经过两条直线和的交点,且分别与直线(1)平行,(2)垂直的直线方程.C例4.(对称问题)已知点A的坐标为(-4,4),直线的方程为3+-2=0,求:(1)点A关于直线的对称点A′的坐标;(2)直线关于点A的对称直线的方程.练习:一条光线从点P(6,4)射出,与X轴相交于点Q(2,0),经X轴反射,求入射光线和反射光线所在的直线方程.(书101页11)六、达标测试A1.下面命题中正确的是()A.经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示.B.经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示C.不经过原点的直线都可以用方程表示D.经过点A(0,b)的直线都可以用方程y=kx+b表示A2.直线x+6y+2=0在x轴和y轴上的截距分别是()A. B. C. D.-2,-3A3.直线过点(-3,-2)且在两坐标轴上的截距相等,则这直线方程为()A)2x-3y=0;B.x+y+5=0;C)2x-3y=0或x+y+5=0D.x+y+5或x-y+5=0A4.与直线l:3x-4y+5=0关于x轴对称的直线的方程为( )A.3x+4y-5=0B.3x+4y+5=0C.-3x+4y-5=0D.-3x+4y+5=0A5.点关于直线x+y=0对称的点是()A. B. C. D.A6.直线l沿x轴负方向平移3个单位,再沿y轴正方向平1个单位后,又回到原来位置,那么l的斜率为()A.-B.-3;C.D.3B7.方程(-1)x-y+2+1=0(∈R)所表示的直线( )A.恒过定点(-2,3)B.恒过定点(2,3)C.恒过点(-2,3)和点(2,3)D.都是平行直线A8.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是()A.3x-y-8=0B. 3x+y+4=0C. 3x-y+6=0D. 3x+y+2=0A9.已知P(3,m )在过M(2,-1)和N(-3,4)的直线上,则m的值是.A10.的三个顶点分别为,,.求边上中线所在的直线方程总结评价学后反思、自查自纠:【答案】直线的交点坐标与距离公式复习课答案例1解:BC的中点D(1,3)AD=2例2解:分两种当与AB平行时,当过AB中点时,x=-1例3解:4x+y-11=0例4解:交点(-1,2)方程为达标训练A(-1,5)1D,2B,3D,4A,5或,6解:由题得:.,(为点到直线的距离).设点坐标为,的方程为,即.由,解得或.点坐标为或.7解:由题,若截距为,则设所求的直线方程为.,.若截距不为,则设所求直线方程为.,或,所求直线为,或.8解:当过点的直线垂直于轴时,点到直线的距离等于,此时直线的倾斜角为,当过点的直线不垂直于轴时,直线斜率存在,设过点的直线为,即.由,解得.直线倾斜角为.综上,该直线的倾斜面角为或9. 求经过两直线:和:的交点,且与直线:垂直的直线的方程.解法一:解方程组的交点(0,2).直线的斜率为,直线的斜率为.直线的方程为,即.解法二:设所求直线的方程为.由该直线的斜率为,求得的值11,即可以得到的方程为.10试求直线:,关于直线:对称的直线的方程.答案:解法一:由方程组得直线、的交点为(,).设所求直线的方程为,即.由题意知:到与到的角相等,则,.即所求直线的方程为.解法二:在上任取点(,)(),设点关于的对称点为(,).则解得又点在上运动,..即,也就是.11. 直线与直线,分别交于点,,若的中点是,求直线的方程.答案:解:设直线的方程为或,;,由,得,又直线不合题意.所求直线方程为.12.已知,,在轴上找一点,使,并求的值;答案:设点为,则有,.由得,解得.即所求点为且【答案】直线的方程复习课答案例1解:,∴直线的斜率故所求直线l的方程为即或A例2.解:如下图,因△ABC的顶点B与C的坐标分别为(0,3)和(-6,0),故B点在y轴上,C点在x轴上,即直线BC在x轴上的截距为-6,在y轴上的截距为3,利用截距式,直线BC的方程为+=1,化为一般式为x-2y+6=0.由于B点的坐标为(0,3),故直线AB在y轴上的截距为3,利用斜截式,得直线AB的方程为y=kx+3.又由顶点A(3,-4)在其上,所以-4=3k+3.故k=-.于是直线AB的方程为y=-x+3,化为一般式为7x+3y-9=0. 由A(3,-4)、C(-6,0),得直线AC的斜率k AC==-.利用点斜式得直线AC的方程为y-0=-(x+6),化为一般式为4x+9y+24=0.也可用两点式,得直线AC的方程为=,再化简即可.A例3.解:由,得;∴与的交点为(1,3).设与直线平行的直线为则,∴c=1.∴所求直线方程为.方法2:∵所求直线的斜率,且经过点(1,3),∴求直线的方程为,即.设与直线垂直的直线为则,∴c=-7.∴所求直线方程为.方法2:∵所求直线的斜率,且经过点(1,3),∴求直线的方程为,即.例4.解:(1)设点A′的坐标为(′,′).因为点A与A′关于直线对称,所以AA′⊥,且AA′中点在上,直线斜率是-3,所以=.又因为=再因为直线的方程为3+-2=0,AA′的中点坐标是(),所以3·-2=0由①和②,解得′=2,′=6.所以A′点的坐标为(2,6)(2)关于点A对称的两直线与互相平行,于是可设的方程为3++c=0.在直线上任取一点M(0,2),其关于点A对称的点为M′(′,′),于是M′点在上,且MM′的中点为点A,由此得,即:′=-8,′=6.于是有M′(-8,6).因为M′点在上,所以3(-8)+6+=0,∴=18故直线的方程为3++18=0练习:入射光线和反射光线所在直线方程分别是:x-y-2=0,x+y-2=0达标训练1D,2B,3C,4B,5D,6A,7A,8B-27x-9y+21=0。