英飞凌单片机选型
- 格式:pdf
- 大小:4.03 MB
- 文档页数:62
关于Keil C166的使用单片机开发除了必要的硬件同样也离不开软件,我们写的程序要转化成CPU所能执行的机器码有两种方法:一是手工汇编,二是机器汇编。
机器汇编是通过汇编软件将源程序编程机器码。
Keil软件是目前最流行的开发单片机的软件工具,Keil编译器提供了包括C编译器,宏汇编,连接器,库管理和一个功能强大的仿真调试器等在内的完整的开发方案。
通过一个集成开发环境(uVision)将这些部分组合在一起。
KEIL软件有支持8位单片机的Keil C 51系列和支持16位单片机的Keil C 166系列。
在项目开发过程中并不是仅有一个源程序就足够了,还要为项目选择CPU确定编译,汇编,连接的参数,指定调试的方式,有一些项目还会由多个文件组成。
为管理和使用方便,Keil 引入了工程(Project)概念。
将这些参数和所需要的文件都加在一个工程中,只能对工程进行编译和连接等操作。
工程的详细设置:以下针对在使用XC164CS评估板过程中在Keil C166环境下的一些设置谈一下。
首先点击Project窗口中的Target1 Project->Option for Target1 “target 1”即出现对工程设置的对话框。
菜单如下图1:图1以下针对各个标签详细说明:Device选择所使用的CPU(即所选用的芯片)。
KEIL支持很多种CPU,当选中一款芯片以后右侧窗口还会有相应的芯片介绍。
此处选择Infineon XC164CS.系列芯片作为CPU。
Target窗口设置如下:图2这里可以设置时钟频率,片内和片外资源的选择及地址的设置。
其中Memory Model用于设置RAM使用情况,KEIL C 166编译器可支持7种存储类型。
TINY CPU处于非分段工作方式下,可产生高效的16位线性地址,并把代码和数据限制在64KB种。
不能使用far, huge, xhuge存储类型。
SAMLL 使用分段CPU方式,同样产生高效的代码,但代码和数据不再限制再64KB中,用户可通过far, huge, xhuge引用变量和函数COMPACT 一般用于代码少而数据多的场合HCOMPACT 一般用于代码多而数据少的场合MEDIUM 所有的函数调用默认为far调用,一般用于代码多而数据少的场合 LARGE 所有的函数调用默认为far调用,一般用于代码和数据多的场合HLARGE 所有的函数调用默认为far调用,一般用于代码和数据多的场合,不适合于C166系列CPU在仿真过程中如果使用片内FLASH,则选中Use On-chip ROM在仿真过程中如果使用片外RAM,则取消Use On-chip ROM复选框并设置ROM和RAM 空间起始地址及大小。
英飞凌单片机选型引言概述:单片机是嵌入式系统领域最常用的集成电路之一,广泛应用于工业自动化、消费电子、通信设备等领域。
在选择单片机时,相对于其他品牌的产品,英飞凌的单片机以其出色的性能、可靠性和适应性备受认可。
本文将对英飞凌单片机选型进行详细阐述,帮助读者理解不同系列单片机的特点与应用场景,从而为项目的设计与开发提供有效的指导。
正文内容:I.英飞凌单片机系列介绍A.XMC系列单片机1.特点1:高性能和低功耗2.特点2:丰富的外设接口3.特点3:完善的开发工具链B.XC800系列单片机1.特点1:紧凑和简单的架构2.特点2:适用于低成本应用3.特点3:广泛的应用支持C.16位单片机系列1.特点1:高性能和可扩展性2.特点2:丰富的外设接口3.特点3:灵活的存储器选项II.英飞凌单片机选型指南A.应用需求分析1.项目类型与规模2.功能与性能需求3.软硬件资源限制B.可选择的单片机系列评估1.XMC系列的适用场景2.XC800系列的适用场景3.16位单片机系列的适用场景C.性能比较与评估1.性能参数分析2.功能对比与优势3.单片机可靠性评估III.英飞凌单片机选型实例A.工业自动化应用实例1.控制任务需求分析2.XMC系列单片机选型实例3.XC800系列单片机选型实例B.消费电子应用实例1.功能与性能需求分析2.XMC系列单片机选型实例3.16位单片机系列选型实例C.通信设备应用实例1.通信任务需求分析2.XMC系列单片机选型实例3.16位单片机系列选型实例IV.英飞凌单片机选型策略指导A.强大的技术支持与生态系统B.深入了解英飞凌单片机产品线C.根据应用场景选择合适的单片机系列V.总结在进行英飞凌单片机选型时,针对不同的应用需求和设计要求,我们可以根据项目规模、功能性能需求和软硬件资源限制等因素进行分析与评估。
本文介绍了不同系列英飞凌单片机的特点与适用场景,并提供了实例与选型指导,以帮助读者更好地选择合适的单片机系列。
英飞凌模块选型对于一个具体的应用来说,在选择igbt功率模块时,需要考虑其在任何静态、动态、过载(如短路)的运行情况下:•器件耐压;•在实际的冷却条件下,电流的承受力;•最适合的开关频率;•安全工作区(soa)限制;•最高运行限制;•封装尺寸;bsm100gb60dlc1、igbt耐压的选择因为大多数igbt模块工作在交流电网通过单相或三相整流后的直流母线电压下,所以,通常igbt模块的工作电压(600v、1200v、1700v)均对应于常用电网的电压等级。
考虑到过载,电网波动,开关过程引起的电压尖峰等因素,通常电力电子设备选择igbt器件耐压都是直流母线电压的一倍。
如果结构、布线、吸收等设计比较好,就可以使用较低耐压的igbt模块承受较高的直流母线电压。
下面列出根据交流电网电压或直流母线电压来选择igbt耐压的参考表:igbt耐压选型参考表2、igbt电流的选择半导体器件具有温度敏感性,因此,igbt模块标称电流与温度的关系比较大。
随着壳温的上升,igbt模块可利用的电流就会下降,英飞凌igbt模块是按壳温tc=80℃或100℃来标称其最大允许通过的集电极电流(ic).对于英飞凌 npt-igbt芯片来说,当tc<25℃时,这个电流值通常是一个恒定值,但是,随着tc的增加,这个可利用的电流值下降较快,有些igbt品牌是按照tc=25℃的电流值来标称型号,这个需要特别注意。
英飞凌 igbt3集电极电流ic随壳温tc的变化需要指出的是:igbt参数表中标出ic是集电极最大直流电流,但这个直流电流是有条件的,首先最大结温不能超过150℃,其次,还受的安全工作区(soa)的限制,不同的工作电压、脉冲宽度,允许通过的最大电流不同。
同时,各大igbt品牌也给出了两倍于额定值的脉冲电流,这个脉冲电流通常指脉冲宽度为1ms的单脉冲能通过的最大通态电流值,即使可重复也需要足够长的时间。
如果脉冲宽度限制在10us以内,英飞凌 igbt3短路电流承受能力可高达10倍的额定电流值。
英飞凌IGBT模块变频器选型表变频器的开关频率相对来说比较低,大部分开关频率fk<8KHz,因此应选择低饱和压降型IGBT;也有一些应用中其开关频率fk 高达15KHz 左右,这时就应选择高频型IGBT模块,即选用英飞凌“KT3”或“DN2”系列IGBT。
下面列出在正常环境下,强迫风冷的散热条件下,变频器推荐选用英飞凌IGBT 型号,如果散热条件更好(或更差的冷却条件),则可考虑采用电流值更小(或更大)的IGBT模块。
检测设计是否合理的简单方法是:逆变器加热到额定功率,达到热稳定后散热器的最高温度不超过80℃,一般选用75℃作为散热器温度继电器的保护点。
英飞凌大多数用于变频器的IGBT模块均内置NTC 温度传感器,NTC 更有效地检测到IGBT模块的壳温,建议这个过温点可设计在90℃以下。
表1 变频器选用英飞凌IGBT模块推荐表凌FF450R12ME3(两单元)或FS450R12KE3(六单元),其特点是内部封装电感低,结构易于并联。
若要求更高的可靠性,可选择英飞凌大功率IGBT模块(IHM),它采用AlSiC 基版,耐热循环能力比铜基版高,反并联续流二极管(F.W.D)容量更大。
英飞凌IHM IGBT模块两单元可达到1200A, 1700V (FF1200R17KE3);一单元IGBT模块可达到3600A、1700V(FZ3600R17KE3)。
对于经整流后的直流母线电压大于750V 的电力电子设备或多电平级联方式中高压变频器可选用下列英飞凌IGBT 系列。
详细英飞凌IGBT模块产品目录可参阅:BSM75GB170DN2 34mm 两单元 75A,1700VBSM100GB170DLC 62mm 两单元 100A,1700VBSM150GB170DLC 62mm 两单元 150A,1700VFF200R17KE3 62mm 两单元 200A,1700VFF300R17KE3 62mm 两单元 300A,1700VBSM300GA170DLS 62mm 一单元 300A,1700VBSM400GA170DLS 62mm 一单元 400A,1700V注:“S”代表“DLC”+集电极引出端。
英飞凌单片机选型英飞凌半导体微控制器(MCU)具有8位、16位、32位全系列产品。
实现高性能的电机驱动控制,在严酷环境下(高温、EMI、振动)具有极高的可靠性。
一.8位单片机(XC800系列)图1-1 XC800系列单片机命名规则上图的外设类型中,C指CAN总线通信模块,L指LIN总线通信,M指片上集成的快速乘除法模块,主要是为了方便乘除法运算,提高单片机运算速度和控制质量。
1.1 XC864系列XC864系列片内Flash,可以防止用户代码被读出,保护知识产权,同时具有编程和擦除保护防止数据丢失,还支持在应用编程(IAP)和在系统编程(ISP)。
另外,还有一个产生PWM信号用于电机控制的输入捕捉/比较单元(CCU6),一个10位A/D转换单元,一个片上调试支持单元(OCDS),大多数器件还有由扩展UART支持的低成本串行本地通信网络(LIN)和LIN的低层次驱动。
片内集成10M晶振和锁相环(PLL)。
1.2 XC866系列XC866系列的基本特性与XC864相似,改进的地方有外部端口数目增加,ADC的转换通道由4增为8,片上Flash存储单元分为程序存储单元(P-Flash)和数据存储单元(D-Flash),其大小也有多种可选。
可用片内10M晶振或外接4-12M晶振。
表1-2 XC866系列器件参数表1.3 XC886系列XC886的功能与XC864相似,改进的地方有,增加外部端口的数目,增加CAN通信功能,增加乘除法单元(MDU)以增强实时运算和控制能力,增加协调旋转数字计算器/矢量计算(CORDIC)用来协调计算三角、线性和混合的高速运算,增加16位定时/计数器Timer21,另外增加一个UART通信接口。
此外在存储器方面,Boot ROM由8K增加的12K,XRAM 由512B增加到1.5K,Flash也有24K和32K两种可选。
片内9.6M晶振或外接4-12M晶振。
表1-3 XC886系列器件参数表1.4 XC888系列XC888的功能和XC886相同,只是外部I/O端口的数目由34增加到48,相应地外部引脚的数目由48增加到64。
英飞凌TC3XX系列多核MCU学习笔记(1)AURIX TC3XX GPIO-(LED)实验声明:本文是在学习英飞凌TC3XX系列多核(MCU)过程中整理的笔记,便于后期复习!1、GPIO特征控制最多16条(端口);通过软件能够控制每个端口的输出;输出修改(寄存器)易于清除、设置和切换单个端口线和端口线的微调,而不影响其他端口的状态;通过软件可以读取每个端口行的输入值;每个输出最多可提供7个复用函数;支持每个端口的直接I/O控制;控制指定垫片的垫片特性,如驱动强度、转换速率、上/下拉、推/拉或开漏操作,以及TTL或CMOS/汽车输入电平的选择;紧急停止功能允许通过SMU或特殊端口引脚关闭可配置端口线的输出(驱动器);对于具有LVDS功能的pad对,它控制LVDS特性,并允许在LVDS 和CMOS模式之间切换;在减少引脚数的包中,端口模块可以禁用选定的引脚。
2、GPIO 模式TC3XX系列(芯片)GPIO共有五种模式NO_PULL, //无输入上下拉PULLUP, //输入上拉PUL(LDO)WN, //输入下拉PUSHPULL, //推挽输出OPENDRAIN, //开漏输出3、GPIO 通用寄存器3.1、IOCR0-端口n输入/输出控制寄存器0 寄存器作用:端口输入/输出控制寄存器选择一个GPIO端口引脚的数字输出和输入驱动程序的功能和特性。
输入的端口方向(输入或输出)、上拉、下拉或无拉设备,以及输出的推拉或开漏功能,可由相应的位字段PCx(x=0-15)选择。
每个32位宽端口输入/输出控制寄存器控制四条GPIO端口线:寄存器Pn_IOCR0控制Pn [3:0]端口线路;寄存器Pn_IOCR4控制Pn [7:4]端口线路;寄存器Pn_IOCR8控制Pn [11:8]端口线路;寄存器Pn_IOCR12控制Pn [15:12]端口线路。
3.2、OMR-端口n输出修改寄存器3.3、PDR0-端口n驱动程序模式寄存器04、GPIO 函数4.1、设置GPIO 状态函数1void IfxPort_set(Pi)nState(Ifx_P *port, uint8 pinIndex, IfxPort_State (ac)(ti)on)2{3 port- >OMR.U = action (参数):port:GPIO 端口号pinIndex:高低电平4.2、设置GPIO输出模式1void IfxPort_setGroupModeOutput(Ifx_P *port, uint8 pinIndex, uint16 mask, IfxPort_OutputMode mode, IfxPort_OutputIdx index) 2{ 3 uint32 i; 4 uint32 iocrVal[4]; 5 uint32 iocrMask[4]; 6 7 IFX_UNUSED_PA(RAM)ETER(index == IfxPort_OutputIdx_general); 8 9/* initialise */10 f(or)(i = 0; i 2、设置GPIO输出高电平1void IfxPort_setPinHigh(Ifx_P *port, uint8 pinIndex)2{3 IfxPort_setPinState(port, pinIndex, IfxPort_State_high);4} port:GPIO端口号pinIndex:1-高电平、0-低电平3、设置GPIO输出低电平1void IfxPort_setPinLow(Ifx_P *port, uint8 pinIndex)2{3 IfxPort_setPinState(port, pinIndex, IfxPort_State_low);4} port:GPIO端口号pinIndex:1-高电平、0-低电平4、设置GPIO翻转电平1void IfxPort_togglePin(Ifx_P *port, uint8 pinIndex)2{3 IfxPort_setPinState(port, pinIndex, IfxPort_State_toggled);4} port:GPIO端口号pinIndex:1-高电平、0-低电平5、读取GPIO电平1boolean IfxPort_getPinState(Ifx_P *port, uint8 pinIndex)2{3 return (__getbit(4} port:GPIO端口号pinIndex:1-高电平、0-低电平5、GPIO 测试实验使用逐飞TC377系列核心板,板上有4路LED,原理图如下:实验:实现点灯,熟悉GPIO使用。
用于电机控制的新型TriCore单片机 在推出AUDO MAX TriCore产品家族时,英飞凌推出了三个采用90纳米工艺制造的新型TriCore单片机产品系列,它们既适用于高端应用,也适用于低成本的应用。
AUDO MAX是第五代TriCore 32位单片机,迄今出货量已超过3000万件。
这些产品被用于复杂嵌入式系统,用于控制电气传动装置、工业机械、移动工作设备以及多种车辆的传动系统。
除了诸如实时性等技术特性以及广泛的集成功能模块外,所有这些应用都还要求长期可用、最大可靠性,并符合功能安全规范。
本文以传动技术领域为例,说明TriCore CPU和片上外设的性能和灵活性。
假如没有高级智能化变频器,现代化的电气传动系统将是难以想象的。
欧洲每年要生产近400万台这样的变频器。
随着业界对于传动系统的速度、精确性、能源效率和通信能力提出越来越高的要求,对于灵活高效的单片机的需求相应增长。
单片变频器能够降低成本。
英飞凌的32位TriCore是专门针对这类嵌入式实时系统而设计的,具备较高的中断负荷和处理能力。
决定系统总体性能的关键因素是处理器与外设之间的顺畅交互。
结构图(图1)显示了TriCore处理器(顶部)及其与程序和数据存储器的连接。
内部闪存通过一条高速64位总线连接。
TriCore搭载多种智能外设模块,其中,对于变频器功能而言,最重要的模块是GPTA定时器和模数转换器。
其他模块包括系统定时器(STM)、输入/输出端口、串行接口(例如用于连接角编码器的接口)、MultiCAN通信模块等。
这些模块通过一条32位系统外设总线(SPB)连接。
一个32位RISC处理内核,即外设控制处理器(PCP),也连接至该总线。
该PCP采用了特殊的设计,能够处理时间关键的短中断功能,通过SPB快速直接地接入外设。
它还能预处理和处理输入和输出信号,然后将它们传输至TriCore CPU,或者独立于TriCore。