积分电路和微分电路实验报告
- 格式:docx
- 大小:33.78 KB
- 文档页数:14
实验四积分与微分电路一、实验目的1、学会用运算放大器组成积分、微分电路.2、学会积分、微分电路的特点及性能。
二、实验原理1、积分电路是模拟计算机中的基本单元。
利用它可以实现对微分方程的模拟,同时它也是控制和测量系统中的重要单元。
利用它的充、放电过程,可以实现延时、定时以及产生各种波形。
图6-1的积分电路,它和反相比例放大器的不同之处是用C代替反馈电阻R f ,利用虚地的概念可知i1=V iRV0=−V C=−1C∫i C dt=−dV idt即输出电压与输入电压成积分关系。
2、微分电路是积分运算的逆运算。
图6-2为微分电路图,它与图6-1的区别仅在于电容C变换了位置。
利用虚地的概念则有:V0=−i R∙R=−i C∙R=−RC dV Cdt =−RC dV idtdt故知输出电压是输入电压的微分。
三、实验仪器1、数字万用表2、信号发生器3、双踪示波器4、集成运算放大电路模块四、预习要求1、分析图6-1电路,若输入正弦波,V0与Vi相位差是多少?当输入信号为100Hz,有效值为2V时,V=?2、分析图6-2电路,若输入方波,V0与Vi相位差多少?当输入信号为160Hz,幅值为1V时,输出V=?3、拟定实验步骤、做好记录表格。
五、实验内容1、积分电路实验电路如图6-1所示图6-1积分电路(1)将图6-1中7C8换接成7C9,取一根连接导线将电容7C9短路,取Vi=-1V,接通电源后,拿掉短路导线,用示波器观察U0的变化,并测量U的饱和输出电压值。
(2)将电容换为7C8,Ui分别输入f=1000Hz,幅值为2V的方波和正弦波信号,观察并记录ui 和uo的幅值及相位关系。
方波信号:正弦波:(3)改变图6-1电路的频率,观察Vi 与V的相位、幅值关系。
2、微分电路实验电路如图6-2所示。
图6-2微分电路(1)输入正弦波信号f=200Hz有效值为1V,用示波器观察Vi 与V波形并测量输出电压。
(2)改变正弦波频率(20Hz~400Hz)观察Vi与V0的相位、幅值变化情况并记录。
微分积分电路实验报告微分积分电路实验报告引言:微分积分电路是电子工程中常见的电路之一,它具有对信号进行微分和积分运算的功能。
在本实验中,我们将通过搭建微分积分电路并进行实验,来深入了解微分积分电路的原理和应用。
一、实验目的:本实验的目的是通过搭建微分积分电路,了解微分和积分运算的原理和特点,掌握微分积分电路的设计和调试方法。
二、实验原理:1. 微分运算:微分运算是对输入信号进行求导的操作,可以用来检测信号的变化率。
微分电路通常由一个电容和一个电阻组成。
当输入信号通过电容和电阻时,电容会对信号进行积分操作,而电阻则对积分后的信号进行微分操作,从而实现微分运算。
2. 积分运算:积分运算是对输入信号进行积分的操作,可以用来求解信号的面积或累计值。
积分电路通常由一个电阻和一个电容组成。
当输入信号通过电阻和电容时,电阻会对信号进行微分操作,而电容则对微分后的信号进行积分操作,从而实现积分运算。
三、实验器材和元件:1. 函数信号发生器:用于产生输入信号。
2. 示波器:用于观察输入信号和输出信号的波形。
3. 电阻、电容:用于搭建微分积分电路。
4. 万用表:用于测量电阻和电容的数值。
四、实验步骤:1. 搭建微分电路:a. 连接一个电容和一个电阻,将函数信号发生器的输出接到电容上。
b. 将示波器的探头分别接到函数信号发生器的输出端和电阻上。
c. 调节函数信号发生器的频率和幅度,观察示波器上的波形变化。
2. 搭建积分电路:a. 连接一个电阻和一个电容,将函数信号发生器的输出接到电阻上。
b. 将示波器的探头分别接到函数信号发生器的输出端和电容上。
c. 调节函数信号发生器的频率和幅度,观察示波器上的波形变化。
3. 进行微分积分运算:a. 将微分电路和积分电路连接在一起,形成一个微分积分电路。
b. 将函数信号发生器的输出接到微分积分电路的输入端。
c. 将示波器的探头接到微分积分电路的输出端。
d. 调节函数信号发生器的频率和幅度,观察示波器上的波形变化。
四、积分电路与微分电路目的及要求:(1)进一步掌握微分电路和积分电路的相关知识。
(2)学会用运算放大器组成积分微分电路。
(3)设计一个RC微分电路,将方波变换成尖脉冲波。
(4)设计一个RC积分电路,将方波变换成三角波。
(5)进一步学习和熟悉Mul tisim软件的使用。
(6)得出结论进行分析并写出仿真体会。
一.积分电路与微分电路1.积分电路及其产生波形1.1运算放大器组成的积分电路及其波形设计电路图如图所示:图 1.1积分电路其工作原理为:积分电路主要用于产生三角波,输出电压对时间的变化率与输入阶跃电压的负值成正比,与积分时间常数成反比,即01in U Ut R C∆=-∆ 式中,1R C 积分时间常数,in U 为输入阶跃电压。
反馈电阻的f R 主要作用是防止运算放大器LM741饱和。
C 为加速电容,当输入电压为方波时,输入端的高01U 电平等于正电源cc V +,低电平等于负电源电压d d V -,比较器的时0U U +-==,比较器翻转,输入从高电01U 平跳到低电平d d V -。
输出的是一个上升速度与下降速度相等的三角波形。
图1.2积分电路产生的波形1.2微分电路及其产生波形2. 运算放大器组成的微分电路及其波形设计的微分电路图:图2.1微分电路其工作原理为:将积分电路中的电阻与电容对换位子,并选用比较小的时间常数R C ,便得到了微分电路。
微分电路中,输出电压与输入电压对时间的变化率的负值成正比,与微分时间常数成反比,所以0inf U U R C t∆=-∆in R 的主要作用是防止运放L M 741产生自激振荡。
0/v R C d V d t =-,输出电压正比与输入电压对时间的微商,符号表示相位相反,当输入电压为方波时,当时输出电t o =压为一个有限制。
积分电路和微分电路实验报告篇一:积分电路与微分电路实验报告四、积分电路与微分电路目的及要求:(1)进一步掌握微分电路和积分电路的相关知识。
(2)学会用运算放大器组成积分微分电路。
(3)设计一个RC微分电路,将方波变换成尖脉冲波。
(4)设计一个RC积分电路,将方波变换成三角波。
(5)进一步学习和熟悉Multisim软件的使用。
(6)得出结论进行分析并写出仿真体会。
一.积分电路与微分电路1. 积分电路及其产生波形1.1运算放大器组成的积分电路及其波形设计电路图如图所示:图 1.1积分电路其工作原理为:积分电路主要用于产生三角波,输出电压对时间的变化率与输入阶跃电压的负值成正比,与积分时间常数成反比,即?U0?t??UinR1C式中,R1C积分时间常数,Uin为输入阶跃电压。
反馈电阻Rf的主要作用是防止运算放大器LM741饱和。
C为加速电容,当输入电压为方波时,输入端U01的高电平等于正电源?Vcc,低电平等于负电源电压?Vdd,比较器的U??U??0时,比较器翻转,输入U01从高电平跳到低电平?Vdd。
输出的是一个上升速度与下降速度相等的三角波形。
图1.2积分电路产生的波形1.2微分电路及其产生波形2. 运算放大器组成的微分电路及其波形设计的微分电路图:图2.1微分电路其工作原理为:将积分电路中的电阻与电容对换位子,并选用比较小的时间常数RC,便得到了微分电路。
微分电路中,输出电压与输入电压对时间的变化率的负值成正比,与微分时间常数成反比,所以RinU0??RfC?U?tin的主要作用是防止运放LM741产生自激振荡。
v0??RCdV/dt,输出电压正比与输入电压对时间的微商,符号表示相位相反,当输入电压为方波时,当t?o时输出电压为一个有限制。
随着C的充电,输出电压v0将逐渐衰减,最后趋于零,就回形成尖顶脉冲波。
微分电路中用信号发生器输入方波信号,经过微分电路就会产生输出脉冲波信号。
结论与体会:通过此设计学会了用运算放大器组成的积分电路和微分电路,还学会了Multisim 软件的应用和使用方法。
积分电路和微分电路实验报告书学号:姓名:学习中心:(1)按如图连接电路(2)设置信号发生器的输出频率为1HZ,幅值为5V的方波,如图(3)激活仿真电路双击示波器图标弹出示波器面板,观察并分析示波器波形(4)按表1给出的电路参数依次设置R和C的取值,分别激活仿真运行,双击示波器图标,弹出示波器面板,给出输入/输出信号的波形图,并说明R和C的取值对输出信号的影响表1 实验电路参数序号输入为方波信号电路参数频率/HZ幅值/V R/KO C/uF1 1 5 100 12 1 5 100 23 1 5 100 4.72.微分电路实验(1)按图连接电路(2)设置R和C(3)激活电路仿真运行,(4)双击示波器的面板,给出输入/输出信号的波形图(5)说明R和C的取值对输出信号的影响表2 实验电路参数序号输入为方波信号电路参数频率/HZ幅值/V R/KO C/uF1 1 5 100 12 1 5 100 23 1 5 100 4.7三、实验过程原始数据(数据、图表、计算等)1.积分电路实验R=100KO,C=1uFR=100 KO C=2UFR=100KO C=4.7uF2.微分电路实验R=100KO,C=1uFR=100 KO C=2UFR=100KO C=4.7uF四、实验结果及分析积分电路实验由积分电路的特点:时间常数t远大于输入信号的周期T,在此条件下Uc(t)<<UR(t)因此i(t)=UR(t)/R=Ui(t)/RU0(t)=Uc(t)=1/C(i(t)dt=1/RC(ui(t)dt即输出电压与输入电压的积分成正比,若输出电压为周期方波,则输出电压为周期三角波由实验数据知道,随着C的增大,积分方波越明显微分电路实验由微分电路的特点:Uo(t)=UR(t)=RC*duc(t)/dt=RC*dui(t)/dt即输出电压与输入电压的微分成正比;若输入为周期方波,则输出电压为周期窄脉冲;从实验数据知道:随着C的增大,微分脉冲越明显如有侵权请联系告知删除,感谢你们的配合!。
竭诚为您提供优质文档/双击可除积分电路和微分电路实验报告篇一:实验6积分与微分电路实验6积分与微分电路1.实验目的学习使用运放组成积分和微分电路。
2.实验仪器双踪示波器、信号发生器、交流毫伏表、数字万用表。
3.预习内容1)阅读op07的“数据手册”,了解op07的性能。
2)复习关于积分和微分电路的理论知识。
3)阅读本次实验的教材。
4.实验内容1)积分电路如图5.1。
在理想条件下,为零时,则dV(t)Vi(t)??co,当c两端的初始电压RdtVo(t)??1tVi(t)dtRc?o因此而得名为积分电路。
(1)取运放直流偏置为?12V,输入幅值Vi=-1V的阶跃电压,测量输出饱和电压和有效积分时间。
若输入为幅值Vi=-1V阶跃电压时,输出为Vo(t)??Vi1tVdt??t,(1)iRc?oRc这时输出电压将随时间增长而线性上升。
通常运放存在输入直流失调电压,图6.1所示电路运放直流开路,运放以开环放大倍数放大输入直流失调电压,往往使运放输出限幅,即输出电压接近直流电源电压,输出饱和,运放不能正常工作。
在op07的“数据手册”中,其输入直流失调电压的典型值为30μV;开环增益约为112db,即4×105。
据此可以估算,当Vi=0V时,Vo=30μV×4×105=12V。
电路实际输出接近直流偏置电压,已无法正常工作。
建议用以下方法。
按图6.1接好电路后,将直流信号源输出端与此同时Vi相接,调整直流信号源,使其输出为-1V,将输出Vo接示波器输入,用示波器可观察到积分电路输出饱和。
保持电路状态,关闭直流偏置电源,示波器x轴扫描速度置0.2sec/div,Y轴输入电压灵敏度置2V/div,将扫描线移至示波器屏的下方。
等待至电容上的电荷放尽。
当扫描光点在示波器屏的左下方时,即时打开直流偏置电源,示波器屏上积分电路的输出为线性上升的直线,大约1秒后,积分电路输出由线性上升的直线变为水平直线,即积分电路已饱和,立即按下示波器的“stop”键。
积分电路和微分电路的设计实验报告一、实验目的本实验旨在通过设计积分电路和微分电路,掌握基本的积分和微分电路的原理、设计方法和实验技能,加深对模拟电子技术的理解。
二、实验器材1.双踪示波器2.函数信号发生器3.直流稳压电源4.万用表5.集成运放(LM741)三、积分电路设计实验1.原理简介:积分电路是一种能够将输入信号进行积分运算的电路,通常由一个运放、一个电容和一个反馈电阻组成。
在输入信号为正弦波时,输出信号为余弦波,并且幅度随时间增加而增大。
2.设计步骤:(1)选择合适的运放:本次实验选用LM741运放。
(2)确定反馈电阻Rf:根据公式Rf=1/(2πfC),其中f为输入信号频率,C为选定的电容值。
本次实验选用C=0.01μF,当输入频率为1kHz时,计算得到Rf=15.92kΩ。
(3)确定输入阻抗Rin:为了保证输入信号不被积分电路影响,需要满足Rin>>Rf。
本次实验选用Rin=1MΩ。
(4)确定电源电压:根据运放数据手册,LM741的最大工作电压为±18V。
本次实验选用±15V的直流稳压电源。
3.实验步骤:(1)按照上述设计步骤连接电路图,并接通电源。
(2)调节函数信号发生器输出正弦波信号,频率为1kHz,幅度为2V。
(3)使用双踪示波器观察输入和输出信号波形,并记录数据。
(4)更改输入信号频率和幅度,重复步骤(2)和(3),记录数据。
4.实验结果分析:根据实验记录的数据,可以得到输入和输出信号的波形图。
当输入为正弦波时,输出为余弦波,并且幅度随时间增加而增大。
当输入频率增加时,输出幅度也相应增加;当输入幅度增加时,输出幅度也相应增加。
五、微分电路设计实验1.原理简介:微分电路是一种能够将输入信号进行微分运算的电路,通常由一个运放、一个电阻和一个反馈电容组成。
在输入信号为正弦波时,输出信号为余弦波,并且幅度随时间减小而减小。
2.设计步骤:(1)选择合适的运放:本次实验选用LM741运放。
积分与微分电路实验报告这次的实验其实说起来也不复杂,就是做一个积分电路和微分电路,听起来很高大上对吧?不过,做起来其实没那么神秘,反而有点像做菜,材料准备好,步骤走一遍,最后成果就出来了。
先说说积分电路吧,这玩意儿简单得很,就是通过运算放大器来实现输入信号的积分。
其实就是把电压信号“积”在电容上,输出一个跟输入信号积分相关的结果。
你可以想象成,输入信号就像下雨,电容就像一个大水桶,输入信号越大,积累的水越多,输出的电压就越高。
真有点像这小雨变大雨的感觉!做这个电路的时候,最重要的就是把电容和电阻选对了,不然信号一来,电路就“崩了”,啥也没有。
然后说微分电路,哎,这个就有点儿像是小汽车的刹车系统了,输入信号一来,它立马做出反应,把信号的变化量放大输出。
微分电路的关键就是把输入信号变化的速度抓住,简而言之就是“快、狠、准”!只要一有信号的突变,输出信号就会像火箭一样飞出去,这就有点像看到路口红灯时,车子猛地刹车的感觉。
如果把积分电路比作“慢慢积累”,那微分电路就是“迅速反应”。
不过,微分电路也有点难搞,稍微电路设计得不对,输出信号就容易出现“尖刺”——噼里啪啦乱响的那种,简直是让人抓狂。
实验做的时候,我一开始有点儿紧张,毕竟这些电路在书本上看着简单,可一旦自己动手弄,事情就复杂了。
记得第一次接好电路后,开机的时候,心里那是忐忑不安的,简直像是在做某个高难度的挑战。
输入信号一开始就不对,整个人都傻眼了。
那个波形一看,心想:哎呀妈呀,咋回事啊?完全不像书上的样子嘛!不过,再一看,发现是电容接错了,真是晕了。
于是,我又赶紧换了下接线,结果,哇塞,居然成功了!看到输出信号渐渐符合预期,心里那个小激动,简直快要跳起来。
做电路嘛,最终的目的就是“问题解决”!当你看到那个波形对上了,真是像突然得到了人生的答案,所有的辛苦和焦虑都值了。
说到这里,你可能会想,积分电路和微分电路做起来有啥不一样?其实不瞒你说,差别还真不小。
积分电路和微分电路实验报告篇一:积分电路与微分电路实验报告四、积分电路与微分电路目的及要求:(1)进一步掌握微分电路和积分电路的相关知识。
(2)学会用运算放大器组成积分微分电路。
(3)设计一个RC微分电路,将方波变换成尖脉冲波。
(4)设计一个RC积分电路,将方波变换成三角波。
(5)进一步学习和熟悉Multisim软件的使用。
(6)得出结论进行分析并写出仿真体会。
一.积分电路与微分电路1. 积分电路及其产生波形1.1运算放大器组成的积分电路及其波形设计电路图如图所示:图 1.1积分电路其工作原理为:积分电路主要用于产生三角波,输出电压对时间的变化率与输入阶跃电压的负值成正比,与积分时间常数成反比,即?U0?t??UinR1C式中,R1C积分时间常数,Uin为输入阶跃电压。
反馈电阻Rf的主要作用是防止运算放大器LM741饱和。
C为加速电容,当输入电压为方波时,输入端U01的高电平等于正电源?Vcc,低电平等于负电源电压?Vdd,比较器的U??U??0时,比较器翻转,输入U01从高电平跳到低电平?Vdd。
输出的是一个上升速度与下降速度相等的三角波形。
图1.2积分电路产生的波形1.2微分电路及其产生波形2. 运算放大器组成的微分电路及其波形设计的微分电路图:图2.1微分电路其工作原理为:将积分电路中的电阻与电容对换位子,并选用比较小的时间常数RC,便得到了微分电路。
微分电路中,输出电压与输入电压对时间的变化率的负值成正比,与微分时间常数成反比,所以RinU0??RfC?U?tin的主要作用是防止运放LM741产生自激振荡。
v0??RCdV/dt,输出电压正比与输入电压对时间的微商,符号表示相位相反,当输入电压为方波时,当t?o时输出电压为一个有限制。
随着C的充电,输出电压v0将逐渐衰减,最后趋于零,就回形成尖顶脉冲波。
微分电路中用信号发生器输入方波信号,经过微分电路就会产生输出脉冲波信号。
结论与体会:通过此设计学会了用运算放大器组成的积分电路和微分电路,还学会了Multisim 软件的应用和使用方法。
积分电路和微分电路的设计实验报告实验报告:在本次实验中,我们将对积分电路和微分电路进行设计和测试。
积分电路和微分电路是电子电路中常见的两种基本电路,分别具有将输入信号进行积分和微分运算的功能。
首先我们设计了一个积分电路。
积分电路的基本原理是将输入信号进行积分运算,输出信号为输入信号的积分。
我们选择了一个运算放大器和一个电容器来构建积分电路。
通过适当选择电阻和电容的数值,我们成功设计出一个稳定的积分电路。
在实验中,我们输入了一个方波信号,观察到输出信号为方波信号的积分波形,验证了积分电路的功能。
接着,我们设计了一个微分电路。
微分电路的基本原理是将输入信号进行微分运算,输出信号为输入信号的微分。
我们同样选择了一个运算放大器和一组电阻来构建微分电路。
通过适当选择电阻的数值,我们成功设计出一个稳定的微分电路。
在实验中,我们输入了一个正弦信号,观察到输出信号为正弦信号的微分波形,验证了微分电路的功能。
在实验过程中,我们遇到了一些问题和挑战。
首先是在选择电阻和电容数值时,需要考虑电路的稳定性和频率响应。
另外,在电路的搭建和测试过程中,需要保证电路连接正确,避免引入干扰和误差。
通过仔细分析和调试,我们最终成功设计并测试出了积分电路和微分电路,实现了实验的预期目标。
总的来说,本次实验对积分电路和微分电路的设计和测试提供了宝贵的经验和实践机会。
通过动手实验,我们更深入地理解了电子电路的基本原理和工作原理,提升了我们的实验技能和电路设计能力。
希望在未来的学习和研究中,我们能够更加熟练地应用电子电路知识,为解决实际问题和创新设计电路做出贡献。
感谢老师和同学们的帮助和支持,让我们共同完成了这次有意义的实验。
实验6 积分与微分电路实验一、实验目的1.进一步了解运算放大器的性质与特点,用集成运算放大器组成积分,微分电路。
2.学会上述电路的测试和分析方法。
二、实验仪器1.实验箱TD-AS。
2.PC 机+虚拟仪器或示波器。
三、实验内容与步骤1. 积分电路图2-7-1 积分电路(1)连接电路,将频率为500Hz(T = 2mS)、幅值为4V的方波接入输入U i。
用示波器测量输出U o波形的幅值并与理论值相比较。
完成下表。
表2-7-14.0683.068 -8.136估算参考公式:由公式可得其幅值计算公式为:(2)将输入波形换成同频率幅值适当的正弦波,在输出不失真的情况下,观察其相位变化和幅值随频率的变化。
完成下表。
表2-7-2增大减小减小理论参考公式:此公式说明U o的相位比U i超前90 o,且幅值随频率升高而下降。
注:由于运放存在偏置电流、失调电压、失调电流及温漂等,所以实际积分电路输出U o可能存在误差。
所以若误差情况很严重时(存在严重的削顶现象),可以在电容两端并接一个100K Ω的电阻,利用它引入反馈来抑制上述各种原因引入的积分漂移现象。
2.微分电路图2-7-2 微分电路连接电路,将频率为500Hz(T = 2mS)的正弦波接入U i,在输出不失真的情况下,观察U o 相位变化和幅值随频率的变化。
完成下表。
表2-7-3不变变大不变理论参考公式:此公式说明U o的相位比U i滞后90o,且幅值随频率升高而升高。
积分电路和微分电路的设计实验报告摘要:本文是一份关于积分电路和微分电路设计实验的报告。
首先介绍了积分电路和微分电路的定义和原理。
接着分别描述了积分电路和微分电路的设计步骤,并给出了具体的设计实例。
最后进行了实验结果的分析和讨论。
一、引言积分电路和微分电路是电子电路中非常重要的两种基本电路。
积分电路可以将输入信号进行积分运算,微分电路可以将输入信号进行微分运算。
它们在信号处理、滤波器设计、控制系统中起着重要作用。
本实验旨在研究和实现积分电路和微分电路的设计与应用。
二、积分电路的设计1. 原理介绍积分电路是将输入信号进行积分运算的电路,它由电容器和电阻器组成。
当输入信号为正弦波时,经过积分电路后输出为余弦波。
积分电路的输入电压与输出电压之间存在一个相位差90度。
2. 设计步骤(1)选择合适的电容和电阻值,根据输入信号频率和幅值来确定。
(2)计算电容器的充电时间常数τ,可以通过以下公式计算:τ = RC。
(3)根据所要求的积分运算时间,计算所需的电容器充放电时间,根据时间和电导率来确定电容值。
(4)根据计算结果,选取合适的电容和电阻器。
3. 设计实例以RC积分电路为例,假设输入信号为5V峰峰值的正弦波,频率为1kHz,要求积分时间为2s。
根据电容器的充电时间常数τ = RC,可以计算出为τ = 2s/RC。
根据所需积分时间为2s,电阻值选取为10kΩ,可以求得电容器的充放电时间为RC = 0.2s,电容值为1μF。
三、微分电路的设计1. 原理介绍微分电路是将输入信号进行微分运算的电路,它由电阻器和电容器组成。
当输入信号为正弦波时,经过微分电路后输出为正弦波的导数波形。
2. 设计步骤(1)选择合适的电容和电阻值,根据输入信号频率和幅值来确定。
(2)计算电容器的放电时间常数τ,可以通过以下公式计算:τ = RC。
(3)根据所要求的微分运算时间,计算所需的电容器放电时间,根据时间和电导率来确定电容值。
(4)根据计算结果,选取合适的电容和电阻器。
深圳大学实验报告课程名称:电路与电子学实验项目名称:比例、求和、积分、微分电路学院:专业:指导教师:报告人:学号:班级:实验时间:实验报告提交时间:教务处制一、实验目的1、掌握用集成运算放大电路组成比例、求和电路的特点及性能;2、掌握用运算放大器组成积分微分电路;3、学会上述电路的测试和分析方法二、实验环境1、数字万用表2、双踪示波器3、信号发生器三、实验内容与步骤:1.电压跟随电路实验电路图如下,按表1内容实验并测量记录。
V i(V) -2 -0.5 0 +0.5 1R L=∞V0(V)R L=5.1KΩ2.反相比例放大器实验电路如图,U0=-R F*U i/R1,按表2内容实验并测量记录。
表23.同相比例放大电路实验电路如下所示,U 0=(1+R F /R 1)U i ,按表3实验测量并记录。
直流输入电压V i (mV)30 100 300 1000 3000 输出电压V 0理论估算(V)实际值(V) 误差(mV )4.反相求和放大电路直流输入电压V i (mV)30 100 300 1000 3000 输出电压V 0理论估算(V)实际值(V )误差(mV)实验电路如图,U0=-RF(Ui1/R1+Ui2/R2),按表4内容进行实验测量。
Vi1(V) 0.3 -0.3Vi2(V) 0.2 0.2V0(V)V0估(V)表4四、实验结果与数据分析:五、实验体会及自我评价:六、诚信承诺:本人郑重承诺在完成该项目的过程中不发生任何不诚信现象,一切不诚信所导致的后果均由本人承担。
签名:2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。
微分,积分,比例电路的实例分析为验证等效的微分电路,选择一组元件参数,R1=1k 、R2=1k 、C1=0.1uF 、C2=0. 01uF ,τ1= 0.0001s, τ 2 = 0.00001s ,用信号发生器产生频率为100Hz ,占空比为1:1的周期方波信号,进行实验并且观察记录输入、输出波形。
经过计算此时满足的条件为:ω<<1/τ1=10KHz∣H(j ωφ(ω)≒90故此时的电路等效于微分电路。
输入输出波形如下:微分电路可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部分,即只有输入波形发生突变的瞬间才有输出。
而对恒定部分则没有输出。
输出的尖脉冲波形的宽度与R*C 有关(即电路的时间常数),R*C 越小,尖脉冲波形越尖,反之则宽。
此电路的R*C 必须远远少于输入波形的宽度,否则就失去了波形变换的作用,变为一般的RC 耦合电路了,一般R*C 少于或等于输入波形宽度的1/10就可以了。
为验证等效积分电路,选择一组元件参数,如R1=1k 、R2=1k 、C1=0.1uF 、C2=0. 01uF ,τ1= 0.0001s, τ 2 = 0.00001s ,用信号发生器产生频率为50KHz ,占空比为1:1的周期方波信号,进行实验并且观察记录输入、输出波形。
经过计算此时满足的条件为:ω=314.16Krad/s>>1/τ2=100KHz∣H(j ω)∣≒1/(R1C2ωφ(ω)≒-90故此时的电路等效于微分电路。
输入输出波形如下:积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。
电路原理很简单,都是基于电容的冲放电原理,这里就不详细说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于或等于10倍于输入波形的宽度。
为验证等效比例电路,选择一组元件参数,如R1=1k、R2=2k、C1=0.1uF、C2=0. 01uF,τ1= 0.0001s, τ 2 = 0.00002s,用信号发生器产生频率为1KHz,占空比为1:1的周期方波信号,进行实验并且观察记录输入、输出波形。
实验七 积分与微分电路一、实验目的1.学会用运算放大器组成积分微分电路。
2.学会积分微分电路的特点及性能。
二、实验仪器l.数字万用表2.信号发生器3.双踪示波器三、预习要求1.分析图7.1电路,若输入正弦波,V 0与Vi 相位差是多少?当输入信号为100Hz 有效值为2V 时,V O =?2.分析图7.2电路,若输入方波,V 。
与Vi 相位差多少?当输入信号为160Hz 幅值为1V 时,输出V O =?3.拟定实验步骤、做好记录表格。
四、实验内容1.积分电路:实验电路如图7.1所示图7.1 积分电路 反相积分电路:)()(1010t U dt t U CR U O t t i O +-=⎰。
实用电路中为防止低频信号增益过大,往往在积分电容两边并联一个电阻f R ,它可以减少运放的直流偏移,但也会影响积分的线性关系,一般取21R R R f =>>。
(1)取V i =-1V ,断开开关K(开关K 用一连线代替,拔出连线一端作为断开)用示波器观察V O 变化。
(2)测量饱和输出电压及有效积分时间。
V O 直线上升,大约在1.1秒时间内输出饱和电压11.4伏。
(3)使图7.1中积分电容改为0.1μ,在积分电容两端并接100K 电阻,断开K ,V i 分别输入频率为100Hz 幅值为±1V (V P-P =2V )的正弦波和方波信号,观察和比较V i 与V 0的幅值大小及相位关系,并记录波形。
当输入100Hz 、V P-P =2V 的方波时,根据反向积分法则产生三角波。
当方波为- U Z 时,三角波处于上升沿,反之处于下降沿。
输出三角波的峰峰值为)(5211V T U C R V Z P P ==-。
当不加上f R 时,示波器观察输出三角波往往出现失真,此时使用直流输入观察就会发现,三角波的中心横轴大约在+10V 或-10V 的地方,因为直流偏移太大,所以输出会产生失真。
在电容两端并上大电位器,调节它大约在500K Ω到1M Ω的范围,可以观察到不失真的三角波,峰峰值为5V ,此时仍有一定的直流偏移。
竭诚为您提供优质文档/双击可除积分电路和微分电路实验报告
篇一:实验6积分与微分电路
实验6积分与微分电路
1.实验目的
学习使用运放组成积分和微分电路。
2.实验仪器
双踪示波器、信号发生器、交流毫伏表、数字万用表。
3.预习内容
1)阅读op07的“数据手册”,了解op07的性能。
2)复习关于积分和微分电路的理论知识。
3)阅读本次实验的教材。
4.实验内容
1)积分电路如图5.1。
在理想条件下,为零时,则
dV(t)Vi(t)
??co,当c两端的初始电压Rdt
Vo(t)??
1t
Vi(t)dtRc?o
因此而得名为积分电路。
(1)取运放直流偏置为?12V,输入幅值Vi=-1V的阶跃电压,测量输出饱和电压和有效积分时间。
若输入为幅值Vi=-1V阶跃电压时,输出为
Vo(t)??
Vi1t
Vdt??t,(1)i
Rc?oRc
这时输出电压将随时间增长而线性上升。
通常运放存在输入直流失调电压,图6.1所示电路运放直流开路,运放以开环放大倍数放大输入直流失调电压,往往使运放输出限幅,即输出电压接近直流电源电压,输出饱和,运放不能正常工作。
在op07的“数据手册”中,其输入直流失调电压的典型值为30μV;开环增益约为112db,即4×105。
据此可以估算,当Vi=0V时,Vo=30μV×4×105=12V。
电路实际输出接近直流偏置电压,已无法正常工作。
建议用以下方法。
按图6.1接好电路后,将直流信号源输出端与此同时Vi相接,调整直流信号源,使其输出为-1V,
将输出Vo接示波器输入,用示波器可观察到积分电路输出饱和。
保持电路状态,关闭直流偏置电源,示波器x轴扫描速度置0.2sec/div,Y轴输入电压灵敏度置2V/div,将扫描线移至示波器屏的下方。
等待至电容上的电荷放尽。
当扫描光点在示波器屏的左下方时,即时打开直流偏置电源,示波器屏上积分电路的输出为线性上升的直线,大约1秒后,积分电路输出由线性上升的直线变为水平直线,即积分电路已饱和,立即按下示波器的“stop”键。
再用示波器的光标测量示波器屏上电压曲线线性上升段的电压变化量和所用的
时间,即积分电路的输出饱和电压和有效积分时间。
由于打开直流偏置电源后电路有过渡过程,所以用上述方法测量得到的曲线,
在打开直
流偏置电源后的很短的时间内不是线性上升的直线,这一时间及其对应的电压,实验者可用曲线拟合的方法估计。
有的实验者测量到的还可能是弯曲的上升曲线,这是因为本实验电路使用的积分电容是电解电容,这是电解电容漏电所致。
这使得电路的传递函数背离积分关系。
若上升曲线弯曲得较严重,在实用电路中应更换电容。
(2)
改取c?0.1?F,Vi?0.5sin2?fit(V),fi?(10hz,20khz),测量积分
电路的幅频特性曲线。
观察输入输出波形的相位差。
通常,输出会有直流飘移,甚至输出被
限幅。
解决的办法之一是在电容两端并接一个100K的电阻。
建议先按表6.1要求测量,再绘制幅频特性曲线。
图6.1所示电路的传递函数为
hI(s)??
1
(2)R1cs
若运放为理想运放,上式在无限宽的频带上满足积分关系。
但是,由于运放的输入直流失调电压和很大的开环增益,运放输出饱和,电路无法正常工作。
在电容两端并接100k
Ω电阻后,电路如图5.2,其传递函数为
hI1(s)?
Vo(s)R1
(3)??2
Vi(s)R1R2cs?1
该电路对输入直流失调电压仅仅放大了10倍,由op07“数据手册”给出的输入直流失调电压的数据,
输出失调电压可估计为约300μV,这对电路的影响往往是可以忽略的。
但是,(3)式满足积分规律的下限频率大大提高了,约为15.9hz。
由op07“数据手册”可见,其设有输出调零电路。
对于图6.1所示电路,调零灵敏度很高,即调零电位器很小的变化,可使输出失调电压急剧变化,电路的稳定性不好。
对于图6.2所示电路,可通过调整调零电位器,使输出失调电压几乎为零。
本实验电路未安装调零电位器。
有兴趣者可用面包板做op07的输出支流漂移调零实验。
根据op07“数据手册”给出的调零电路Fig.1optionaloffsetnullingcircuit,将两输入端短路,调整多圈电位器,使op07输出直流为零。
(3)取Vi为高电平Vh为0.5V、低电平VL为-0.5V、占空比Vh/VL为1、的方波,方波基频为fi∈(10hz,2khz),观察输入输出波形。
通常,输出会有直流漂移,甚至输出被限幅。
解决的办法之一是在电容两端并接一个100K的电阻。
若无100kΩ电阻,假设运放没有输入直流漂移,在稳态,取t∈(0,Ts/2)做积分,则输出是负峰值为
T
VTVT12sVih
?Vopdt??ih(s)??ihs(4)
c0R1Rc2T12
的三角波,如图6.3。
其中,Vip为输入方波的峰值,为0.5V;Ts为输入方波的周期;T1=R1c
为电路的积常数。
因为在半周期内,来自R1支路的电流是恒定的。
若接了电阻R2后,R2支路对来自R1支路的电流分流,分流电流随输出电压的变化而不断变化,从而使电容的充电(或放电)电流也不断变化,电容上的电压不再是线性上升的,输出电压Vo不再是三角波。
设在稳态,取t∈(0,Ts/2),电路的响应可可看作:阶跃输入的零状态响应和初始条件为Vop的零输入响应。
阶跃输入的零状态响应的Laplace变换为
VipR21
(5)Vos(s)??
R1R2cs?1s
Vip为输入阶跃的幅值。
做Laplace反变换可得
?R2
vof(t)??(1?eT2)Vip(6)
R1
t
其中,T2=R2c为电路的时间常数。
由(3)式可得电路零输入是的微分方程
T2
dvoh(t)
?voh(t)?0dt
tT2
voh(0)?Vop(7)
容易得到电路的零输入响应为
voh(t)?vope
?
(8)
t
t
电路的输出为零状态响应vos(t)与零输入响应voh(t)之和
??R2T2
vo(t)?vos(t)?voh(t)??(1?e)Vip?VopeT2(9)
R1
其波形如图6.4。
再求Vop。
设输入的半周期为τ,在输入半周期结束时刻,输出电压为-Vop,所以
??R2T2
?Vop??(1?e)Vip?VopeT2(10)
R1
?
?
输出电压峰值为
Vop?
R21?e
Vip(11)??R1。