项目五 贝叶斯分类
- 格式:pptx
- 大小:871.21 KB
- 文档页数:30
贝叶斯分类算法外文名bayesian classifier所属学科统计学定义利用概率统计知识进行分类的算法目录常会走在路上对身旁的朋友说“这个人一看就很有钱、那边有个非主流”之类的话,其实这就是一种分类操作。
从数学角度来说,分类问题可做如下定义:已知集合:和,确定映射规则,使得任意有且仅有一个使得成立。
(不考虑模糊数学里的模糊集情况)其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合,其中每一个元素是一个待分类项,f叫做分类器。
分类算法的任务就是构造分类器f。
这里要着重强调,分类问题往往采用经验性方法构造映射规则,即一般情况下的分类问题缺少足够的信息来构造100%正确的映射规则,而是通过对经验数据的学习从而实现一定概率意义上正确的分类,因此所训练出的分类器并不是一定能将每个待分类项准确映射到其分类,分类器的质量与分类器构造方法、待分类数据的特性以及训练样本数量等诸多因素有关。
例如,医生对病人进行诊断就是一个典型的分类过程,任何一个医生都无法直接看到病人的病情,只能观察病人表现出的症状和各种化验检测数据来推断病情,这时医生就好比一个分类器,而这个医生诊断的准确率,与他当初受到的教育方式(构造方法)、病人的症状是否突出(待分类数据的特性)以及医生的经验多少(训练样本数量)都有密切关系。
1.3、贝叶斯分类的基础——贝叶斯定理每次提到贝叶斯定理,我心中的崇敬之情都油然而生,倒不是因为这个定理多高深,而是因为它特别有用。
这个定理解决了现实生活里经常遇到的问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。
这里先解释什么是条件概率:表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。
其基本求解公式为:。
贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关心P(B|A),贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路。
详解贝叶斯分类器1.贝叶斯决策论贝叶斯分类器是一类分类算法的总称,贝叶斯定理是这类算法的核心,因此统称为贝叶斯分类。
贝叶斯决策论通过相关概率已知的情况下利用误判损失来选择最优的类别分类。
“风险”(误判损失)= 原本为cj的样本误分类成ci产生的期望损失,期望损失可通过下式计算:为了最小化总体风险,只需在每个样本上选择能够使条件风险R(c|x)最小的类别标记。
最小化分类错误率的贝叶斯最优分类器为:即对每个样本x,选择能使后验概率P(c|x)最大的类别标记。
利用贝叶斯判定准则来最小化决策风险,首先要获得后验概率P(c|x),机器学习要实现的是基于有限的训练样本集尽可能准确的估计出后验概率P(c|x)。
主要有两种模型:一是“判别式模型”:通过直接建模P(c|x)来预测,其中决策树,BP神经网络,支持向量机都属于判别式模型。
另外一种是“生成式模型”:通过对联合概率模型P(x,c)进行建模,然后再获得P(c|x)。
对于生成模型来说:基于贝叶斯定理,可写为下式(1)通俗的理解:P(c)是类“先验”概率,P(x|c)是样本x相对于类标记c的类条件概率,或称似然。
p(x)是用于归一化的“证据”因子,对于给定样本x,证据因子p(x)与类标记无关。
于是,估计p(c|x)的问题变为基于训练数据来估计p(c)和p(x|c),对于条件概率p(x|c)来说,它涉及x所有属性的联合概率。
2.极大似然估计假设p(x|c))具有确定的形式并且被参数向量唯一确定,则我们的任务是利用训练集估计参数θc,将P(x|c)记为P(x|θc)。
令Dc表示训练集D第c类样本的集合,假设样本独立同分布,则参数θc对于数据集Dc的似然是对进行极大似然估计,就是去寻找能最大化P(Dc|θc)的参数值。
直观上看,极大似然估计是试图在θc所有可能的取值中,找到一个能使数据出现的“可能性”最大的值。
上式的连乘操作易造成下溢,通常使用对数似然:此时参数θc的极大似然估计为在连续属性情形下,假设概率密度函数,则参数和的极大似然估计为:也就是说,通过极大似然法得到的正态分布均值就是样本均值,方差就是的均值,在离散情况下,也可通过类似的方式估计类条件概率。
贝叶斯分类1、 定义: 依据贝叶斯准则(两组间最大分离原则)建立的判别函数集进行的图像 分类。
贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝 叶斯分类。
2、 贝叶斯定理:p(B|A) = P (A| B )P (B )P(A)说明:p(A|B)表示事件B 发生的前提下,事件A 发生的概率;p(A)表示事件A 发生的概率;p(B)事件B 发生的概率。
则可以求得事件 A 发生的前提下,事件B 发生的概率。
贝叶斯定理给出了最小化误差的最优解决方法,可用于分类和预测。
将前面贝叶斯公式变化如下:P(x) P(c)xP(x) P(x)上述公式中,C 代表类别,X 代表特征,很明显,我们做出预测肯定是利用当 前的特征,来判断输出的类别。
当然这里也可以很明显的看到贝叶斯公式先验与后 验概率之间的转换,很明显,P(c|x)在我们的定义里面是后验概率,也是我们想要 得到的东西。
而P(x)、P(c)以及P(x|c)都是先验概率,它们分别 X 特征出现的概 率,C 类出现的概率,C 类中,出现X 的概率。
而第一项对于多类分类来说,都是一 样,都是当前观察到的特征,所以此项可以略去。
那最终的结果就是计算P(x|c)*P(c) 这一项,P (c )是可以通过观察来解决的。
重点也就全部落在了 P(x|c)上,上面对 于此项的解释是在C 类中,X 特征出现的概率,其实简单来讲,就是 X 的概率密度。
3、特点1)o 贝叶斯分类并不是把一个对象绝对地指派给某一类, 而是通过计算得出属于某一类的概率。
具有最大概率的类便是该对象所属的类。
2) o 一般情况下在贝叶斯分 类中所有的属性都潜在的起作用,即并不是一个或几个属性决定分类,而是所有的 属性都参与分类。
3)贝叶斯分类的属性可以是离散的、连续的、也可以是混合的。
4、分类:(1)朴素贝叶斯算法。
⑵TAN 算法1)朴素贝叶斯算法成立的前提是各属性之间互相独立。
贝叶斯分类下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!贝叶斯分类是一种常用的机器学习算法,它基于贝叶斯定理和概率统计原理,根据已知的先验概率和特征之间的关系,来对未知数据进行分类。
贝叶斯分类分类算法贝叶斯分类(Bayesian classification)是一种基于贝叶斯定理的分类算法,它将特征之间的条件概率和类别的先验概率组合起来,通过计算后验概率来确定一个样本属于其中一类别的概率。
贝叶斯分类算法在文本分类、垃圾邮件过滤和情感分析等领域都有广泛应用。
贝叶斯分类的核心思想是通过条件概率来计算后验概率。
在分类问题中,我们要将一个样本进行分类,假设有 n 个特征变量 x1, x2, ..., xn,每个特征变量有 k 个可能的取值,将样本分为 m 个类别 C1,C2, ..., Cm。
需要计算的是给定样本的特征值 x1, x2, ..., xn 下,它属于每个类别的概率 P(C1,x1, x2, ..., xn), P(C2,x1, x2, ..., xn), ..., P(Cm,x1, x2, ..., xn)。
根据贝叶斯定理,P(Ci,x1, x2, ..., xn) = P(Ci) * P(x1,x2, ..., xn,Ci) / P(x1, x2, ..., xn)。
其中,P(Ci) 是类别 Ci 的先验概率,P(x1, x2, ..., xn,Ci) 是样本 x1, x2, ..., xn 在给定类别 Ci 的条件下的概率,P(x1, x2, ..., xn) 是样本 x1, x2, ..., xn出现的概率。
贝叶斯分类算法的核心是学习类别的先验概率和特征之间的条件概率。
通常采用的方法是从已有数据中估计这些概率。
假设训练数据集中有 N个样本,属于类别 Ci 的样本有 Ni 个。
类别 Ci 的先验概率可以估计为P(Ci) = Ni / N。
而特征之间的条件概率可以通过计算样本中特征的频率来估计,比如计算属于类别 Ci 的样本中特征 xj 取值为 a 的频率 P(xj = a,Ci) = Nij / Ni,其中 Nij 是属于类别 Ci 的样本中特征 xj 取值为 a 的个数。
贝叶斯分类原理贝叶斯分类原理是一种基于贝叶斯定理的分类方法。
在机器学习中,分类是指将一个实例分配到一组预定义的类别中的任务。
在这种情况下,“贝叶斯分类”指的是将数据集分为一个或多个类别的算法。
随着互联网和人工智能的发展,贝叶斯分类原理在信息检索、垃圾邮件过滤、舆情分析和医疗诊断等领域中得到了广泛应用。
贝叶斯理论最早由英国统计学家托马斯·贝叶斯在18世纪提出。
贝叶斯分类原理是基于贝叶斯定理的。
贝叶斯定理的官方表述是:P(A|B) = P(B|A) × P(A) / P(B)P(A)和P(B)是事件A和事件B的先验概率分布;P(B|A)是在事件A下B的条件概率;P(A|B)是在已知事件B的情况下A的后验概率分布。
在贝叶斯分类中,我们将每个分类视为事件A并计算每个分类的先验概率P(A)。
然后考虑训练数据集中与该分类相关的每个特征,计算在每个类别中某一特征的条件概率P(B|A)。
使用贝叶斯公式来计算每个分类的后验概率P(A|B)。
将后验概率最高的分类作为预测结果。
贝叶斯分类的核心思想是通过先前的知识和后验概率的推断,来预测事物的未来发展。
在贝叶斯分类原理中,我们将每个分类视为一个“类别”,然后通过计算每个类别与每个特征的条件概率来进行分类。
具体过程如下:1.准备训练数据集。
2.计算训练数据集中每个类别的先验概率。
3.计算在每个类别下各特征的条件概率。
4.输入待分类的实例,计算在每个类别下该实例的后验概率。
5.选择后验概率最高的类别作为预测结果。
下面用一个简单的例子来说明贝叶斯分类原理。
假设我们需要对电子邮件进行自动分类,将它们分为“垃圾邮件” 和“正常邮件” 两类。
我们可以将邮件的主题、发件人信息、时间戳等各种特征作为分类依据。
现在我们已经有了一个训练集,并将训练集按照类别分别标记为“垃圾邮件” 和“正常邮件”。
在训练数据集中,假设类别“垃圾邮件” 的总数为1000封,其中主题包含“online casino” 的邮件有800封,主题不包含“online casino” 的邮件有200封;假设类别“正常邮件” 的总数为2000封,其中主题包含“online casino” 的邮件有100封,主题不包含“online casino” 的邮件有1900封。
2.1、什么是贝叶斯分类据维基百科上的介绍,贝叶斯定理是关于随机事件A和B的条件概率和边缘概率的一则定理。
如上所示,其中P(A|B)是在B发生的情况下A 发生的可能性。
在贝叶斯定理中,每个名词都有约定俗成的名称:•P(A)是A的先验概率或边缘概率。
之所以称为"先验"是因為它不考虑任何B方面的因素。
•P(A|B)是已知B发生后A的条件概率(直白来讲,就是先有B而后=>才有A),也由于得自B 的取值而被称作A的后验概率。
•P(B|A)是已知A发生后B的条件概率(直白来讲,就是先有A而后=>才有B),也由于得自A 的取值而被称作B的后验概率。
•P(B)是B的先验概率或边缘概率,也作标准化常量(normalized constant)。
按这些术语,Bayes定理可表述为:后验概率 = (相似度*先验概率)/标准化常量,也就是說,后验概率与先验概率和相似度的乘积成正比。
另外,比例P(B|A)/P(B)也有时被称作标准相似度(standardised likelihood),Bayes定理可表述为:后验概率 = 标准相似度*先验概率。
2.2 贝叶斯公式如何而来贝叶斯公式是怎么来的?下面再举wikipedia 上的一个例子:一所学校里面有60% 的男生,40% 的女生。
男生总是穿长裤,女生则一半穿长裤一半穿裙子。
有了这些信息之后我们可以容易地计算“随机选取一个学生,他(她)穿长裤的概率和穿裙子的概率是多大”,这个就是前面说的“正向概率”的计算。
然而,假设你走在校园中,迎面走来一个穿长裤的学生(很不幸的是你高度近似,你只看得见他(她)穿的是否长裤,而无法确定他(她)的性别),你能够推断出他(她)是男生的概率是多大吗?一些认知科学的研究表明(《决策与判断》以及《Rationality for Mortals》第12章:小孩也可以解决贝叶斯问题),我们对形式化的贝叶斯问题不擅长,但对于以频率形式呈现的等价问题却很擅长。
《贝叶斯分类》
贝叶斯分类(BayesianDectoral)是一种机器学习算法,它能够从训练数据中提取出有用的信息来进行分类预测,其目标就是找到一个函数来表示数据集合的分布情况。
贝叶斯分类(BayesianDectoral)是一种机器学习算法,它能够从训练数据中提取出有用的信息来进行分类预测,其目标就是找到一个函数来表示数据集合的分布情况。
贝叶斯分类算法的主要思想如下:
1.首先确定分类规则,然后利用该规则对输入样本进行分类;
2.如果某些样本符合规则,那么它们被认为属于同一类别;
3.如果某些样本不满足规则,那么它们被认为属于另外一类;
4.如果所有样本都符合分类规则,那么最终结果将是一个分类。
贝叶斯分类算法的基本原理如下:
1.对每一个新的输入,都要计算其相应的概率值;
2.对每一个输入,都采用贝叶斯公式进行计算,得到新的概率值;
3.根据这两组概率值,判断两者之间是否存在关系;
4.若二者之间没有关系,则将这两个概率值合并成一个概率值;
5.如果二者之间有关系,则按照贝叶斯公式进行修正,重复步骤4~6,直至达到满意的结果。
贝叶斯决策分类
以下是 7 条关于贝叶斯决策分类的内容及例子:
1. 嘿,你知道贝叶斯决策分类么?就好比你去超市买苹果,面对一堆不同品种的苹果,你得根据它们的外观、价格等信息来做选择,这就是一种贝叶斯决策分类呀!
2. 哇塞,贝叶斯决策分类可神奇了!就像是你纠结该穿哪件衣服出门,你会综合考虑天气、场合、自己的心情等来决定,这和它是多么相似呀!
3. 贝叶斯决策分类其实没那么难理解啦!比如你决定要不要去看一场电影,你会想想影评、自己对这类电影的喜好程度等等,这不就是在进行贝叶斯决策分类嘛!
4. 哎呀呀,贝叶斯决策分类无处不在呀!像你考试的时候,决定先做哪些题目,不就是根据题目难度、自己擅长的程度这些来决策嘛!
5. 贝叶斯决策分类真的很厉害呢!好比玩游戏选择角色,你得考虑角色技能、团队需要等,这就是贝叶斯决策分类在起作用呀!
6. 嘿嘿,贝叶斯决策分类有意思吧!就像是你点菜,要综合菜的口味、价格、大家的口味偏好来决定点什么,这也是一种贝叶斯决策分类呀!
7. 贝叶斯决策分类在生活中可太重要啦!比如你决定要不要投资一个项目,会分析各种风险、回报可能性,这不就是在运用贝叶斯决策分类嘛!
我的观点结论:贝叶斯决策分类真的和我们的生活息息相关,理解并运用它能让我们做出更明智的选择。
贝叶斯分类详解,从条件概率说起 要想了解贝叶斯分类,我们⾸先要了解概率论中⼀个我们在⽣活中中常⽤的,却⼜没有觉察的⼩知识,条件概率。
条件概率,顾名思义,是在某种条件下或者某个特征下的概率。
我们这⾥不再讨论先验和后验概率,以防⼤家迷糊。
只讨论条件概率,更利于⼤家理解。
举个例⼦,假设⼀个学校⾥有60%男⽣和40%⼥⽣。
⼥⽣穿裤⼦的⼈数和穿裙⼦的⼈数相等,所有男⽣穿裤⼦。
我们定义两个时间A,B。
其中A={某个学⽣穿的服装类型},B={某个学⽣的性别};那么A的样本空间为A={A1:穿裙⼦,A2:穿裤⼦};B={B1:男,B2:⼥} P(A=“穿裙⼦”|B=“⼥⽣”)=50%,那么这个就是⼥⽣穿裙⼦的概率,也就是在限定⼀个⼥⽣的前提下,她穿裙⼦的概率是50%。
那么我们可以推导⼀下,利⽤公式:p(A+B)=p(A)+p(B)-p(AB),那么P(A=“穿裙⼦”并且B=“⼥⽣”) =P(A=“穿裙⼦”)+P(B=“⼥⽣”) - P(A=“穿裙⼦”+B=“⼥⽣”)=0.5*0.4+0.4-0.4=0.2,(⽤互斥的话,更简单,但是不容易理解),P(B=“⼥⽣”)=0.4,P(A=“穿裙⼦”|B=“⼥⽣”) =P(A=“穿裙⼦”并且B=“⼥⽣”) /P(B=“⼥⽣”),那么以此类推,我们可以定义出条件概率:P(A|B) =P(AB) /P(B)。
有了以上的知识储备,那么我们在理解贝叶斯算法,就有了理论的基⽯。
对于随机变量W,有K个特征。
{w1,...,wk},样本空间{C1,...,Cn},每个样本可以称为C i类别。
对随机变量做⼀次新的实验,等价于<==>在实际⽣产中,添加了⼀个具有K个特征的观测值Obeservtion,O1(o1,...,ok)。
那么我们要知道O1的类别,就是要求P(C1|O1(o1,...,ok),...,P(Cn|O1(o1,...,ok)的最⼤值,也就可以说O1(o1,...,ok)属于哪个类别。