模式识别大作业
- 格式:doc
- 大小:1.18 MB
- 文档页数:22
一、问题描述现有sonar 和wdbc 这两个样本数据集,取一半数据作为训练样本集,其余数据作为测试样本集,通过编程实现分别用C 均值算法对测试样本集中的数据进行分类,进行10次分类求正确率的平均值。
二、算法描述1.初始化:选择c 个代表点,...,,321c p p p p2.建立c 个空间聚类表:C K K K ...,213.按照最小距离法则逐个对样本X 进行分类:),(),,(min arg J i iK x add p x j ∂=4.计算J 及用各聚类列表计算聚类均值,并用来作为各聚类新的代表点(更新代表点)5.若J 不变或代表点未发生变化,则停止。
否则转2.),(1∑∑=∈=ci K x i i p x J δ6.计算正确率:将dtat(i,1)与trueflag(i,1)(i=1~n )进行比较,统计正确分类的样本数,并计算正确率将上述过程循环10次,得到10次的正确率,并计算平均正确率ave算法流程图三、实验数据表1 实验数据四、实验结果表2 实验结果准确率(%)注:表中准确率是十次实验结果的平均值五、程序源码用C均值算法对sonar分类(对wdbc分类的代码与之类似)clc;clear;accuracy = 0;for i = 1:10data = xlsread('sonar.xls');data = data';%初始划分2个聚类rand(:,1:size(data,2)) = data(:,randperm(size(data,2))'); %使矩阵元素按列重排A(:,1) = rand(:,1);B(:,1) = rand(:,2); %选取代表点m = 1;n = 1;for i = 3:size(rand,2)temp1 = rand(:,i) - A(:,1);temp2 = rand(:,i) - B(:,1);temp1(61,:) = [];temp2(61,:) = []; %去掉标号后再计算距离if norm(temp1) < norm(temp2)m = m + 1; %A类中样本个数A(:,m) = rand(:,i);elsen = n + 1; %B类中样本个数B(:,n) = rand(:,i);endend%划分完成m1 = mean(A,2);m2 = mean(B,2);%计算JeJ = 0;for i = 1:mtemp = A(:,i) - m1;temp(61,:) = []; %去掉标号的均值J = J + norm(temp)^2;endfor i = 1:ntemp = B(:,i) - m2;temp(61,:) = [];J = J + norm(temp)^2;endtest = [A,B];N = 0; %Je不变的次数while N < m + nrarr = randperm(m + n); %产生1-208即所有样本序号的随机不重复序列向量y = test(:,rarr(1,1));if rarr(1,1) <= m %y属于A类时if m == 1continueelsetemp1 = y - m1;temp1(61,:) = [];temp2 = y - m2;temp2(61,:) = [];p1 = m / (m - 1) * norm(temp1);p2 = n / (n + 1) * norm(temp2);if p2 < p1test = [test,y];test(:,rarr(1,1)) = [];m = m - 1;n = n + 1;endendelse %y属于B类时if n == 1continueelsetemp1 = y - m1;temp1(61,:) = [];temp2 = y - m2;temp2(61,:) = [];p1 = m / (m + 1) * norm(temp1);p2 = n / (n - 1) * norm(temp2);if p1 < p2test = [y,test];test(:,rarr(1,1)) = [];m = m + 1;n = n - 1;endendendA(:,1:m) = test(:,1:m);B(:,1:n) = test(:,m + 1:m + n);m1 = mean(A,2);m2 = mean(B,2);%计算JetempJ = 0;for i = 1:mtemp = A(:,i) - m1;temp(61,:) = []; %去掉标号的均值tempJ = tempJ + norm(temp)^2;endfor i = 1:ntemp = B(:,i) - m2;temp(61,:) = [];tempJ = tempJ + norm(temp)^2;endif tempJ == JN = N + 1;elseJ = tempJ;endend %while循环结束%判断正确率correct = 0;false = 0;A(:,1:m) = test(:,1:m);B(:,1:n) = test(:,m + 1:m + n);c = mean(A,2);if abs(c(61,1) - 1) < abs(c(61,1) - 2) %聚类A中大多为1类元素for i = 1:mif A(61,i) == 1correct = correct + 1;elsefalse = false + 1;endendfor i = 1:nif B(61,i) == 2correct = correct + 1;elsefalse = false + 1;endendelse %聚类A中大多为2类元素for i = 1:mif A(61,i) == 2correct = correct + 1;elsefalse = false + 1;endendfor i = 1:nif B(61,i) == 1correct = correct + 1;elsefalse = false + 1;endendendaccuracy = accuracy + correct / (correct + false);endaver_accuracy = accuracy / 10fprintf('用C均值算法对sonar进行十次分类的结果的平均正确率为%.2d %%.\n',aver_accuracy*100)六.实验心得本算法确定的K 个划分到达平方误差最小。
模式识别大作业班级 021252 姓名 谭红光 学号 021251281.线性投影与Fisher 准则函数各类在d 维特征空间里的样本均值向量:∑∈=ik X x kii xn M 1,2,1=i (1)通过变换w 映射到一维特征空间后,各类的平均值为:∑∈=ik Y y kii yn m 1,2,1=i (2)映射后,各类样本“类内离散度”定义为:22()k ii k i y Y S y m ∈=-∑,2,1=i (3)显然,我们希望在映射之后,两类的平均值之间的距离越大越好,而各类的样本类内离散度越小越好。
因此,定义Fisher 准则函数:2122212||()F m m J w s s -=+ (4)使FJ 最大的解*w 就是最佳解向量,也就是Fisher 的线性判别式. 从)(w J F 的表达式可知,它并非w 的显函数,必须进一步变换。
已知:∑∈=ik Y y kii yn m 1,2,1=i , 依次代入上两式,有:i TX x ki Tk X x Ti i M w x n w x w n m ik ik ===∑∑∈∈)1(1,2,1=i (5) 所以:221221221||)(||||||||M M w M w M w m m T T T -=-=-w S w w M M M M w b T T T =--=))((2121 (6)其中:Tb M M M M S ))((2121--= (7)bS 是原d 维特征空间里的样本类内离散度矩阵,表示两类均值向量之间的离散度大小,因此,b S 越大越容易区分。
将(4.5-6)i Ti M w m =和(4.5-2)∑∈=ik X x kii xn M 1代入(4.5-4)2iS 式中:∑∈-=ik X x iT k T i M w x w S 22)(∑∈⋅--⋅=ik X x Tik i k T w M x M x w ))(( w S w i T= (8)其中:T iX x k i k i M x M x S ik ))((--=∑=,2,1=i (9)因此:w S w w S S w S S w T T =+=+)(212221 (10)显然:21S S S w += (11)w S 称为原d 维特征空间里,样本“类内离散度”矩阵。
模式识别专业:电子信息工程班级:电信****班学号:********** 姓名:艾依河里的鱼一、贝叶斯决策(一)贝叶斯决策理论 1.最小错误率贝叶斯决策器在模式识别领域,贝叶斯决策通常利用一些决策规则来判定样本的类别。
最常见的决策规则有最大后验概率决策和最小风险决策等。
设共有K 个类别,各类别用符号k c ()K k ,,2,1 =代表。
假设k c 类出现的先验概率()k P c以及类条件概率密度()|k P c x 是已知的,那么应该把x 划分到哪一类才合适呢?若采用最大后验概率决策规则,首先计算x 属于k c 类的后验概率()()()()()()()()1||||k k k k k Kk k k P c P c P c P c P c P P c P c ===∑x x x x x然后将x 判决为属于kc ~类,其中()1arg max |kk Kk P c ≤≤=x若采用最小风险决策,则首先计算将x 判决为k c 类所带来的风险(),k R c x ,再将x 判决为属于kc ~类,其中()min ,kkk R c =x可以证明在采用0-1损失函数的前提下,两种决策规则是等价的。
贝叶斯决策器在先验概率()k P c 以及类条件概率密度()|k P c x 已知的前提下,利用上述贝叶斯决策规则确定分类面。
贝叶斯决策器得到的分类面是最优的,它是最优分类器。
但贝叶斯决策器在确定分类面前需要预知()k P c 与()|k P c x ,这在实际运用中往往不可能,因为()|k P c x 一般是未知的。
因此贝叶斯决策器只是一个理论上的分类器,常用作衡量其它分类器性能的标尺。
最小风险贝叶斯决策可按下列步骤进行: (1)在已知)(i P ω,)(i X P ω,i=1,…,c 及给出待识别的X 的情况下,根据贝叶斯公式计算出后验概率:∑==cj iii i i P X P P X P X P 1)()()()()(ωωωωω j=1,…,x(2)利用计算出的后验概率及决策表,按下面的公式计算出采取i a ,i=1,…,a 的条件风险∑==cj j j i i X P a X a R 1)(),()(ωωλ,i=1,2,…,a(3)对(2)中得到的a 个条件风险值)(X a R i ,i=1,…,a 进行比较,找出使其条件风险最小的决策k a ,即()()1,min k i i aR a x R a x ==则k a 就是最小风险贝叶斯决策。
模式识别大作业引言:转眼之间,研一就结束了。
这学期的模式识别课也接近了尾声。
我本科是机械专业,编程和算法的理解能力比较薄弱。
所以虽然这学期老师上课上的很精彩,但是这学期的模式识别课上的感觉还是有点吃力。
不过这学期也加强了编程的练习。
这次的作业花了很久的时间,因为平时自己的方向是主要是图像降噪,自己在看这一块图像降噪论文的时候感觉和模式识别的方向结合的比较少。
我看了这方面的模式识别和图像降噪结合的论文,发现也比较少。
在思考的过程中,我想到了聚类的方法。
包括K均值和C均值等等。
因为之前学过K均值,于是就选择了K均值的聚类方法。
然后用到了均值滤波和自适应滤波进行处理。
正文:k-means聚类算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。
一般都采用均方差作为标准测度函数。
k-means 算法接受输入量k ;然后将n个数据对象划分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。
聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。
k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。
均值滤波是常用的非线性滤波方法 ,也是图像处理技术中最常用的预处理技术。
它在平滑脉冲噪声方面非常有效,同时它可以保护图像尖锐的边缘。
均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标象素为中心的周围8个象素,构成一个滤波模板,即去掉目标象素本身)。
再用模板中的全体像素的平均值来代替原来像素值。
即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度个g(x,y),即个g(x,y)=1/m ∑f(x,y)m为该模板中包含当前像素在内的像素总个数。
模式识别大作业(总21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--作业1 用身高和/或体重数据进行性别分类(一)基本要求:用和的数据作为训练样本集,建立Bayes分类器,用测试样本数据对该分类器进行测试。
调整特征、分类器等方面的一些因素,考察它们对分类器性能的影响,从而加深对所学内容的理解和感性认识。
具体做法:1.应用单个特征进行实验:以(a)身高或者(b)体重数据作为特征,在正态分布假设下利用最大似然法或者贝叶斯估计法估计分布密度参数,建立最小错误率Bayes分类器,写出得到的决策规则,将该分类器应用到测试样本,考察测试错误情况。
在分类器设计时可以考察采用不同先验概率(如对, 对, 对等)进行实验,考察对决策规则和错误率的影响。
图1-先验概率:分布曲线图2-先验概率:分布曲线图3--先验概率:分布曲线图4不同先验概率的曲线有图可以看出先验概率对决策规则和错误率有很大的影响。
程序:和2.应用两个特征进行实验:同时采用身高和体重数据作为特征,分别假设二者相关或不相关(在正态分布下一定独立),在正态分布假设下估计概率密度,建立最小错误率Bayes分类器,写出得到的决策规则,将该分类器应用到训练/测试样本,考察训练/测试错误情况。
比较相关假设和不相关假设下结果的差异。
在分类器设计时可以考察采用不同先验概率(如 vs. , vs. , vs. 等)进行实验,考察对决策和错误率的影响。
训练样本female来测试图1先验概率 vs. 图2先验概率 vs.图3先验概率 vs. 图4不同先验概率对测试样本1进行试验得图对测试样本2进行试验有图可以看出先验概率对决策规则和错误率有很大的影响。
程序和3.自行给出一个决策表,采用最小风险的Bayes决策重复上面的某个或全部实验。
W1W2W10W20close all;clear all;X=120::200; %设置采样范围及精度pw1=;pw2=; %设置先验概率sample1=textread('') %读入样本samplew1=zeros(1,length(sample1(:,1)));u1=mean(sample1(:,1));m1=std(sample1(:,1));y1=normpdf(X,u1,m1); %类条件概率分布figure(1);subplot(2,1,1);plot(X,y1);title('F身高类条件概率分布曲线');sample2=textread('') %读入样本samplew2=zeros(1,length(sample2(:,1)));u2=mean(sample2(:,1));m2=std(sample2(:,1));y2=normpdf(X,u2,m2); %类条件概率分布subplot(2,1,2);plot(X,y2);title('M身高类条件概率分布曲线');P1=pw1*y1./(pw1*y1+pw2*y2);P2=pw2*y2./(pw1*y1+pw2*y2);figure(2);subplot(2,1,1);plot(X,P1);title('F身高后验概率分布曲线');subplot(2,1,2);plot(X,P2);title('M身高后验概率分布曲线');P11=pw1*y1;P22=pw2*y2;figure(3);subplot(3,1,1);plot(X,P11);subplot(3,1,2);plot(X,P22);subplot(3,1,3);plot(X,P11,X,P22);sample=textread('all ') %读入样本[result]=bayes(sample1(:,1),sample2(:,1),pw1,pw2);%bayes分类器function [result] =bayes(sample1(:,1),sample2(:,1),pw1,pw2); error1=0;error2=0;u1=mean(sample1(:,1));m1=std(sample1(:,1));y1=normpdf(X,u1,m1); %类条件概率分布u2=mean(sample2(:,1));m2=std(sample2(:,1));y2=normpdf(X,u2,m2); %类条件概率分布P1=pw1*y1./(pw1*y1+pw2*y2);P2=pw2*y2./(pw1*y1+pw2*y2);for i = 1:50if P1(i)>P2(i)result(i)=0;pe(i)=P2(i);elseresult(i)=1;pe(i)=P1(i);endendfor i=1:50if result(k)==0error1=error1+1;else result(k)=1error2=error2+1;endendratio = error1+error2/length(sample); %识别率,百分比形式sprintf('正确识别率为%.2f%%.',ratio)作业2 用身高/体重数据进行性别分类(二)基本要求:试验直接设计线性分类器的方法,与基于概率密度估计的贝叶斯分离器进行比较。
第一题对数据进行聚类分析1.题目要求用FAMALE.TXT、MALE.TXT和/或test2.txt的数据作为本次实验使用的样本集,利用C 均值聚类法和层次聚类法对样本集进行聚类分析,对结果进行分析,从而加深对所学内容的理解和感性认识。
2.原理及流程图2.1 C均值聚类法原理C均值算法首先取定C个类别数量并对这C个类别数量选取C个聚类中心,按最小距离原则将各模式分配到C类中的某一类,之后不断地计算类心和调整各模式的类别,最终使各模式到其对应的判属类别中心的距离平方之和最小。
2.2 C均值聚类算法流程图N图1.1 C均值聚类算法流程图2.3 层次聚类算法原理N个初始模式样本自成一类,即建立N类,之后按照以下步骤运算:Step1:计算各类之间(即各样本间)的距离,得一个维数为N×N的距离矩阵D(0)。
“0”表示初始状态。
Step2:假设已求得距离矩阵D(n)(n为逐次聚类合并的次数),找出D(n)中的最小元素,将其对应的两类合并为一类。
由此建立新的分类:Step3:计算合并后所得到的新类别之间的距离,得D (n +1)。
Step4:跳至第2步,重复计算及合并。
直到满足下列条件时即可停止计算:①取距离阈值T ,当D (n )的最小分量超过给定值 T 时,算法停止。
所得即为聚类结果。
②或不设阈值T ,一直到将全部样本聚成一类为止,输出聚类的分级树。
2.4层次聚类算法流程图N图1.2层次聚类算法流程图3 验结果分析对数据文件FAMALE.TXT 、MALE.TXT 进行C 均值聚类的聚类结果如下图所示:图1.3 C 均值聚类结果的二维平面显示将两种样本即进行聚类后的样本中心进行比较,如下表:从下表可以纵向比较可以看出,C 越大,即聚类数目越多,聚类之间差别越小,他们的聚类中心也越接近。
横向比较用FEMALE,MALE 中数据作为样本和用FEMALE,MALE ,test2中),1(),1(21++n G n G数据作为样本时,由于引入了新的样本,可以发现后者的聚类中心比前者都稍大。
作业1 用身高和/或体重数据进行性别分类(一)基本要求:用和的数据作为训练样本集,建立Bayes分类器,用测试样本数据对该分类器进行测试。
调整特征、分类器等方面的一些因素,考察它们对分类器性能的影响,从而加深对所学内容的理解和感性认识。
具体做法:1.应用单个特征进行实验:以(a)身高或者(b)体重数据作为特征,在正态分布假设下利用最大似然法或者贝叶斯估计法估计分布密度参数,建立最小错误率Bayes分类器,写出得到的决策规则,将该分类器应用到测试样本,考察测试错误情况。
在分类器设计时可以考察采用不同先验概率(如对, 对, 对等)进行实验,考察对决策规则和错误率的影响。
图1-先验概率:分布曲线图2-先验概率:分布曲线图3--先验概率:分布曲线图4不同先验概率的曲线有图可以看出先验概率对决策规则和错误率有很大的影响。
程序:和2.应用两个特征进行实验:同时采用身高和体重数据作为特征,分别假设二者相关或不相关(在正态分布下一定独立),在正态分布假设下估计概率密度,建立最小错误率Bayes 分类器,写出得到的决策规则,将该分类器应用到训练/测试样本,考察训练/测试错误情况。
比较相关假设和不相关假设下结果的差异。
在分类器设计时可以考察采用不同先验概率(如vs. , vs. , vs. 等)进行实验,考察对决策和错误率的影响。
训练样本female来测试图1先验概率vs. 图2先验概率vs.图3先验概率vs. 图4不同先验概率对测试样本1进行试验得图对测试样本2进行试验有图可以看出先验概率对决策规则和错误率有很大的影响。
程序和3.自行给出一个决策表,采用最小风险的Bayes决策重复上面的某个或全部实验。
W1W2W10W20close all;clear all;X=120::200; %设置采样范围及精度pw1=;pw2=; %设置先验概率sample1=textread('') %读入样本samplew1=zeros(1,length(sample1(:,1)));u1=mean(sample1(:,1));m1=std(sample1(:,1));y1=normpdf(X,u1,m1); %类条件概率分布figure(1);subplot(2,1,1);plot(X,y1);title('F身高类条件概率分布曲线');sample2=textread('') %读入样本samplew2=zeros(1,length(sample2(:,1)));u2=mean(sample2(:,1));m2=std(sample2(:,1));y2=normpdf(X,u2,m2); %类条件概率分布subplot(2,1,2);plot(X,y2);title('M身高类条件概率分布曲线');P1=pw1*y1./(pw1*y1+pw2*y2);P2=pw2*y2./(pw1*y1+pw2*y2);figure(2);subplot(2,1,1);plot(X,P1);title('F身高后验概率分布曲线');subplot(2,1,2);plot(X,P2);title('M身高后验概率分布曲线');P11=pw1*y1;P22=pw2*y2;figure(3);subplot(3,1,1);plot(X,P11);subplot(3,1,2);plot(X,P22);subplot(3,1,3);plot(X,P11,X,P22);sample=textread('all ') %读入样本[result]=bayes(sample1(:,1),sample2(:,1),pw1,pw2);%bayes分类器function [result] =bayes(sample1(:,1),sample2(:,1),pw1,pw2);error1=0;error2=0;u1=mean(sample1(:,1));m1=std(sample1(:,1));y1=normpdf(X,u1,m1); %类条件概率分布u2=mean(sample2(:,1));m2=std(sample2(:,1));y2=normpdf(X,u2,m2); %类条件概率分布P1=pw1*y1./(pw1*y1+pw2*y2);P2=pw2*y2./(pw1*y1+pw2*y2);for i = 1:50if P1(i)>P2(i)result(i)=0;pe(i)=P2(i);elseresult(i)=1;pe(i)=P1(i);endendfor i=1:50if result(k)==0error1=error1+1;else result(k)=1error2=error2+1;endendratio = error1+error2/length(sample); %识别率,百分比形式sprintf('正确识别率为%.2f%%.',ratio)作业2 用身高/体重数据进行性别分类(二)基本要求:试验直接设计线性分类器的方法,与基于概率密度估计的贝叶斯分离器进行比较。
模式识别大作业对sonar数据进行分类,用Fisher线性判别法和最近邻算法对其进行分类,并用MATLAB写程序对其进行模拟。
Fisher线性判别法的源程序如下clear,close all%¶Áȡȫ²¿Êý¾ÝRock=xlsread('C:\Users\Administrator\Documents\data\rock');Mine=xlsread('C:\Users\Administrator\Documents\data\mine');%²úÉúËæ»úÊýr1=randperm(97,48);r2=randperm(111,56);%È¡³öѵÁ·Ñù±¾for i=1:48vtrainrock(i,:)=Rock(r1(1,i),:);endtrainrock=vtrainrock';for i=1:56vtrainmine(i,:)=Mine(r2(1,i),:);endtrainmine=vtrainmine';%È¡³ö²âÊÔÑù±¾Rock(r1',:)=[];testrock=Rock';Mine(r2',:)=[];testmine=Mine';%¼ÆËã¾ùÖµÏòÁ¿mrock=mean(trainrock,2);mmine=mean(trainmine,2);%¼ÆËãÀàÄÚÀëÉ¢¶È¾ØÕófor j=1:48s1=(trainrock(:,j)-mrock);sr=s1*s1';srock=zeros(60);srock=sr+srock;endfor j=1:56s2=(trainmine(:,j)-mmine);sm=s2*s2';smine=zeros(60);smine=sm+smine;endSw=srock+smine;%¼ÆËãÀà¼äÀëÉ¢¶È¾ØÕóSb=(mrock-mmine)*(mrock-mmine)';%¼ÆËã×î¼ÑͶӰ·½ÏòW=inv(Sw)*(mrock-mmine);%¶ÔѵÁ·Ñù±¾½øÐÐͶӰintestrock=W'*testrock;intestmine=W'*testmine;%¼ÆËãÅбðãÐÖµµãintrainrock=W'*trainrock;intrainmine=W'*trainmine;w0=(mean(intrainrock,2)*48+mean(intrainmine,2)*56)/104;%·ÖÀಢ¼ÆËã׼ȷÂÊ%¶Ô´ý²âÑù±¾½øÐзÖÀàj1=1;k1=1;RocksortRock1=zeros(size(intestrock));%¼ì²âÑù±¾Rock±»ÕýÈ·µØ·ÖΪRockµÄÊýRocksortMine1=zeros(size(intestmine));%¼ì²âÑù±¾Rock±»´íÎ󵨷ÖΪMineµÄÊýRocksortRocknumber1=zeros(size(intestrock));%¼ì²âÑù±¾Rock±»ÕýÈ·µØ·ÖΪRockµÄÊýÔÚ¼ì²âÑù±¾ÀïµÄÐòºÅRocksortMinenumber1=zeros(size(intestmine));%¼ì²âÑù±¾Rock±»´íÎ󵨷ÖΪMineµÄÊýÔÚ¼ì²âÑù±¾ÀïµÄÐòºÅfor i=1:49if(intestrock(1,i)>w0)RocksortRock1(1,j1)=intestrock(1,i);RocksortRocknumber1(1,j1)=i;j1=j1+1;elseRocksortMine1(1,k1)=intestrock(1,i);RocksortMinenumber1(1,k1)=i;k1=k1+1;endendj2=1;k2=1;MinesortMine2=zeros(size(intestmine));%¼ì²âÑù±¾Mine±»ÕýÈ·µØ·ÖΪMineµÄÊýMinesortRock2=zeros(size(intestrock));%¼ì²âÑù±¾Mine±»´íÎ󵨷ÖΪRockµÄÊýMinesortMinenumber2=zeros(size(intestmine));%¼ì²âÑù±¾Mine±»ÕýÈ·µØ·ÖΪMineµÄÊýÔÚ¼ì²âÑù±¾ÀïµÄÐòºÅMinesortRocknumber2=zeros(size(intestrock));%¼ì²âÑù±¾Mine±»´íÎ󵨷ÖΪRockµÄÊýÔÚ¼ì²âÑù±¾ÀïµÄÐòºÅfor i=1:55if(intestmine(1,i)<=w0)MinesortMine2(1,j2)=intestmine(1,i);MinesortMinenumber2(1,j2)=i;j2=j2+1;elseMinesortRock2(1,k2)=intestmine(1,i);MinesortRocknumber2(1,k2)=i;k2=k2+1;endend%¼ÆËã·ÖÀà½á¹ûµÄÕýÈ·ÂÊright=(j1+j2-2)/(j1+j2+k1+k2-4);disp(right);最近邻算法的源程序如下clear,close all%¶Áȡȫ²¿Êý¾ÝRock=xlsread('C:\Users\Administrator\Documents\data\rock'); Mine=xlsread('C:\Users\Administrator\Documents\data\mine'); %²úÉúËæ»úÊýr1=randperm(97,48);r2=randperm(111,56);%È¡³öѵÁ·Ñù±¾for i=1:48vtrainrock(i,:)=Rock(r1(1,i),:);endtrainrock=vtrainrock';for i=1:56vtrainmine(i,:)=Mine(r2(1,i),:);endtrainmine=vtrainmine';%È¡³ö²âÊÔÑù±¾Rock(r1',:)=[];testrock=Rock';Mine(r2',:)=[];testmine=Mine';%×î½üÁÚ·ÖÀàrocklast=zeros(size(Rock'));minelast=zeros(size(Mine'));rgr=0;rwm=0;mgm=0;mwr=0;for i=1:49for j=1:48Ar(j,1)=(testrock(:,i)-trainrock(:,j))'*(testrock(:,i)-trainrock(:,j)) ;endfor k=1:56Br(k,1)=(testrock(:,i)-trainmine(:,k))'*(testrock(:,i)-trainmine(:,k)) ;end%¶Ô´ý²âÑù±¾½øÐзÖÀàif(min(Ar)<=min(Br))rocklast(:,i)=testrock(:,i);rgr=rgr+1;Ar=zeros(48,1);Br=zeros(56,1);elseminelast(:,i)=testrock(:,i);rwm=rwm+1;Ar=zeros(48,1);Br=zeros(56,1);endendfor i=1:55for j=1:48Am(j,1)=(testmine(:,i)-trainrock(:,j))'*(testmine(:,i)-trainrock(:,j)) ;endfor k=1:56Bm(k,1)=(testmine(:,i)-trainmine(:,k))'*(testmine(:,i)-trainmine(:,k)) ;end%¶Ô´ý²âÑù±¾½øÐзÖÀàif(min(Am)<min(Bm))rocklast(:,i)=testmine(:,i);mwr=mwr+1;Am=zeros(48,1);Bm=zeros(56,1);elseminelast(:,i)=testmine(:,i);mgm=mgm+1;Am=zeros(48,1);Bm=zeros(56,1);endendright=(rgr+mgm)/(rgr+mgm+rwm+mwr);disp(right);以上为两种算法在MATLAB里的源代码。
作业一:设以下模式类别具有正态概率密度函数: ω1:{(0 0)T , (2 0)T , (2 2)T , (0 2)T }ω2:{(4 4)T , (6 4)T , (6 6)T , (4 6)T }(1)设P(ω1)= P(ω2)=1/2,求这两类模式之间的贝叶斯判别界面的方程式。
(2)绘出判别界面。
答案:(1)模式的均值向量m i 和协方差矩阵C i 可用下式估计:2,111==∑=i x N m i N j ij i i2,1))((11=--=∑=i m x m x N C i N j Ti ij i ij i i 其中N i 为类别ωi 中模式的数目,x ij 代表在第i 个类别中的第j 个模式。
由上式可求出:T m )11(1= T m )55(2= ⎪⎪⎭⎫ ⎝⎛===1 00 121C C C ,⎪⎪⎭⎫⎝⎛=-1 00 11C 设P(ω1)=P(ω2)=1/2,因C 1=C 2,则判别界面为:24442121)()()(2121211112121=+--=+--=----x x m C m m C m x C m m x d x d T T T(2)作业二:编写两类正态分布模式的贝叶斯分类程序。
程序代码:#include<iostream>usingnamespace std;void inverse_matrix(int T,double b[5][5]){double a[5][5];for(int i=0;i<T;i++)for(int j=0;j<(2*T);j++){ if (j<T)a[i][j]=b[i][j];elseif (j==T+i)a[i][j]=1.0;elsea[i][j]=0.0;}for(int i=0;i<T;i++){for(int k=0;k<T;k++){if(k!=i){double t=a[k][i]/a[i][i];for(int j=0;j<(2*T);j++){double x=a[i][j]*t;a[k][j]=a[k][j]-x;}}}}for(int i=0;i<T;i++){double t=a[i][i];for(int j=0;j<(2*T);j++)a[i][j]=a[i][j]/t;}for(int i=0;i<T;i++)for(int j=0;j<T;j++)b[i][j]=a[i][j+T];}void get_matrix(int T,double result[5][5],double a[5]) {for(int i=0;i<T;i++){for(int j=0;j<T;j++){result[i][j]=a[i]*a[j];}}}void matrix_min(int T,double a[5][5],int bb){for(int i=0;i<T;i++){for(int j=0;j<T;j++)a[i][j]=a[i][j]/bb;}}void getX(int T,double res[5],double a[5],double C[5][5]) {for(int i=0;i<T;i++)double sum=0.0;for(int j=0;j<T;j++)sum+=a[j]*C[j][i];res[i]=sum;}}int main(){int T;int w1_num,w2_num;double w1[10][5],w2[10][5],m1[5]={0},m2[5]={0},C1[5][5]={0},C2[5][5]={0};cin>>T>>w1_num>>w2_num;for(int i=0;i<w1_num;i++){for(int j=0;j<T;j++){cin>>w1[i][j];m1[j]+=w1[i][j];}}for(int i=0;i<w2_num;i++){for(int j=0;j<T;j++){cin>>w2[i][j];m2[j]+=w2[i][j];}}for(int i=0;i<w1_num;i++)m1[i]=m1[i]/w1_num;for(int i=0;i<w2_num;i++)m2[i]=m2[i]/w2_num;for(int i=0;i<w1_num;i++){double res[5][5],a[5];for(int j=0;j<T;j++)a[j]=w1[i][j]-m1[j];get_matrix(T,res,a);for(int j=0;j<T;j++){for(int k=0;k<T;k++)C1[j][k]+=res[j][k];}matrix_min(T,C1,w1_num);for(int i=0;i<w2_num;i++){double res[5][5],a[5];for(int j=0;j<T;j++)a[j]=w2[i][j]-m2[j];get_matrix(T,res,a);for(int j=0;j<T;j++){for(int k=0;k<T;k++)C2[j][k]+=res[j][k];}}matrix_min(T,C2,w2_num);inverse_matrix(T,C1);inverse_matrix(T,C2);double XX[5]={0},C_C1[5]={0},C_C2[5]={0};double m1_m2[5];for(int i=0;i<T;i++){m1_m2[i]=m1[i]-m2[i];}getX(T,XX,m1_m2,C1);getX(T,C_C1,m1,C1);getX(T,C_C2,m2,C1);double resultC=0.0;for(int i=0;i<T;i++)resultC-=C_C1[i]*C_C1[i];for(int i=0;i<T;i++)resultC+=C_C2[i]*C_C2[i];resultC=resultC/2;cout<<"判别函数为:"<<endl;cout<<"d1(x)-d2(x)=";for(int i=0;i<T;i++)cout<<XX[i]<<"x"<<i+1;if(resultC>0)cout<<"+"<<resultC<<endl;elseif(resultC<0)cout<<resultC<<endl;return 0;}运行截图:。
模式识别大作业一.K均值聚类(必做,40分)1.K均值聚类的基本思想以及K均值聚类过程的流程图;2.利用K均值聚类对Iris数据进行分类,已知类别总数为3。
给出具体的C语言代码,并加注释。
例如,对于每一个子函数,标注其主要作用,及其所用参数的意义,对程序中定义的一些主要变量,标注其意义;3.给出函数调用关系图,并分析算法的时间复杂度;4.给出程序运行结果,包括分类结果(只要给出相对应的数据的编号即可)以及循环迭代的次数;5.分析K均值聚类的优缺点。
二.贝叶斯分类(必做,40分)1.什么是贝叶斯分类器,其分类的基本思想是什么;2.两类情况下,贝叶斯分类器的判别函数是什么,如何计算得到其判别函数;3.在Matlab下,利用mvnrnd()函数随机生成60个二维样本,分别属于两个类别(一类30个样本点),将这些样本描绘在二维坐标系下,注意特征值取值控制在(-5,5)范围以内;4.用样本的第一个特征作为分类依据将这60个样本进行分类,统计正确分类的百分比,并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志(正确分类的样本点用“O”,错误分类的样本点用“X”)画出来;5.用样本的第二个特征作为分类依据将这60个样本再进行分类,统计正确分类的百分比,并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志画出来;6.用样本的两个特征作为分类依据将这60个样本进行分类,统计正确分类的百分比,并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志画出来;7.分析上述实验的结果。
8.60个随即样本是如何产生的的;给出上述三种情况下的两类均值、方差、协方差矩阵以及判别函数;三.特征选择(选作,15分)1.经过K均值聚类后,Iris数据被分作3类。
从这三类中各选择10个样本点;2.通过特征选择将选出的30个样本点从4维降低为3维,并将它们在三维的坐标系中画出(用Excell);3.在三维的特征空间下,利用这30个样本点设计贝叶斯分类器,然后对这30个样本点利用贝叶斯分类器进行判别分类,给出分类的正确率,分析实验结果,并说明特征选择的依据;。
模式识别大作业要求:
从专业杂志或国际会议上选择一篇或多篇模式识别相关领域的论文进行研读,并撰写读书报告。
所选论文需满足以下要求:
1.与模式识别相关的最新研究成果。
例如:基于深度学习的人脸识别,基于模式识别
技术的股票预测,等等。
2.反映模式识别某个研究方向研究现状的综述。
例如,深度学习综述,等等。
需提交的材料:
1.论文原文的电子文档。
2.论文读书报告。
侧重于表达阅读过程中涉及的理解、分析、归纳及提炼等思维活动。
读书报告须以Word文档形式提交。
提交时间:2017年5月26日(课程考试日)之前。
需提交的电子文档:1.论文(pdf文档),2.读书报告(Word文档)。
读书报告宣讲:
1.抽签决定宣讲人选(共选6人)。
2.宣讲时间:5月19日下午15:55~18:20。
每人25分钟,课间不休息。
3.宣讲形式:以播放幻灯片的方式口头宣讲。
由抽签决定的宣讲人选如下:
BC16010025,张英迪;
SA16010030,施炀明;
SA16010039,温忻;
SA16023041,陈昱衡;
SC16009020,徐宝泉;
SC16011003,李靓。
请以上同学做好准备。
请至少提交宣讲ppt。
希望同时提交读书报告(Word文档)。
模式识别大作业1.最近邻/k近邻法一.基本概念:最近邻法:对于未知样本x,比较x与N个已知类别的样本之间的欧式距离,并决策x与距离它最近的样本同类。
K近邻法:取未知样本x的k个近邻,看这k个近邻中多数属于哪一类,就把x归为哪一类。
K取奇数,为了是避免k1=k2的情况。
二.问题分析:要判别x属于哪一类,关键要求得与x最近的k个样本(当k=1时,即是最近邻法),然后判别这k个样本的多数属于哪一类。
可采用欧式距离公式求得两个样本间的距离s=sqrt((x1-x2)^2+(y1-y2)^2)三.算法分析:该算法中任取每类样本的一半作为训练样本,其余作为测试样本。
例如iris中取每类样本的25组作为训练样本,剩余25组作为测试样本,依次求得与一测试样本x距离最近的k 个样本,并判断k个样本多数属于哪一类,则x就属于哪类。
测试10次,取10次分类正确率的平均值来检验算法的性能。
四.MATLAB代码:最近邻算实现对Iris分类clc;totalsum=0;for ii=1:10data=load('iris.txt');data1=data(1:50,1:4);%任取Iris-setosa数据的25组rbow1=randperm(50);trainsample1=data1(rbow1(:,1:25),1:4);rbow1(:,26:50)=sort(rbow1(:,26:50));%剩余的25组按行下标大小顺序排列testsample1=data1(rbow1(:,26:50),1:4);data2=data(51:100,1:4);%任取Iris-versicolor数据的25组rbow2=randperm(50);trainsample2=data2(rbow2(:,1:25),1:4);rbow2(:,26:50)=sort(rbow2(:,26:50));testsample2=data2(rbow2(:,26:50),1:4);data3=data(101:150,1:4);%任取Iris-virginica数据的25组rbow3=randperm(50);trainsample3=data3(rbow3(:,1:25),1:4);rbow3(:,26:50)=sort(rbow3(:,26:50));testsample3=data3(rbow3(:,26:50),1:4);trainsample=cat(1,trainsample1,trainsample2,trainsample3);%包含75组数据的样本集testsample=cat(1,testsample1,testsample2,testsample3);newchar=zeros(1,75);sum=0;[i,j]=size(trainsample);%i=60,j=4[u,v]=size(testsample);%u=90,v=4for x=1:ufor y=1:iresult=sqrt((testsample(x,1)-trainsample(y,1))^2+(testsample(x,2) -trainsample(y,2))^2+(testsample(x,3)-trainsample(y,3))^2+(testsa mple(x,4)-trainsample(y,4))^2); %欧式距离newchar(1,y)=result;end;[new,Ind]=sort(newchar);class1=0;class2=0;class3=0;if Ind(1,1)<=25class1=class1+1;elseif Ind(1,1)>25&&Ind(1,1)<=50class2=class2+1;elseclass3=class3+1;endif class1>class2&&class1>class3m=1;ty='Iris-setosa';elseif class2>class1&&class2>class3m=2;ty='Iris-versicolor';elseif class3>class1&&class3>class2m=3;ty='Iris-virginica';elsem=0;ty='none';endif x<=25&&m>0disp(sprintf('第%d组数据分类后为%s类',rbow1(:,x+25),ty));elseif x<=25&&m==0disp(sprintf('第%d组数据分类后为%s类',rbow1(:,x+25),'none'));endif x>25&&x<=50&&m>0disp(sprintf('第%d组数据分类后为%s类',50+rbow2(:,x),ty));elseif x>25&&x<=50&&m==0disp(sprintf('第%d组数据分类后为%s类',50+rbow2(:,x),'none'));endif x>50&&x<=75&&m>0disp(sprintf('第%d组数据分类后为%s类',100+rbow3(:,x-25),ty));elseif x>50&&x<=75&&m==0disp(sprintf('第%d组数据分类后为%s类',100+rbow3(:,x-25),'none'));endif (x<=25&&m==1)||(x>25&&x<=50&&m==2)||(x>50&&x<=75&&m==3)sum=sum+1;endenddisp(sprintf('第%d次分类识别率为%4.2f',ii,sum/75));totalsum=totalsum+(sum/75);enddisp(sprintf('10次分类平均识别率为%4.2f',totalsum/10));测试结果:第3组数据分类后为Iris-setosa类第5组数据分类后为Iris-setosa类第6组数据分类后为Iris-setosa类第7组数据分类后为Iris-setosa类第10组数据分类后为Iris-setosa类第11组数据分类后为Iris-setosa类第12组数据分类后为Iris-setosa类第14组数据分类后为Iris-setosa类第16组数据分类后为Iris-setosa类第18组数据分类后为Iris-setosa类第19组数据分类后为Iris-setosa类第20组数据分类后为Iris-setosa类第23组数据分类后为Iris-setosa类第24组数据分类后为Iris-setosa类第26组数据分类后为Iris-setosa类第28组数据分类后为Iris-setosa类第30组数据分类后为Iris-setosa类第31组数据分类后为Iris-setosa类第34组数据分类后为Iris-setosa类第37组数据分类后为Iris-setosa类第39组数据分类后为Iris-setosa类第41组数据分类后为Iris-setosa类第44组数据分类后为Iris-setosa类第45组数据分类后为Iris-setosa类第49组数据分类后为Iris-setosa类第53组数据分类后为Iris-versicolor类第54组数据分类后为Iris-versicolor类第55组数据分类后为Iris-versicolor类第57组数据分类后为Iris-versicolor类第58组数据分类后为Iris-versicolor类第59组数据分类后为Iris-versicolor类第60组数据分类后为Iris-versicolor类第61组数据分类后为Iris-versicolor类第62组数据分类后为Iris-versicolor类第68组数据分类后为Iris-versicolor类第70组数据分类后为Iris-versicolor类第71组数据分类后为Iris-virginica类第74组数据分类后为Iris-versicolor类第75组数据分类后为Iris-versicolor类第77组数据分类后为Iris-versicolor类第79组数据分类后为Iris-versicolor类第80组数据分类后为Iris-versicolor类第84组数据分类后为Iris-virginica类第85组数据分类后为Iris-versicolor类第92组数据分类后为Iris-versicolor类第95组数据分类后为Iris-versicolor类第97组数据分类后为Iris-versicolor类第98组数据分类后为Iris-versicolor类第99组数据分类后为Iris-versicolor类第102组数据分类后为Iris-virginica类第103组数据分类后为Iris-virginica类第105组数据分类后为Iris-virginica类第106组数据分类后为Iris-virginica类第107组数据分类后为Iris-versicolor类第108组数据分类后为Iris-virginica类第114组数据分类后为Iris-virginica类第118组数据分类后为Iris-virginica类第119组数据分类后为Iris-virginica类第124组数据分类后为Iris-virginica类第125组数据分类后为Iris-virginica类第126组数据分类后为Iris-virginica类第127组数据分类后为Iris-virginica类第128组数据分类后为Iris-virginica类第129组数据分类后为Iris-virginica类第130组数据分类后为Iris-virginica类第133组数据分类后为Iris-virginica类第135组数据分类后为Iris-virginica类第137组数据分类后为Iris-virginica类第142组数据分类后为Iris-virginica类第144组数据分类后为Iris-virginica类第148组数据分类后为Iris-virginica类第149组数据分类后为Iris-virginica类第150组数据分类后为Iris-virginica类k近邻法对wine分类:clc;otalsum=0;for ii=1:10 %循环测试10次data=load('wine.txt');%导入wine数据data1=data(1:59,1:13);%任取第一类数据的30组rbow1=randperm(59);trainsample1=data1(sort(rbow1(:,1:30)),1:13);rbow1(:,31:59)=sort(rbow1(:,31:59)); %剩余的29组按行下标大小顺序排列testsample1=data1(rbow1(:,31:59),1:13);data2=data(60:130,1:13);%任取第二类数据的35组rbow2=randperm(71);trainsample2=data2(sort(rbow2(:,1:35)),1:13);rbow2(:,36:71)=sort(rbow2(:,36:71));testsample2=data2(rbow2(:,36:71),1:13);data3=data(131:178,1:13);%任取第三类数据的24组rbow3=randperm(48);trainsample3=data3(sort(rbow3(:,1:24)),1:13);rbow3(:,25:48)=sort(rbow3(:,25:48));testsample3=data3(rbow3(:,25:48),1:13);train_sample=cat(1,trainsample1,trainsample2,trainsample3);%包含89组数据的样本集test_sample=cat(1,testsample1,testsample2,testsample3);k=19;%19近邻法newchar=zeros(1,89);sum=0;[i,j]=size(train_sample);%i=89,j=13[u,v]=size(test_sample);%u=89,v=13for x=1:ufor y=1:iresult=sqrt((test_sample(x,1)-train_sample(y,1))^2+(test_sample(x ,2)-train_sample(y,2))^2+(test_sample(x,3)-train_sample(y,3))^2+( test_sample(x,4)-train_sample(y,4))^2+(test_sample(x,5)-train_sam ple(y,5))^2+(test_sample(x,6)-train_sample(y,6))^2+(test_sample(x ,7)-train_sample(y,7))^2+(test_sample(x,8)-train_sample(y,8))^2+( test_sample(x,9)-train_sample(y,9))^2+(test_sample(x,10)-train_sa mple(y,10))^2+(test_sample(x,11)-train_sample(y,11))^2+(test_samp le(x,12)-train_sample(y,12))^2+(test_sample(x,13)-train_sample(y, 13))^2); %欧式距离newchar(1,y)=result;end;[new,Ind]=sort(newchar);class1=0;class 2=0;class 3=0;for n=1:kif Ind(1,n)<=30class 1= class 1+1;elseif Ind(1,n)>30&&Ind(1,n)<=65class 2= class 2+1;elseclass 3= class3+1;endendif class 1>= class 2&& class1>= class3m=1;elseif class2>= class1&& class2>= class3m=2;elseif class3>= class1&& class3>= class2m=3;endif x<=29disp(sprintf('第%d组数据分类后为第%d类',rbow1(:,30+x),m));elseif x>29&&x<=65disp(sprintf('第%d组数据分类后为第%d类',59+rbow2(:,x+6),m));elseif x>65&&x<=89disp(sprintf('第%d组数据分类后为第%d类',130+rbow3(:,x-41),m));endif (x<=29&&m==1)||(x>29&&x<=65&&m==2)||(x>65&&x<=89&&m==3) sum=sum+1;endenddisp(sprintf('第%d次分类识别率为%4.2f',ii,sum/89));totalsum=totalsum+(sum/89);enddisp(sprintf('10次分类平均识别率为%4.2f',totalsum/10));第2组数据分类后为第1类第4组数据分类后为第1类第5组数据分类后为第3类第6组数据分类后为第1类第8组数据分类后为第1类第10组数据分类后为第1类第11组数据分类后为第1类第14组数据分类后为第1类第16组数据分类后为第1类第19组数据分类后为第1类第20组数据分类后为第3类第21组数据分类后为第3类第22组数据分类后为第3类第26组数据分类后为第3类第27组数据分类后为第1类第28组数据分类后为第1类第30组数据分类后为第1类第33组数据分类后为第1类第36组数据分类后为第1类第37组数据分类后为第1类第43组数据分类后为第1类第44组数据分类后为第3类第45组数据分类后为第1类第46组数据分类后为第1类第49组数据分类后为第1类第54组数据分类后为第1类第56组数据分类后为第1类第57组数据分类后为第1类第60组数据分类后为第2类第61组数据分类后为第3类第63组数据分类后为第3类第65组数据分类后为第2类第66组数据分类后为第3类第67组数据分类后为第2类第71组数据分类后为第1类第72组数据分类后为第2类第74组数据分类后为第1类第76组数据分类后为第2类第77组数据分类后为第2类第79组数据分类后为第3类第81组数据分类后为第2类第82组数据分类后为第3类第83组数据分类后为第3类第84组数据分类后为第2类第86组数据分类后为第2类第87组数据分类后为第2类第88组数据分类后为第2类第93组数据分类后为第2类第96组数据分类后为第1类第98组数据分类后为第2类第99组数据分类后为第3类第102组数据分类后为第2类第104组数据分类后为第2类第105组数据分类后为第3类第106组数据分类后为第2类第110组数据分类后为第3类第113组数据分类后为第3类第114组数据分类后为第2类第115组数据分类后为第2类第116组数据分类后为第2类第118组数据分类后为第2类第122组数据分类后为第2类第123组数据分类后为第2类第124组数据分类后为第2类第133组数据分类后为第3类第134组数据分类后为第3类第135组数据分类后为第2类第136组数据分类后为第3类第140组数据分类后为第3类第142组数据分类后为第3类第144组数据分类后为第2类第145组数据分类后为第1类第146组数据分类后为第3类第148组数据分类后为第3类第149组数据分类后为第2类第152组数据分类后为第2类第157组数据分类后为第2类第159组数据分类后为第3类第161组数据分类后为第2类第162组数据分类后为第3类第163组数据分类后为第3类第164组数据分类后为第3类第165组数据分类后为第3类第167组数据分类后为第3类第168组数据分类后为第3类第173组数据分类后为第3类第174组数据分类后为第3类2.Fisher线性判别法Fisher 线性判别是统计模式识别的基本方法之一。
华南理工大学《模式识别》大作业报告题目:模式识别导论实验学院计算机科学与工程专业计算机科学与技术(全英创新班)学生姓名黄炜杰学生学号 201230590051指导教师吴斯课程编号145143课程学分2 分起始日期 2015年5月18日实验内容【实验方案设计】Main steps for the project is:1.To make it more challenging, I select the larger dataset, Pedestrian, rather than thesmaller one. But it may be not wise to learning on such a large dataset, so Inormalize the dataset from 0 to 1 first and perform a k-means sampling to select the most representative samples. After that feature selection is done so as to decrease the amount of features. At last, a PCA dimension reduction is used to decrease the size of the dataset.2.Six learning algorithms including K-Nearest Neighbor, perception, decision tree,support vector machine, multi-layer perception and Naïve Bayesian are used to learn the pattern of the dataset.3.Six learning algorithm are combing into six multi-classifiers system individually,using bagging algorithm.实验过程:NormalizationThe input dataset is normalized to the range of [0, 1] so that make it suitable for performing k-means clustering on it, and also increase the speed of learning algorithms.SamplingThere are too much sample in the dataset, only a smallpart of them are enough to learn a good classifier. To select the most representative samples, k-means clustering is used to cluster the sample into c group and select r% of them.There are 14596 samples initially, but 1460 may be enough, so r=10. The selection of c should follow three criterions:a) Less drop of accuracyb) Little change about ratio of two classesc) Smaller c, lower time complexitySo I design two experiments to find the best parameter c:Experiment 1:Find out the training accuracy of different amountof cluster. The result is shown in the figure on the left. X-axis is amount of cluster and Y-axis is accuracy. Red line denotes accuracy before sampling and blue line denotes accuracy after sampling. As it’s shown in the figure, c=2, 5, 7, 9, 13 may be good choice since they have relative higher accuracy.Experiment 2:Find out the ratio of sample amount of two class. The result is shown in the figure on the right. X-axis is amount of cluster and Y-axis is the ratio. Red line denotes ratio before sampling and blue line denotes ratio after sampling. As it’s shown in the figure, c=2, 5, 9 may be good choice since the ratio do not change so much.As a result, c=5 is selected tosatisfy the three criterions.Feature selection3780 features is much more than needed to train a classifier, so I select a small part of them before learning. The target is to select most discriminative features, that is to say, select features that have largest accuracy in each step. But there are six learning algorithm in our project, it’s hard to decide which learning algorithm this feature selection process should depend on and it may also has high time complexity. So relevance, which is the correlation between feature and class is used as a discrimination measurement to select the best feature sets. But only select the most relevant features may introduce rich redundancy. So a tradeoff between relevance and redundancy should be made. An experiment about how to make the best tradeoff is done:the best amount of features isFind out the training accuracy of different amountof features. The result is shown below. X-axis is amount of features and Y-axis is accuracy. Red line denotes accuracyPCATo make the dataset smaller, features with contribution rate of PCA ≥ 85% is selected. So we finally obtain a dataset with 1460 samples and 32 features. The size of the dataset drops for 92.16% but accuracy only has 0.61% decease. So these preprocessing steps are successful to decrease the size of the dataset.Learning6 models are used in the learning steps: K-Nearest Neighbor, perception, decision tree, support vector machine, multi-layer perception and Naïve Bayesian. I designed a RBF classifier and MLP classifier at first but they are too slow for the reason that matrix manipulation hasn’t been designed carefully, so I use the function in the library instead. Parameter determination for these classifiers are:①K-NNWhen k≥5,the accuracy trends to be stable, so k=5②Decision treeMaxcrit is used as binary splitting criterion.③MLP5 units for hidden is enough。
《模式识别导论》期末大作业2010-2011-2学期第 3 组《模式识别》大作业人脸识别方法一---- 基于PCA 和欧几里得距离判据的模板匹配分类器一、 理论知识1、主成分分析主成分分析是把多个特征映射为少数几个综合特征的一种统计分析方法。
在多特征的研究中,往往由于特征个数太多,且彼此之间存在着一定的相关性,因而使得所观测的数据在一定程度上有信息的重叠。
当特征较多时,在高维空间中研究样本的分布规律就更麻烦。
主成分分析采取一种降维的方法,找出几个综合因子来代表原来众多的特征,使这些综合因子尽可能地反映原来变量的信息,而且彼此之间互不相关,从而达到简化的目的。
主成分的表示相当于把原来的特征进行坐标变换(乘以一个变换矩阵),得到相关性较小(严格来说是零)的综合因子。
1.1 问题的提出一般来说,如果N 个样品中的每个样品有n 个特征12,,n x x x ,经过主成分分析,将它们综合成n 综合变量,即11111221221122221122n n n n n n n nn ny c x c x c x y c x c x c x y c x c x c x =+++⎧⎪=+++⎪⎨⎪⎪=+++⎩ij c 由下列原则决定:1、i y 和j y (i j ≠,i,j = 1,2,...n )相互独立;2、y 的排序原则是方差从大到小。
这样的综合指标因子分别是原变量的第1、第2、……、第n 个主分量,它们的方差依次递减。
1.2 主成分的导出我们观察上述方程组,用我们熟知的矩阵表示,设12n x x X x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦是一个n 维随机向量,12n y y Y y ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦是满足上式的新变量所构成的向量。
于是我们可以写成Y=CX,C 是一个正交矩阵,满足CC ’=I 。
坐标旋转是指新坐标轴相互正交,仍构成一个直角坐标系。
变换后的N 个点在1y 轴上有最大方差,而在n y 轴上有最小方差。
姓名:学号:题目对sonar和wdbc中数据(如表1所示)进行分类,并将实验结果填入表2。
不降维方法用邻近法,降维用fisher判别:表1 实验数据解:表2实验结果(准确率)一、Fisher 线性判别Fisher 判别法的基本思想是寻找一个最好的投影方向,在这个方向的直线上,d 维样本的投影能分开的最好。
问题是如何根据实际情况找到这条最好的、最易于分类的投影线。
这就是fisher 法所要解决的基本问题。
一维空间的Fisher 线性判别函数为:21212()()F m m J w S S -=+i m =∑x N1,i=1,2 2,1,)()(=--=∑∈i m x m x S T i x i i iξ其中,1m 和2m 是两个样本的均值,1S ,2S 分别为各类样本的的类内离散度。
投影方向w 为:)(211m m S w w -=- (4)12w S S S =+ (5)在Fisher 判决函数中,分子反应了映射后两类中心的距离平方,该值越大,类间可分性越好;分母反应了两类的类内的离散度,其值越小越好;从总体上讲,()F J w 的值越大越好,在这种可分性评价标准下,使()F J w 达到最大值的w 即为最佳投影方向。
以上所做的全部工作都是将d 维空间的样本集映射成一维样本集,然后,我们只需要再确定一个阈值,将投影点与阈值比较,便可作出决策。
本程序中,采用的是阈值=(21m m -)/ 2然后再根据决策规则比较投影与阈值大小就可判断属于什么类型。
Fisher 线性判别的主要优点是简单,容易实现,且计算量和存储量小。
二、Fisher 线性判别流程图三、Fisher线性判别实验结果因为选择训练样本具有随机性,所以进行多次实验,求取判别准确率的平均值。
表一:sonar (fisher ) 表二:wdbc(fisher)四、最近邻法其基本思想是在训练样本中找到测试样本的最近邻,然后根据这个最近邻样本的类别来决定测试样本的类别,邻近法算法所选择的邻居都是已经正确分类的对象。
模式识别期末作业——BP_Adaboost分类器设计目录1 BP_ Adaboost分类器设计 (1)1.1 BP_ Adaboost模型 (1)1.2 公司财务预警系统介绍 (1)1.3模型建立 (1)1.4编程实现 (3)1.4. 1数据集选择 (3)1.4.2弱分类器学习分类 (3)1.4.3强分类器分类和结果统计 (4)1.5结果今析 (5)1 BP_ Adaboost分类器设计1.1 BP_ Adaboost模型Adaboost算法的思想是合并多个“弱”分类器的输出以产生有效分类。
其主要步骤为:首先给出弱学习算法和样本空间((x, y),从样本空间中找出m组训练数据,每组训练数据的权重都是1 /m。
.然后用弱学习算法迭代运算T次,每次运算后都按照分类结果更新训练数据权重分布,对于分类失败的训练个体赋予较大权重,下一次迭代运算时更加关注这些训练个体.弱分类器通过反复迭代得到一个分类函数序列f1 ,f2,...,fT,每个分类函数赋予一个权重,分类结果越好的函数,其对应权重越大.T次迭代之后,最终强分类函数F由弱分类函数加权得到。
BP_Adaboost模型即把BP神经网络作为弱分类器.反复训练BP神经网络预测样本输出.通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。
1.2 公司财务预警系统介绍公司财务预警系统是为了防止公司财务系统运行偏离预期目标而建立的报瞥系统,具有针对性和预测性等特点。
它通过公司的各项指标综合评价并顶测公司财务状况、发展趋势和变化,为决策者科学决策提供智力支持。
财务危机预警指标体系中的指标可分为表内信息指标、盈利能力指标、偿还能力指标、成长能力指标、线性流量指标和表外信息指标六大指标,每项大指标又分为若干小指标,如盈利能力指标又可分为净资产收益率、总资产报酬率、每股收益、主营业务利润率和成本费用利润率等。
在用于公司财务预瞥预测时,如果对所有指标都进行评价后综合,模型过于复杂,并且各指标间相关性较强,因此在模型建立前需要筛选指标。
模式识别大作业K近邻法一.K近邻matlab算法思想:A.把IRIS(wine)数据分为3类,分别存入data1.txt,data2.txt,data3.txt3个文本,调用load 函数装载入M文件;B.用for-end函数将数据的一半分为训练样本和测试样本,并把3各类标记为0,1,2;C.选取K=5,计算测试样本与样本的欧氏距离存入A矩阵,用SORT函数升序排列存入B 矩阵,选出最小的5个距离存入minimum矩阵;求出最小5个距离在A中的行数,利用行数进行分类,找出5个最小值中匹配的三类的个数;用figure函数将分类图显示;以h为分类标记将数据分类;D.将归类数据与训练样本比较,得出精度。
二.程序代码:clear all;clc;close all;%读取特征数据load('data1.txt');load('data2.txt');load('data3.txt');%*****************K近邻法********************%选取训练样本和测试样本并标记训练样本的类别for i=1:25Train(i,:)=data1(2*i-1,:);%第一类训练样本Test(i,:)=data1(2*i,:);%测试样本Label(i)=0;%标记为0endfor i=1:25Train(i+25,:)=data2(2*i-1,:);%第二类训练样本Test(i+25,:)=data2(2*i,:);%测试样本Label(i+25)=1;%标记为1endfor i=1:25Train(i+50,:)=data3(2*i-1,:);%第三类训练样本Test(i+50,:)=data3(2*i,:);%测试样本Label(i+50)=2;%标记为2end%************求出测试样本与训练样本的距离************for i=1:75for j=1:75z=Test(i,:)-Train(j,:);A(j,i)=norm(z);%欧式距离endB=sort(A);%排序%minimum=zeros(1,5);%找出最小的5个距离% for k=1:5% minimum(k)=B(k);% endminimum=B(1:5,:);endfor j=1:75for k=1:5for i=1:75if(minimum(k,j)==A(i,j))testlabel(k,j)=i;%求出最小的五个值所在的A中的行数endendendendl1=zeros(1,75);l2=zeros(1,75);l3=zeros(1,75);for j=1:75for k=1:5if(testlabel(k,j)<=25)l1(1,j)=l1(1,j)+1;else if(testlabel(k,j)>50)l3(1,j)=l3(1,j)+1;elsel2(1,j)=l2(1,j)+1;endendendendL=[l1;l2;l3];%找出五个最小值中匹配三类的个数LL=sort(L);for j=1:75for h=1:3if(LL(3,j)==L(h,j))tclass(j)=h-1;endendendfigure;hold on;plot(1:25,tclass(1:25),'^');plot(26:50,tclass(26:50),'r.'); plot(51:75,tclass(51:75),'go'); right0=0;right1=0;right2=0;for r0=1:25if(tclass(r0)==0)right0=right0+1;endendfor r1=1:25if(tclass(r1+25)==1)right1=right1+1;endendfor r2=1:25if(tclass(r2+50)==2)right2=right2+1;endendAccuracy0=right0/25Accuracy1=right1/25Accuracy2=right2/25Accuracy=(right0+right1+right2)/75三.IRIS数据实验结果:0为第一类;1为第二类;2为第三类精度:Wine实验结果Wine分类精度:四.感想与收获:通过这次大作业,让我理解了K近邻法的思想,也通过调试matlab程序提高了编程能力和独立解决问题的能力。
第一题对数据进行聚类分析1.题目要求用FAMALE.TXT、MALE.TXT和/或test2.txt的数据作为本次实验使用的样本集,利用C 均值聚类法和层次聚类法对样本集进行聚类分析,对结果进行分析,从而加深对所学内容的理解和感性认识。
2.原理及流程图2.1 C均值聚类法原理C均值算法首先取定C个类别数量并对这C个类别数量选取C个聚类中心,按最小距离原则将各模式分配到C类中的某一类,之后不断地计算类心和调整各模式的类别,最终使各模式到其对应的判属类别中心的距离平方之和最小。
2.2 C均值聚类算法流程图N图1.1 C均值聚类算法流程图2.3 层次聚类算法原理N个初始模式样本自成一类,即建立N类,之后按照以下步骤运算:Step1:计算各类之间(即各样本间)的距离,得一个维数为N×N的距离矩阵D(0)。
“0”表示初始状态。
Step2:假设已求得距离矩阵D(n)(n为逐次聚类合并的次数),找出D(n)中的最小元素,将其对应的两类合并为一类。
由此建立新的分类:Step3:计算合并后所得到的新类别之间的距离,得D (n +1)。
Step4:跳至第2步,重复计算及合并。
直到满足下列条件时即可停止计算:①取距离阈值T ,当D (n )的最小分量超过给定值 T 时,算法停止。
所得即为聚类结果。
②或不设阈值T ,一直到将全部样本聚成一类为止,输出聚类的分级树。
2.4层次聚类算法流程图N图1.2层次聚类算法流程图3 验结果分析对数据文件FAMALE.TXT 、MALE.TXT 进行C 均值聚类的聚类结果如下图所示:图1.3 C 均值聚类结果的二维平面显示将两种样本即进行聚类后的样本中心进行比较,如下表:从下表可以纵向比较可以看出,C 越大,即聚类数目越多,聚类之间差别越小,他们的聚类中心也越接近。
横向比较用FEMALE,MALE 中数据作为样本和用FEMALE,MALE ,test2中),1(),1(21++n G n G数据作为样本时,由于引入了新的样本,可以发现后者的聚类中心比前者都稍大。
作业1 用身高和/或体重数据进行性别分类(一)基本要求:用FAMALE.TXT和MALE.TXT的数据作为训练样本集,建立Bayes分类器,用测试样本数据对该分类器进行测试。
调整特征、分类器等方面的一些因素,考察它们对分类器性能的影响,从而加深对所学内容的理解和感性认识。
具体做法:1.应用单个特征进行实验:以(a)身高或者(b)体重数据作为特征,在正态分布假设下利用最大似然法或者贝叶斯估计法估计分布密度参数,建立最小错误率Bayes分类器,写出得到的决策规则,将该分类器应用到测试样本,考察测试错误情况。
在分类器设计时可以考察采用不同先验概率(如0.5对0.5, 0.75对0.25, 0.9对0.1等)进行实验,考察对决策规则和错误率的影响。
图1-先验概率0.5:0.5分布曲线图2-先验概率0.75:0.25分布曲线图3--先验概率0.9:0.1分布曲线图4不同先验概率的曲线有图可以看出先验概率对决策规则和错误率有很大的影响。
程序:bayesflq1.m和bayeszcx.m2.应用两个特征进行实验:同时采用身高和体重数据作为特征,分别假设二者相关或不相关(在正态分布下一定独立),在正态分布假设下估计概率密度,建立最小错误率Bayes 分类器,写出得到的决策规则,将该分类器应用到训练/测试样本,考察训练/测试错误情况。
比较相关假设和不相关假设下结果的差异。
在分类器设计时可以考察采用不同先验概率(如0.5 vs. 0.5, 0.75 vs. 0.25, 0.9 vs. 0.1等)进行实验,考察对决策和错误率的影响。
训练样本female来测试图1先验概率0.5 vs. 0.5 图2先验概率0.75 vs. 0.25图3先验概率0.9 vs. 0.1 图4不同先验概率对测试样本1进行试验得图对测试样本2进行试验有图可以看出先验概率对决策规则和错误率有很大的影响。
程序bayesflq2.m和bayeszcx2.m 3.自行给出一个决策表,采用最小风险的Bayes决策重复上面的某个或全部实验。
W1 W2W1 0 0.7W2 0.3 0close all;clear all;X=120:0.1:200; %设置采样范围及精度pw1=0.9;pw2=0.1; %设置先验概率sample1=textread('FEMALE.txt') %读入样本samplew1=zeros(1,length(sample1(:,1)));u1=mean(sample1(:,1));m1=std(sample1(:,1));y1=normpdf(X,u1,m1); %类条件概率分布figure(1);subplot(2,1,1);plot(X,y1);title('F身高类条件概率分布曲线');sample2=textread('MALE.txt') %读入样本samplew2=zeros(1,length(sample2(:,1)));u2=mean(sample2(:,1));m2=std(sample2(:,1));y2=normpdf(X,u2,m2); %类条件概率分布subplot(2,1,2);plot(X,y2);title('M身高类条件概率分布曲线');P1=pw1*y1./(pw1*y1+pw2*y2);P2=pw2*y2./(pw1*y1+pw2*y2);figure(2);subplot(2,1,1);plot(X,P1);title('F身高后验概率分布曲线');subplot(2,1,2);plot(X,P2);title('M身高后验概率分布曲线');P11=pw1*y1;P22=pw2*y2;figure(3);subplot(3,1,1);plot(X,P11);subplot(3,1,2);plot(X,P22);subplot(3,1,3);plot(X,P11,X,P22);sample=textread('all sample.txt') %读入样本[result]=bayes(sample1(:,1),sample2(:,1),pw1,pw2);%bayes分类器function [result] =bayes(sample1(:,1),sample2(:,1),pw1,pw2);error1=0;error2=0;u1=mean(sample1(:,1));m1=std(sample1(:,1));y1=normpdf(X,u1,m1); %类条件概率分布u2=mean(sample2(:,1));m2=std(sample2(:,1));y2=normpdf(X,u2,m2); %类条件概率分布P1=pw1*y1./(pw1*y1+pw2*y2);P2=pw2*y2./(pw1*y1+pw2*y2);for i = 1:50if P1(i)>P2(i)result(i)=0;pe(i)=P2(i);elseresult(i)=1;pe(i)=P1(i);endendfor i=1:50if result(k)==0error1=error1+1;else result(k)=1error2=error2+1;endendratio = error1+error2/length(sample); %识别率,百分比形式sprintf('正确识别率为%.2f%%.',ratio)作业2 用身高/体重数据进行性别分类(二)基本要求:试验直接设计线性分类器的方法,与基于概率密度估计的贝叶斯分离器进行比较。
具体做法:同时采用身高和体重数据作为特征,用Fisher线性判别方法求分类器,将该分类器应用到训练和测试样本,考察训练和测试错误情况。
将训练样本和求得的决策边界画到图上,同时把以往用Bayes方法求得的分类器也画到图上,比较结果的异同。
解答:Clcclear allsample1=textread('FEMALE.txt') %读入样本sample2=textread('MALE.txt') %读入样本[length1,width1]=size(sample1);[length2,width2]=size(sample2);One1 = ones(length1, 1);One2 = ones(length2, 1);plot(sample1(:,1), sample1(:,2), 'r*',sample2(:,1), sample2(:,2), 'bo')title('Famale和male身高体重聚类图'); Y1=sample1(:,1:2);Y2=sample2(:,1:2);m1 = mean(Y1);m2 = mean(Y2);S1 = (Y1 - One1 * m1)'*(Y1 - One1 * m1); S2 = (Y2 - One2 * m2)'*(Y2 - One2 * m2); sw = S1+S2;ww=inv(sw);w = inv(sw)*(m1 - m2)';Y = [Y1;Y2];z = Y*w;hold ont = z*w'/norm(w)^2;plot(t(:,1), t(:,2))for i = 1:length1+length2plot([Y(i,1) t(i,1)], [Y(i,2) t(i,2)], '-.')endaxis([120 200 40 100])title('fisher线性变换后');grid作业2图一作业2图二利用K-L 变换进行特征提取的实验一、基本要求用FAMALE.TXT 和MALE.TXT 的数据作为本次实验使用的样本集,利用K-L 变换对该样本集进行变换,与过去用Fisher 线性判别方法或其它方法得到的分类面进行比较,从而加深对所学内容的理解和感性认识。
二、具体做法1. 不考虑类别信息对整个样本集进行K-L 变换(即PCA ),并将计算出的新特征方向表示在二维平面上,考察投影到特征值最大的方向后男女样本的分布情况并用该主成分进行分类2. 利用类平均向量提取判别信息,选取最好的投影方向,考察投影后样本的分布情况并用该投影方向进行分类。
3. 将上述投影和分类情况与以前做的各种分类情况比较,考察各自的特点和相互关系。
三、实验原理K-L 变换是一种基于目标统计特性的最佳正交变换。
它具有一些优良的性质:即变换后产生的新的分量正交或者不相关;以部分新的分量表示原矢量均方误差最小;变换后的矢量更趋确定,能量更集中。
这一方法的目的是寻找任意统计分布的数据集合之主要分量的子集。
设n 维矢量12,,,Tn x x x ⎡⎤⎣⎦=x L ,其均值矢量E ⎡⎤⎣⎦=μx ,协方差阵()Tx E ⎡⎤⎣⎦=--C x u)(x u ,此协方差阵为对称正定阵,则经过正交分解克表示为x =TC U ΛU ,其中12,,,[]n diag λλλ=ΛL ,12,,,n u u u ⎡⎤⎣⎦=U L 为对应特征值的特征向量组成的变换阵,且满足1T -=U U 。
变换阵T U 为旋转矩阵,再此变换阵下x 变换为()T -=x u y U ,在新的正交基空间中,相应的协方差阵12[,,,]x n diag λλλ==x UC U C L 。
通过略去对应于若干较小特征值的特征向量来给y 降维然后进行处理。
通常情况下特征值幅度差别很大,忽略一些较小的值并不会引起大的误差。
1.不考虑类别信息对整个样本集进行K-L 变换(即PCA )(1)读入female.txt 和male.txt 两组数据,组成一个样本集。
计算样本均值向量u E x ⎡⎤⎣⎦=和协方差()()T x u x u c E ⎡⎤--⎣⎦= (2)计算协方差阵C 的特征值Λ和特征向量U (3)选取特征值最大的特征向量作为投影方向 (4)选取阈值进行判断 2.利用类平均信息提取判别信息(1)读入female.txt 和male.txt 两组数据,分别计算样本均值向量i u E x ⎡⎤⎣⎦=和协方差()()Ti x u x u c E ⎡⎤--⎣⎦=,及总均值向量()122u u u += (2)计算类间离散度矩阵S b (()()()21Tb i i i i S p u u u u ω==--∑)与类内离散度矩阵S w(21w i i i S P ==∑∑)(3)用()T j b jj ju S u J X λ=比较分类性能,选择最佳投影方向(4)选取阈值进行判断 四、实验结果与分析1.不考虑类别信息对整个样本集进行K-L 变换(即PCA ) U=(0.6269,0.7791)T ,P 1=0.5, P 2=0.52.利用类平均信息提取判决信息 U=(0.5818,0.8133)T ,P 1=0.5, P 2=0.5%不考虑类别信息clc;clear all;[FH FW]=textread('C:\Users\rengang\Desktop\homework\FEMALE.txt','%f %f');[MH MW]=textread('C:\Users\rengang\Desktop\homework\MALE.txt','%f %f');FA=[FH FW];FA=FA';MA=[MH MW];MA=MA';for k=1:50NT(:,k)=FA(:,k);endfor k=51:100NT(:,k)=MA(:,k-50);endX=(sum(NT')/length(NT))';%这里NT'是一个100*2的矩阵,X为总样本均值。