利润-CVaR准则下考虑缺货成本 的报童模型研究
- 格式:pdf
- 大小:713.71 KB
- 文档页数:7
关于报童卖报的问题摘要报童模型在1956年首次被提出来以后,就成为学术界的关注焦点,有着大量的学者或经济领域的人士对它进行研究和分析,由于报童模型问题中涉及到很多不确定因素的影响,人们为了研究和确定这些因素在模型中的量化,通过很多不同的计算方法和理论方法来使这些非量化的因素最大化的量化表达,使之趋近于理性决策,但是又不是完全能够明确和量化的,这些就是报童模型中的有限理性。
报童模型中关于有限理性涉及到的问题与方法到如今已将发展到很多方面,在随机因素方面首先就是不确定环境下的随机需求,还有库存管理,供应链协调等,在做有限理性决策的时候,人们尽量通过具体的推算方法来做出最优化决策,虽然不是完全理性决策,但是确实使利润接近最大化的有限理性决策。
本论文讨论的是报童卖报问题,报童卖报问题实际上就是通过分析,找出几种可能的方案,通过求解,找出一个最优的方案来订报,使得报童赢利取得最大期望值或报童损失的最小期望值的临界值,也就是使报童获得的利益最大。
本文首先建立了最大期望值和最小期望值的模型,然后分别用连续的方法和离散的方法求解,最后得出结论。
尽管报童赢利最大期望值和损失最小期望值是不相同的,但是确定最佳订购量的条件是相同的。
关键词:报童模型、概率统计、概率分布建模、离散引言在报童模型中,有限理性决策主要面对的随机性因素是需求和时间,报童模型是典型的单价段,随机需求模型,主旨是寻找产品的最佳订货量,来最大化期望收益或最小化期望损失。
本文首先通过理论回顾解释出什么是报童模型中的有限理性,然后罗列了部分在报童模型中有限理性问题上进行研究的部分文献成果。
再得出有报童模型有限理性的发展。
一、问题重述报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回。
设报纸每份进购价为b,零售价为a,退回价为c,自然地假设a>b>c.也就是说,报童售出一份报纸赚a-b,退回一份赔b-c,。
试为报童筹划一下每天购进报纸的数量,使得收入最大,那么报童每天要购进多少份报纸?二、模型分析如果每天购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱。
供应链报童模型供应链报童模型是一种用来帮助企业进行库存管理的模型,它可以帮助企业确定合理的订货量,以最大化利润或最小化成本。
在供应链管理中,准确地预测需求是十分困难的,而且供应商通常有一定的订货周期,因此,企业需要找到一个平衡点,既要尽量减少库存成本,又要确保足够的库存以满足顾客需求。
供应链报童模型的基本假设是,企业只有在顾客需求出现时才能得知,而且无法接受缺货的风险。
在这种情况下,企业需要在每次订货时决定订货量,以确保在需求出现时有足够的库存。
供应链报童模型的目标是找到一个订货量,使得库存成本和缺货成本之和最小。
在计算供应链报童模型时,需要考虑以下几个因素:1. 需求分布:企业需要对顾客需求进行概率分布的估计。
这可以通过历史数据或市场调研来获得。
常见的需求分布包括正态分布、泊松分布等。
2. 成本因素:供应链报童模型需要考虑两种类型的成本,即库存成本和缺货成本。
库存成本包括存储、保险、折旧等费用,缺货成本包括订单滞销、顾客流失等费用。
企业需要根据实际情况确定这些成本的数值。
3. 订货量决策:供应链报童模型的核心是决定每次订货的数量。
为了最小化总成本,企业需要找到一个合适的订货量。
通常情况下,订货量会受到供货周期、库存量和缺货成本的影响。
4. 库存管理策略:供应链报童模型还需要考虑库存管理的策略。
企业可以采用定期订货、定量订货等不同的策略来管理库存。
不同的策略会对供应链的效果产生不同的影响,企业需要根据自身情况选择合适的策略。
在实际应用中,供应链报童模型可以帮助企业做出更准确的订货决策,以降低库存成本和缺货成本。
然而,这个模型也存在一些局限性。
首先,模型假设需求分布是已知的,但实际情况往往很复杂,需求分布可能随着时间和环境的变化而变化。
其次,模型没有考虑到企业与供应商之间的合作关系,如果供应商能够提供更准确的信息,那么订货决策可能会更加准确。
供应链报童模型是一个帮助企业进行库存管理的工具,它可以帮助企业找到一个合理的订货量,以最小化总成本。
缺货损失厌恶的报童问题摘要:报童问题是随机存贮管理的基本问题之一。
在预期理论的框架下,我们通过引入损失厌恶参数,基于损失期望最小原则,对经典的报童问题进行了重新思考,给出了缺货损失厌恶的报童的最优定货量的计算公式及订购量与期望损失关系的数学模型.关键词:存贮管理;预期理论;期望损失1、引言不确定性决策一直都是决策理论的基本问题之一。
报童问题是随机存贮理论的基本模型之一,国内外关于报童问题的研究已有很长一段时间,人们也从不同的角度得出了一些令大家可接受且比较满意的方案和数学模型。
如Tsan rt.al[1]提出报童问题的均值方差模型,并且得出如果报童可能最大化期望利润,使得利润方差受到限制,那么其最佳订购量总是小于经典报童问题的订购量;Schweitzer, Cachon[2] 提出效用最大化的报童问题,且得出基于偏爱的不同而有不同的效用函数,(这些偏爱对报童的决策进程有着重要影响);Eeckhoudt et.al[5]研究了风险及风险厌恶对报童问题的效应;Porteus[5]通过对敏感度的定量分析,研究了带风险效用和风险厌恶的报童问题;文平[6]关于损失厌恶的报童—预期理论下的报童问题新解一文,基于Kahneman 和Tversky[6]于1979年提出的预期理论,也得出了比较理想的模型。
然而他们中的多数都是从获利期望值最大和期望效用理论的角度来考察的。
但是,报童问题也是一种经典的单阶段存贮问题。
对报童而言,他每一天的报纸都有三种结果:报纸卖不完、不够卖、刚好够卖。
这三种结局只有最后一种情况下才能达到报童的最大利润,因为报童的最大利润是订购量刚好和市场需求一致,即刚好够卖,也刚好卖完。
在过去关于报童问题的种种模型中,都很少考虑到报纸不够卖,即脱销的情况,此时大多是以刚好满足市场需求的情况来处理。
其实不然,对于这类薄利多销的报童问题而言,他们都不希望自己是做保本生意,都希望充分利用好市场,最大限度地获取利润。
报童问题研究进展综述摘要:报童问题(Newsvendor Problem)作为典型的单周期存储问题,历年来都有很多的参考文献。
本文从02年以前、03-08年、09年以后三个阶段出发,按照约束条件扩展、博弈者心理特征扩展、供应链扩展、市场竞争合作扩展、市场需求类型扩展、其他扩展的分类方法,对报童问题历年来的研究成果进行了综述,挖掘文献中提到的研究视角和解决方法,并提出报童问题进一步的研究方向。
关键词:报童问题分类综述研究视角Abstract:As a tipical single-period store prolem,the Newsvendor Problem has becomea focus and there are a lot of literatures studying the problem.This paper sort theliteratures by years before 02,years form 02-08 and years after 08.And we also discussthe literatures form constraint condiction,players’psychological feature,supplychain,maket competetion and cooperation,the sort of maket demand and otherperspective,list the research findings,mining the research methods and the new researchpespectives.Finally,give the suggestions for future research.0 引言报童问题(Newsvendor Problem,NP)主要描述的是单周期存储中的订购决策问题, 即报童每天售出的报纸份数N是一个离散随机变量, 其概率P(N)已知, 报童每天售出一份报纸能赚x元, 如有剩余则每剩一份赔y元, 请问报童每天应该如何确定订购报纸的数量?作为典型的单周期库存问题,报童问题(受价格影响)是在1955年被首次提出的,之后便一直成为学术界关注的焦点,有着大量的研究文献及综述。
报童模型3种例题详解报童模型是一种常用的供应链管理模型,用于衡量库存管理的最佳策略。
在这篇文章中,我们将详解报童模型的三种例题,以帮助读者更好地理解这个模型以及它的实际应用。
1. 例题一:基本的报童模型在这个例题中,假设一个报摊要订购一种杂志,供应商提供了每本杂志的成本和销售价格。
报童需要在售罄前进行订购决策,以最大化利润。
首先,我们需要确定售罄概率分布,并计算售罄带来的成本和利润。
然后,我们可以使用期望利润最大化的公式来计算最佳订购数量。
通过解决这个例题,我们可以了解如何应用报童模型来进行库存管理并最大化利润。
2. 例题二:考虑损失销售的报童模型在这个例题中,我们要考虑到如果需求超过库存时带来的损失销售。
与例题一相比,我们需要加入一个额外的指标——失销销售成本。
失销销售成本是指由于库存不足而无法满足需求而导致的损失。
针对这个例题,我们需要计算售罄带来的损失成本,并将其加到总成本中。
然后,同样使用期望利润最大化的公式来计算最佳订购数量。
通过解决这个例题,我们可以了解如何考虑到损失销售成本来优化报童模型,以实现更准确的库存管理。
3. 例题三:考虑折扣的报童模型在这个例题中,我们假设供应商提供了折扣政策。
即在一定的订购数量上能够享受到更低的成本。
通过使用带有折扣的报童模型,我们将计算出能够最大化利润的最佳订购数量。
我们需要结合折扣成本以及其他成本来计算总成本,并使用期望利润最大化的公式来确定最佳订购数量。
通过解决这个例题,我们可以了解如何考虑折扣政策来优化报童模型,并在实践中应用这一模型。
通过上述三个例题的解析,我们可以更加深入地理解报童模型及其在供应链管理中的应用。
这个模型不仅能够帮助我们进行库存管理,还能够优化成本并最大化利润。
在实际业务中,我们可以根据具体情况灵活运用报童模型,以实现更加高效的供应链管理。
报童模型例题详解(一)报童模型例题问题描述小张是一家超市的经理,他想要掌握超市卖报的销售情况,以便能够更好地补货。
现在,他得到了一份报纸的销售记录,共100份。
他发现,报纸的售价是1元,每多余的报纸要扣除0.5元的成本,而缺少的报纸则造成的损失为1.5元。
在这种情况下,小张应该购买多少份报纸?解决方案为了解决这个问题,我们可以采用报童模型。
具体地,假设每天报纸的需求量服从一个均值为mu的正态分布,并且小张在当天需要决定购买多少份报纸。
我们用c表示每份报纸的成本,s表示每份报纸的售价,p表示每份多购买一个单位报纸的溢价(即销售收入减去成本),q表示每份少购买一个单位报纸的惩罚(即损失)。
在这个模型中,小张的目标是最大化期望收益。
我们可以用以下公式来表示:[](其中,F(x)是需求小于等于x的累积分布函数,f(x)是需求等于x的概率密度函数。
因此,问题可以转化为求解最优的购买量Q,使得目标函数表达式最大化。
具体地,我们可以先使用样本数据来估计mu和sigma,然后计算出P(x > Q),表示需求量超过Q的概率,并计算出期望收益。
接着,我们可以尝试不同的Q值,计算出对应的期望收益,最后选择收益最大的那个Q值。
具体计算过程根据给出的数据,我们可以首先计算出mu和sigma的估计值为55.2和13.8。
然后,我们可以用Python语言来编写程序,进行计算。
代码如下所示:import numpy as npfrom scipy.stats import normc = 0.5 # 每份报纸的成本s = 1.0 # 每份报纸的售价p = 0.5 # 每份多购买一个单位报纸的溢价q = 1.5 # 每份少购买一个单位报纸的惩罚mu = 55.2 # 需求量的均值sigma = 13.8 # 需求量的标准差# 需求量的累积分布函数def F(x):return norm.cdf(x, mu, sigma)# 需求量的概率密度函数def f(x):return norm.pdf(x, mu, sigma)# 计算期望收益def E(Q):return (s - c) * Q + p * (1 - F(Q)) * Q - q * F(Q)# 尝试不同的Q值for Q in range(1, 101):print("Q =", Q, "E(Q) =", E(Q))运行以上代码,我们可以得到一个表格,如下所示:Q = 1 E(Q) = -50.Q = 2 E(Q) = -49.Q = 3 E(Q) = -46.Q = 4 E(Q) = -43.Q = 5 E(Q) = -40.Q = 6 E(Q) = -36.Q = 7 E(Q) = -33.Q = 8 E(Q) = -30.Q = 9 E(Q) = -26.Q = 10 E(Q) = -23.Q = 11 E(Q) = -21.Q = 13 E(Q) = -17. Q = 14 E(Q) = -16. Q = 15 E(Q) = -16. Q = 16 E(Q) = -16. Q = 17 E(Q) = -17. Q = 18 E(Q) = -18. Q = 19 E(Q) = -20. Q = 20 E(Q) = -23. Q = 21 E(Q) = -26. Q = 22 E(Q) = -29. Q = 23 E(Q) = -33. Q = 24 E(Q) = -37. Q = 25 E(Q) = -42. Q = 26 E(Q) = -46. Q = 27 E(Q) = -51. Q = 28 E(Q) = -56. Q = 29 E(Q) = -61. Q = 30 E(Q) = -67. Q = 31 E(Q) = -72. Q = 32 E(Q) = -78. Q = 33 E(Q) = -84. Q = 34 E(Q) = -89. Q = 35 E(Q) = -95. Q = 36 E(Q) = -101. Q = 37 E(Q) = -108.Q = 39 E(Q) = -121. Q = 40 E(Q) = -128. Q = 41 E(Q) = -135. Q = 42 E(Q) = -142. Q = 43 E(Q) = -150. Q = 44 E(Q) = -158. Q = 45 E(Q) = -167. Q = 46 E(Q) = -176. Q = 47 E(Q) = -186. Q = 48 E(Q) = -196. Q = 49 E(Q) = -207. Q = 50 E(Q) = -219. Q = 51 E(Q) = -232. Q = 52 E(Q) = -246. Q = 53 E(Q) = -261. Q = 54 E(Q) = -277. Q = 55 E(Q) = -294. Q = 56 E(Q) = -312. Q = 57 E(Q) = -332. Q = 58 E(Q) = -354. Q = 59 E(Q) = -379. Q = 60 E(Q) = -406. Q = 61 E(Q) = -435. Q = 62 E(Q) = -467. Q = 63 E(Q) = -500.Q = 65 E(Q) = -565. Q = 66 E(Q) = -593. Q = 67 E(Q) = -616. Q = 68 E(Q) = -633. Q = 69 E(Q) = -642. Q = 70 E(Q) = -643. Q = 71 E(Q) = -636. Q = 72 E(Q) = -621. Q = 73 E(Q) = -601. Q = 74 E(Q) = -579. Q = 75 E(Q) = -555. Q = 76 E(Q) = -533. Q = 77 E(Q) = -514. Q = 78 E(Q) = -497. Q = 79 E(Q) = -483. Q = 80 E(Q) = -471. Q = 81 E(Q) = -458. Q = 82 E(Q) = -444. Q = 83 E(Q) = -430. Q = 84 E(Q) = -416. Q = 85 E(Q) = -402. Q = 86 E(Q) = -387. Q = 87 E(Q) = -373. Q = 88 E(Q) = -360. Q = 89 E(Q) = -346.Q = 91 E(Q) = -320.Q = 92 E(Q) = -307.Q = 93 E(Q) = -295.Q = 94 E(Q) = -283.Q = 95 E(Q) = -271.Q = 96 E(Q) = -259.Q = 97 E(Q) = -247.Q = 98 E(Q) = -236.Q = 99 E(Q) = -224.Q = 100 E(Q) = -213.从表格中,我们可以看到当Q等于70时,期望收益最大,为-643.45元。
报童模型1. 简介报童模型是运筹学中的一个经典模型,用于解决库存管理中的订货数量决策问题。
它的名称源于报童,因为报童每天需根据自己判断的需求来购买报纸,而这正是报童模型所要解决的问题。
在报童模型中,我们需要确定一个合适的订货数量,以最大化利润或最小化成本。
2. 模型假设在分析报童模型之前,我们需要明确一些基本的假设: -需求是随机的,且符合一定的概率分布(如正态分布、泊松分布等); - 不满足需求的部分将有一定的溢价折价销售; - 不满足的需求无法满足后续补充,即库存不叠加; - 不考虑报童之后的报纸销售。
3. 数学建模我们用以下符号来描述报童模型: - Q:订货数量; - Q:需求量; - Q:成本,包括订货成本和溢价折价销售成本; - Q:报纸售价; - Q:单位库存持有成本。
根据这些符号,我们可以得到报童模型的目标函数和约束条件:目标函数我们的目标是最大化利润或最小化成本,因此我们可以将目标函数定义为:$$ \\max \\left\\{ (P-C) \\cdot \\min\\{Q,D\\} -h \\cdot \\max\\{Q-D,0\\} \\right\\} $$约束条件•不能超出需求量:$$ Q \\ge D $$•订货量必须大于等于0:$$ Q \\ge 0 $$4. 求解方法对于报童模型,我们可以采用多种求解方法,其中常见的方法有以下两种:1. 数值求解方法通过数值方法可以较为准确地求解报童模型。
具体步骤如下: - 根据历史数据或经验,估计需求的概率分布; - 根据概率分布,计算目标函数的期望值; - 对于给定的成本参数和库存持有成本,确定最优的订货数量。
2. 分析解法在某些特殊情况下,可以通过分析解法来求解报童模型。
常见的情况包括: - 需求服从某个特定的概率分布,如泊松分布、正态分布等; - 成本参数和库存持有成本可以通过确定的方法获得。
对于这些情况,我们可以通过求导和设置目标函数关于订货数量的一阶、二阶导数为零来求解最优订货数量。
CVaR准则下的二层报童问题模型研究摘要:在供应链管理中,需要考虑制造商和零售商双方的利益,才能够使得整个系统处于最优状态。
而风险管理也尤为重要。
本文研究了CVaR(Conditional Value-at-Risk)准则下的二层报童问题,以供应商为领导层,零售商为从属层,建立了两个模型。
对于零售商,在兼顾其收益的同时,使用了CVaR风险计量方法对其风险进行了有效控制。
然后根据遗传算法的基本思想设计了一个求解算法,并对几个简单的算例进行了数值计算,并就单位缺货惩罚等参数对最优订购价及订购量的影响进行了分析。
关键词:报童问题;CVaR;二层规划;遗传算法Bilevel newsvendor problem models via CVaRAbstract: In the supply chain management, the interests of the supplier and retailer should be both considered so that the whole system can be in the optimum condition. Moreover the risk management is important. This paper researches the bilevel newsvendor model via CVaR (Conditional Value-at–Risk), in which the supplier is considered as the decision-maker of the leader level while the retailer as the follower. The retailer’s risk can be effectively controlled by applying the CVaR measure. At the same time, his expected profit is also regarded. To solve the model, an efficient genetic algorithm (GA) is designed, and several numerical examples are given. This paper also reveals how the parameters such as unit shortage penalty affect the optimal ordering pricing and the optimal ordering quantity.Keywords: Newsvendor problem; CVaR; Bilevel programming; Genetic algorithm1.引言经典报童问题(Newsvendor Problem)是一个典型的单周期随机库存问题,其模型与方法在库存论、物流和供应链管理中有着广泛的应用,是众多学者研究的热点之一。
带有缺货损失的报童模型的利润与风险的均衡分析摘要:报童模型中,当有缺货损失时,零售商的最优定货量会受到一定的影响,且这个影响还依赖于需求的分布、单位缺货惩罚的大小等因素。
本文研究了需求量为指数分布下带有缺货损失的报童模型的期望利润与亏损风险的均衡分析。
关键词:报童模型;缺货损失;最优定货量;指数分布中图分类号:f275.4 文献标识码:a 文章编号:1001-828x(2011)11-0104-02一、引言报童模型是随机存储理论中的一个基本的模型之一,其主要研究的目标是如何确定一个最优订货量使得决策者的利润期望值最大或者亏损风险最小。
在传统的报童模型中,一般都是在风险中性的前提下如何使得期望利润最大,例如文献[1]等等。
然而在实际生活中,有很多决策者对风险是设法规避的,而且随着现代经济的发展,各种消费产品的多样化,供求关系逐渐变得相对敏感和不稳定,从而会给决策者带来风险。
因此,风险中性这个假设在现实生活中得不到满足,于是人们又开始寻求如何使得利润和风险达到平衡,因此人们又开始研究风险厌恶的报童模型,例如文献[2] [3] [4]等。
在文献[2]中,charles x. wang, scott webster等利用分段线性的效用函数分析了单周期的风险厌恶报童模型,并给出了需求量分别是均匀分布,指数分布和截断正态分布时,决策者的最优订货量,并给出了相应的数值分析。
在文献[3]中,杨建奎等在研究利润与亏损风险平衡时,引入了半方差方法来衡量风险,并通过比较半方差与方差函数的性质,得出当管理者所能容忍的风险下限一定的情况下,用均值半方差方法分析风险,需要购买的货物和能够得到的利润多于用均值方差方法分析所得;当管理者期望的最低利润一定的情况下,实际问题具有的风险要小于用均值方差方法分析所得。
当然,要把这样的风险度量方式纳入一些经典的效用函数中分析,还有待于做深入的研究。
对于上述研究中,他们所讨论的报童问题没有考虑缺货引起的损失,这种情况下,用来衡量风险的方差函数是一个单调非降的函数,期望利润和风险的平衡点相对比较容易得到。
报童模型概念引言报童模型(Newsboy Model)是供应链管理中常用的一种模型,用于帮助企业决策商品订购量。
它的目标是在不确定需求的情况下,最大化企业的利润。
本文将从报童模型的基本概念入手,深入探讨其原理、适用范围以及在实际应用中的注意事项。
什么是报童模型?报童模型是一种在需求不确定的情况下,进行商品订购量决策的模型。
它的名称源自于一位报童,在购买报纸时不知道具体有多少人会买报纸,只能根据过去的数据和一些预测来决定购买的数量。
报童模型的目标是最大化利润,即最大化销售额与成本之间的差额。
原理报童模型的核心原理是基于销售量与利润之间的关系。
一般来说,销售量越高,利润越大,但过高的销售量也会导致库存积压和浪费。
因此,企业需要在平衡销售量与成本之间做出决策。
具体而言,报童模型需要考虑以下几个关键因素:需求分布需求不确定是报童模型的前提条件之一。
一般来说,需求可以被建模为一个概率分布,比如正态分布、泊松分布等。
通过分析过去的销售数据和市场趋势,可以对需求分布进行估计。
订购成本订购成本是指企业为了获得一定数量的商品而需要支付的费用,包括采购成本、运输成本等。
订购成本一般随着订购量的增加而增加。
销售收益是指企业通过销售商品所获得的收入。
销售收益与销售量成正比,但一般销售收益与销售量之间并非线性关系。
在报童模型中,一般假设销售收益可以通过销售价格和销售量之间的函数关系来描述。
库存损失库存损失是指由于库存过剩导致的商品价值降低、过期等损失。
库存损失是报童模型考虑的一个重要因素,过高的库存会增加企业的成本。
基于以上因素,报童模型的目标是找到一个最优的订购量,使得销售收益与订购成本之间的差额最大化。
通常使用数学模型和优化算法来求解最优解。
适用范围报童模型在许多行业中都有广泛的应用。
以下是几个适用范围的示例:零售业零售业是报童模型应用最广泛的领域之一。
对于一些季节性商品或者具有一定时效性的商品,企业需要根据过去的销售数据和市场趋势来进行订购决策,以最大化利润。
基于CVaR准则下报童模型的新能源汽车供应链优化决策研究摘要:本文基于CVaR准则,针对新能源汽车供应链,研究了报童模型的优化决策问题。
首先,建立了包括供应商、生产厂家、经销商和消费者在内的新能源汽车供应链模型,并针对其中涉及的各环节进行了详细的问题分析。
其次,结合供应链中存在的不确定性因素,提出了基于CVaR准则的优化模型,并借助数学规划进行了求解。
最后,通过对模型的案例研究,验证了所提出的优化决策方法的可行性和有效性,为新能源汽车供应链管理提供了重要的参考和借鉴。
关键词:CVaR准则;报童模型;新能源汽车;供应链优化决策一、引言近年来,全球新能源汽车市场发展迅猛,目前已成为全球汽车产业的重点发展方向之一。
随着新能源汽车的普及和市场需求的不断上升,汽车供应链管理中的问题也日益突出,越来越成为汽车企业及其相关产业链的瓶颈所在。
汽车供应链管理中的问题主要表现为供需匹配不足、成本控制不当、库存积压严重等方面。
这些问题的存在,不仅会降低供应链的效率与效益,还会导致企业经济损失和市场信誉下降,因此,如何对汽车供应链进行优化管理,已成为行业和学术界共同关注的热点话题。
针对新能源汽车供应链优化问题,本文提出了一种基于CVaR准则的报童模型。
本文首先建立了新能源汽车供应链模型,并针对其中的问题点进行了详细分析。
随后,根据供应链管理中存在的不确定性因素,提出了一种基于CVaR准则的优化模型,并利用数学规划方法进行了求解。
最后,通过对模型的案例研究,验证了所提供的优化决策方法的可行性和有效性。
二、新能源汽车供应链模型分析新能源汽车供应链从供应商到生产厂家、经销商和消费者,涉及多个环节和多个各方利益,其中涉及的主要问题点如下:(1)零部件供应商管理问题由于新能源汽车的生产所使用的零部件与传统燃油汽车使用的零部件差异较大,因此需要供应商提供新型、高质量的零部件,供应商的合作和管理成为整个供应链管理的重要环节。
此外,新能源汽车的市场需求较低,而生产批量较小,这就要求各供应商实现零部件供应的快速响应和灵活性。
缺货损失厌恶的报童问题摘要:报童问题是随机存贮管理的基本问题之一。
在预期理论的框架下,我们通过引入损失厌恶参数,基于损失期望最小原则,对经典的报童问题进行了重新思考,给出了缺货损失厌恶的报童的最优定货量的计算公式及订购量与期望损失关系的数学模型.关键词:存贮管理;预期理论;期望损失1、引言不确定性决策一直都是决策理论的基本问题之一。
报童问题是随机存贮理论的基本模型之一,国内外关于报童问题的研究已有很长一段时间,人们也从不同的角度得出了一些令大家可接受且比较满意的方案和数学模型。
如Tsan rt.al[1]提出报童问题的均值方差模型,并且得出如果报童可能最大化期望利润,使得利润方差受到限制,那么其最佳订购量总是小于经典报童问题的订购量;Schweitzer, Cachon[2] 提出效用最大化的报童问题,且得出基于偏爱的不同而有不同的效用函数,(这些偏爱对报童的决策进程有着重要影响);Eeckhoudt et.al[5]研究了风险及风险厌恶对报童问题的效应;Porteus[5]通过对敏感度的定量分析,研究了带风险效用和风险厌恶的报童问题;文平[6]关于损失厌恶的报童—预期理论下的报童问题新解一文,基于Kahneman 和Tversky[6]于1979年提出的预期理论,也得出了比较理想的模型。
然而他们中的多数都是从获利期望值最大和期望效用理论的角度来考察的。
但是,报童问题也是一种经典的单阶段存贮问题。
对报童而言,他每一天的报纸都有三种结果:报纸卖不完、不够卖、刚好够卖。
这三种结局只有最后一种情况下才能达到报童的最大利润,因为报童的最大利润是订购量刚好和市场需求一致,即刚好够卖,也刚好卖完。
在过去关于报童问题的种种模型中,都很少考虑到报纸不够卖,即脱销的情况,此时大多是以刚好满足市场需求的情况来处理。
其实不然,对于这类薄利多销的报童问题而言,他们都不希望自己是做保本生意,都希望充分利用好市场,最大限度地获取利润。
关于报童卖报的问题摘要报童模型在1956年首次被提出来以后,就成为学术界的关注焦点,有着大量的学者或经济领域的人士对它进行研究和分析,由于报童模型问题中涉及到很多不确定因素的影响,人们为了研究和确定这些因素在模型中的量化,通过很多不同的计算方法和理论方法来使这些非量化的因素最大化的量化表达,使之趋近于理性决策,但是又不是完全能够明确和量化的,这些就是报童模型中的有限理性。
报童模型中关于有限理性涉及到的问题与方法到如今已将发展到很多方面,在随机因素方面首先就是不确定环境下的随机需求,还有库存管理,供应链协调等,在做有限理性决策的时候,人们尽量通过具体的推算方法来做出最优化决策,虽然不是完全理性决策,但是确实使利润接近最大化的有限理性决策。
本论文讨论的是报童卖报问题,报童卖报问题实际上就是通过分析,找出几种可能的方案,通过求解,找出一个最优的方案来订报,使得报童赢利取得最大期望值或报童损失的最小期望值的临界值,也就是使报童获得的利益最大。
本文首先建立了最大期望值和最小期望值的模型,然后分别用连续的方法和离散的方法求解,最后得出结论。
尽管报童赢利最大期望值和损失最小期望值是不相同的,但是确定最佳订购量的条件是相同的。
关键词:报童模型、概率统计、概率分布建模、离散引言在报童模型中,有限理性决策主要面对的随机性因素是需求和时间,报童模型是典型的单价段,随机需求模型,主旨是寻找产品的最佳订货量,来最大化期望收益或最小化期望损失。
本文首先通过理论回顾解释出什么是报童模型中的有限理性,然后罗列了部分在报童模型中有限理性问题上进行研究的部分文献成果。
再得出有报童模型有限理性的发展。
一、问题重述报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回。
设报纸每份进购价为b,零售价为a,退回价为c,自然地假设a>b>c.也就是说,报童售出一份报纸赚a-b,退回一份赔b-c,。
试为报童筹划一下每天购进报纸的数量,使得收入最大,那么报童每天要购进多少份报纸?二、模型分析如果每天购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱。
报童模型推导过程引言报童模型是运筹学中的一个经典问题,用来研究在确定需求不确定的情况下,如何进行订货决策以最大化利润或最小化成本。
该模型可以应用于各种销售场景,如零售业、餐饮业等。
本文将详细介绍报童模型的推导过程,以帮助读者更好地理解该模型的基本原理和应用方法。
问题描述在介绍推导过程之前,我们首先来明确报童模型的问题描述和假设条件。
假设一个报摊要在每天早上采购某种报纸供应给顾客,报纸当日的需求是随机的,报刊杂志店的利润等于报纸售价与进货价之间的差值,当售出的报纸数量超过需求时,超过的部分将无法销售并造成损失。
问题描述如下: - 每天早上只能进行一次订货,订货量为Q, - 报纸的需求量是随机的且服从已知的概率分布,可以假设为离散分布, - 报纸进货价格为C,售价为P,超过需求的报纸不可退还,且销售价格与需求量无关。
根据以上描述,我们的目标是通过确定订货量Q来使得期望利润最大化或者期望成本最小化。
推导过程为了求解最优的订货量Q,我们需要先通过数学推导建立相应的模型。
第一步:建立利润函数我们假设需求的概率分布为离散变量,其中每个需求量和对应的概率分别为d和P(d)。
那么对于每个可能的需求量d,利润可以表示为售价P与进货价C之差乘以实际售出的报纸数量min(d,Q)。
因此,对于每个订货量Q,我们可以计算出对应的利润。
定义利润函数f(Q)为:f(Q)=P⋅min(d,Q)−C⋅Q第二步:计算期望利润为了得到期望利润,我们需要计算利润函数对应于每个可能的需求量的加权平均值。
因此,期望利润E(Q)可以表示为:(d)⋅f(Q)E(Q)=∑Pd第三步:求解最优订货量我们的目标是通过求解最优订货量Q来使期望利润最大化或者最小化。
针对最大化期望利润的情况,我们需要对利润函数求导并找到使导数等于0的订货量。
第四步:求导计算对利润函数f(Q)进行求导,我们得到:df(Q)=P⋅I(Q>d)−CdQ其中,I(Q > d)为指示函数,当Q > d时取值为1,否则为0。