《自动控制原理》第2章 线性系统的传递函数
- 格式:pdf
- 大小:3.13 MB
- 文档页数:70
第二章 习题解析2-4 当系统处于零初始条件下时,给系统输入单位阶跃响应信号,其输出响应为2()1t t y t e e --=-+试求该系统的传递函数。
参考解答:2111421()()21(2)(1)s s Y s R s s s s s s s s++=-+==++++ 22()42()()32Y s s s G s R s s s ++==++2-5 某可控硅整流器的输出电压d 2cos U KU αΦ=式中,K 为常数;2U Φ为整流变压器副边相电压有效值;α为可控硅的控制角。
设α在0α附近作微小变化,试将d U 与α的关系式线性化。
参考解答:将非线性微分方程d 2cos U KU αΦ=进行线性化,即在平衡点α0 附近将其展为泰勒级数取一次近似,线性化后用变量增量的线性方程ΔU d = C Δα 代替原来的非线性方程,式中常数2020sin sin dd dU C KU U KU d ααααααΦΦ===-→∆=-∆略去增加量符号“Δ”,上式可简写为20sin d U KU ααΦ=- 2-6 试求图2-70所示电路的传递函数()/()y r U s U s 。
参考解答:图 a)可作出该无源电路的动态结构图(图a-1)亦可作成图(图a-2)所示由结构图等效变换可求得传递函数212()11()()11c r U s R Cs bTs U s R R Cs Ts ++==+++式中21212(),1R T R R C b R R =+=<+ ,该网络称为滞后网络。
图 b)由图(b )网络可作出其动态结构图(b-1),简化为(b-2)即可得传递函数:112221122112212()(1)(1)()()1y r U s R C s R C s U s R C R C s R C R C R C s ++=++++该网络称为滞后-超前网络(滞后-超前电路)。
2-7 试求图2-71所示有源电路的传递函数y r ()/()U s U s 。
《自动控制原理》第2章线性系统的传递函数线性系统是指系统的输出与输入之间存在线性关系的系统。
线性系统的传递函数是描述系统输入输出之间关系的一种数学表示方法。
在线性系统中,传递函数是一个复变函数,通常表示为H(s),其中s是复变数,表示Laplace变换域中的复频率。
传递函数可以通过对系统的微分方程进行Laplace变换得到。
传递函数的形式可以根据系统的特点进行表示。
例如,对于一个惯性系统,其传递函数可以表示为H(s)=k/(Ts+1),其中k是系统的增益,T是系统的时间常数。
传递函数的分子表示系统的输出与输入之间的增益关系,分母表示系统的动态响应特性。
通过传递函数,我们可以分析系统的频率响应特性。
频率响应可以通过将复变数s替换为jω,其中j是虚数单位,ω是真实频率。
通过计算传递函数在不同频率下的幅频特性和相频特性,我们可以了解系统对不同频率的输入信号的响应情况。
另外,传递函数还可以用于系统的稳定性分析。
对于一个线性时不变系统,如果其传递函数的分母没有极点位于劣半平面,即实部为负的复数域中,那么系统是稳定的。
通过分析传递函数的极点位置,我们可以判断系统的稳定性。
在实际应用中,我们可以利用传递函数进行系统的设计和控制。
例如,对于给定的控制要求,我们可以通过选择合适的传递函数参数,来设计满足要求的控制器。
控制器的设计过程可以通过将传递函数相乘或串联、并联等操作来实现。
总结起来,线性系统的传递函数是描述系统输入输出关系的一种数学表示方法。
通过传递函数,我们可以分析系统的频率响应和稳定性,并进行系统的设计和控制。
掌握传递函数的理论和应用,对于理解和应用自动控制原理具有重要意义。
以上是关于《自动控制原理》第2章线性系统的传递函数的1200字以上的介绍。
希望对读者理解和学习该章节内容有所帮助。
自动控制原理传递函数
自动控制原理是指使用控制器对系统进行控制的一种方法。
在控制系统中,常常使用传递函数来描述系统的动态特性。
传递函数可以理解为输入与输出之间的数学关系,它可以表示为:
G(s) = Y(s) / U(s)
其中,G(s)表示传递函数,Y(s)表示输出信号的 Laplace 变换, U(s)表示输入信号的 Laplace 变换,s表示复变量。
为了进行系统的分析与设计,可以从传递函数的特性出发,了解系统的频率响应、稳态误差、稳定性等重要信息。
在传递函数的分析中,常常需要考虑传递函数的零点和极点。
零点是使得传递函数为零的点,而极点是使得传递函数为无穷大的点。
零点与极点的位置对于系统的稳定性和动态特性有着重要的影响。
当进行控制系统的设计时,可以通过调整传递函数的参数来实现期望的控制效果。
常见的控制方法包括比例控制、积分控制和微分控制,通过调整这些控制参数,可以实现系统的稳定性和响应速度的要求。
总之,传递函数是自动控制原理中的重要工具,通过分析传递函数的特性,可以更好地理解和设计控制系统。