耐高温陶瓷先驱体专题
- 格式:ppt
- 大小:6.67 MB
- 文档页数:79
图1溶胶-凝胶法制备BGs 的工艺流程图1前言先进陶瓷具有精细的结构,其化学键为离子键和共价键,键合能大,因而具有金属和高分子材料所不具备的高模量、高硬度、耐腐蚀等性能以及光、声、电等优异功能特性。
先进陶瓷优良的综合特性促使其广泛应用于电子、机械、计算机、医学工程、化工等各个领域。
近年来,先进陶瓷广泛受到材料科学工作者的关注。
随着先进陶瓷各种功能的开发,其市场规模将不断扩大,早在几年前先进陶瓷材料及其产品的销售总额就已超过500亿美元,年增长率达8%[1]。
随着高新科技的不断发展,先进陶瓷在某些高技术领域已成为关键材料和瓶颈材料,因而传统的经验技术已不能满足先进陶瓷的制备要求。
国内外学者对先进陶瓷材料的制备技术进行了大量研究[2-3]。
目前,先进陶瓷材料的制备不再是沿用传统的方法,而是采用与现代科技相结合的高新技术。
与传统的经验技术相比,高新技术制备的先进陶瓷尺寸精度高、结构均匀、致密度高、机加工量少,由此取代传统技术成为目前先进陶瓷材料制备的主流技术。
鉴于此,有必要对该材料的先进制备方法进行归纳分析,以期为先进陶瓷的制备、研究和生产提供参考。
2先进陶瓷素坯的制备技术事实上,与传统固相反应法相比,溶胶-凝胶工艺的反应温度低,粉体高度均匀,纯度可达化学纯[4-5],并且可在溶液中对陶瓷薄膜或纤维的形状进行修饰[6-7],具有优越的控制能力。
采用溶胶-凝胶法制备氧化铝陶瓷晶粒,可以缩短反应时间,并使各晶面产生各向异性,有效控制晶粒的形状。
按照工序,将氧化铝粉体配制成具有流动性的液态流体,在装有透射式X 射线测厚仪的流延机上进行流延成型,可制得厚度仅为10um,误差不超过1um 的高质量超薄型氧化铝陶瓷基片。
BGs 是一种多孔陶瓷材料,能够与骨等软硬组织结合,对宿主的伤害小[8-11]。
Eshsan Vafa 等[12]从苹果当中提取自制醋为催化剂,用溶胶-凝胶法合成了BGs,其流程如图1所示。
以往的研究表明,商业BGs 颗粒的粗糙度、孔隙率和均匀度都小于用溶胶-凝胶法制备的BGs 颗粒[13-14]。
毕业设计(论文)开题报告题目:陶瓷前驱体热解制备SiC纳米线工艺规律及微观结构表征院系专业班级姓名学号导师1.毕业设计(论文)综述(题目背景、研究意义及国内外相关研究情况)1.1选题背景SiC 具有宽带隙、高临界击穿电压、高热导率、高载流子饱和漂移速度等特点, 可应用于高温、高频、大功率、光电子和抗辐射器件。
近年来的研究表明, SiC 还具有较好的光学及电学特性, 可应用于构造纳米器件方面。
SiC 纳米线具有很好的场发射、强烈的蓝光PL发射等电学性能, 在高温、高能及高频纳米电子器件方面具有潜在的应用前景。
根据金属催化气液固生长机理, 不同形态的一维纳米材料均可制备。
以不同的碳源及硅源为原料, 在金属催化作用下通过CVD、热蒸发等方法可实现SiC 纳米线的制备。
虽然金属催化方法易制得SiC 纳米线, 但因所得样品需经一定的后处理, 故也有人研究不采用金属催化剂而直接制备SiC 纳米线。
根据目前文献,SiC 纳米线所用催化剂通常为Fe、Ni、Al 及Na 等。
SiC纳米线除了具有SiC块体材料热膨胀系数低、热传导率高、化学稳定性好、机械性能高等优良特性外,由于尺寸效应SiCN纳米线还具有一些一维纳米材料的特殊性能。
因此,SiC纳米线的制备吸引了全世界相关机构对其开展大量研究。
目前,SiC纳米线的合成方法有很多,主要包括碳热还原法、模板生长法、有机前驱体热解法、电弧放电法、激光烧蚀法和CVD法等。
近年来受到了SiC一维纳米材料研究领域的高度关注。
本课题拟以聚碳硅烷(PCS)为陶瓷前驱体,在高温下热解制备SiC纳米线,探索不同工艺参数对所制备的SiC纳米线微观结构的影响规律,揭示其生长机理。
1.2研究意义自从发现碳纳米管以来,一维纳米结构材料因其独特的物理结构和性能引起了科技工作者的广泛关注。
人们采用不同方法制备了各种材料的纳米线和纳米管。
其中碳化硅纳米线是碳化硅晶体极端各向异性生长的产物,结晶相单一,结构缺陷少,不仅具有碳化硅本体材料所固有的性质如耐高温,抗氧化,耐腐蚀,耐辐照,高强度,高硬度等性能,还具有优异的的场发射,特殊的光致发光,高效的光催化,超高的力学强度等奇特性能,在高温、氧化、大功率、强辐射等苛刻环境下的平面显示,光电子,纳米器件,集成电路,光催化,超高强度复合材科等领域有着非常广阔的应用前景。
先驱体转化法制备无机基/有机聚合物梯度材料本研究旨在采用表面加载高温高密度热流方法,在材料内部沿热流方向形成使陶瓷先驱体进行梯度裂解的温度梯度,并通过多次表面浸渍—裂解循环致密工艺制备表面耐高温氧化性能优异的陶瓷/聚合物梯度材料,为今后研制具有陶瓷耐烧蚀性能的聚合物耐烧蚀材料打下基础。
文中在进行对比分析几种常用的陶瓷先驱体聚合物性能、成本的基础上,选用了两种国内生产的低成本的聚甲基硅氧烷树脂SAR-9和SAR-2作陶瓷先驱体,制备具有耐高温氧化性能的Si-C-O 陶瓷。
通过惰性环境DTA和热失重分析得出SAR-9的裂解温度范围是230—837℃,陶瓷转化率大于85%。
对不同裂解温度下的裂解产物进行了FTIR、XRD及DTA-TG 测试分析,结果表明SAR-9在1200℃裂解转化生成Si-C-O陶瓷的耐氧化性能最好,在1000℃高温空气氧化失重率为0.4%,而900℃、1600℃裂解转化的产物的失重率分别为2.2%、2.6%。
以1:1碳纤维布增强SAR-9聚合物基复合材料为坯料,以SAR-2为浸渍树脂,采用了四种不同的裂解温度,通过多次浸渍—裂解循环致密工艺制备出C_f/Si-C-O陶瓷复合材料。
试验结果表明,裂解温度为1200℃,经过7次循环裂解—浸渍致密工艺所制备的C_f/Si-C-O陶瓷复合材料,其室温弯曲强度和1000℃氧化后弯曲强度的保留值最高,分别为190.5MPa、172.3MPa,其密度为1.920g/cm~3。
然后,在惰性气氛下对制备的陶瓷复合材料材料进行高温热处理,发现当温度高于1600℃时,在C_f/Si-C-O陶瓷复合材料界面碳纤维与Si-C-O陶瓷发生化学反应,生成SiC结晶体。
温度越高反应越剧烈,碳纤维表面破坏程度加剧,SiC晶体颗粒增大。
借助材料烧蚀过程热传导计算分析方法,并建立相应的计算模型,对φ/δ>5的碳纤维增强SAR-9分复合材料样品表面加载不同热流密度时的温度梯度进行了计算。
耐高温陶瓷材料耐高温陶瓷材料是指具有优良的耐高温性能和热稳定性能的陶瓷材料。
耐高温陶瓷材料在高温环境下具有极高的耐热稳定性和抗热震性,能够在极端的高温条件下保持其原有的物理性能和化学性质,不产生明显的变形和损坏。
耐高温陶瓷材料主要包括氧化铝陶瓷,氮化硼陶瓷,碳化硅陶瓷等。
其中,氧化铝陶瓷是最常见的耐高温陶瓷材料之一。
其主要成分是Al2O3,具有优异的耐高温性能、良好的绝缘性和耐腐蚀性。
氧化铝陶瓷可以在1500℃以下长时间稳定工作,能够在高温环境中承受高温气体、高温溶液和高温气体腐蚀。
氮化硼陶瓷是一种具有优异耐高温性能和抗腐蚀性能的陶瓷材料。
其主要成分是BN和Si3N4,具有低密度、高硬度和高热导率等优点,可以在高温环境中长时间稳定工作。
碳化硅陶瓷是一种具有极高硬度、耐高温、耐腐蚀性能的陶瓷材料。
它主要由碳化硅和二硅化硅组成,常温下具有高硬度和优良的强度,能够在1400℃以上长时间稳定工作。
耐高温陶瓷材料具有许多优点。
首先,它们具有良好的耐高温性能,可以在极端的高温环境下正常工作。
其次,它们具有良好的耐热稳定性,不会因高温引起变形和裂纹。
再次,它们具有优异的抗热震性能,可承受高温急剧变化的温度和压力。
此外,耐高温陶瓷材料还具有良好的化学稳定性和耐腐蚀性,能够在酸碱等恶劣环境中长期稳定工作。
耐高温陶瓷材料在许多工业领域得到广泛应用。
它们常用于高温炉窑、航空航天、电子器件、化学工业等领域。
例如,氧化铝陶瓷常用于高温炉窑的炉具、炉内陶瓷管、炉门等部件,以及航天器件的高温绝缘陶瓷和耐高温结构陶瓷。
氮化硼陶瓷常用于高温炉窑的耐高温线圈和耐高温绝缘材料。
碳化硅陶瓷则常用于化学装置中的耐腐蚀陶瓷泵、阀门和管道等。
总之,耐高温陶瓷材料具有优异的耐高温性能和热稳定性能,被广泛应用于高温环境下的工业生产和科学研究中。
随着科技的进步和工业的发展,将会有更多新型的耐高温陶瓷材料被开发出来,为各行业的高温应用提供更好的选择。
高温抗氧化物陶瓷涂层
以非氧化物陶瓷粉体和陶瓷原料为高温涂料基本骨架,以液体碳化硅陶瓷先驱体PMS为粘结剂,配合溶剂和助剂等原料制备的陶瓷浆料,通过喷涂或涂覆工艺,可在碳陶、碳碳、石墨、陶瓷等多孔材料表面制备使用温度≤1300℃的高温抗氧化陶瓷涂层。
该涂层与基体材料具有较好的结合强度,可提高材料表面的致密性、耐高温性能、抗氧化性能、耐烧蚀性能、耐腐蚀性能等。
该涂层组分可控,主要含硅、碳两种元素,不含金属元素。
在锂电用石墨匣钵、热场结构件、保温材料、耐烧蚀结构件等有广泛应用。
陶瓷浆料:
黑色悬浮液,具有一定粘
性,粉体颗粒不易沉淀,
可在有机溶剂中很好分散
和稀释。
石墨匣钵表面涂层:
将涂层浆料涂刷至石墨匣
钵内外表面,自然晾干后进
行1300℃处理,匣钵内外
表面有一层灰黑色的、致密
的碳化硅涂层。
碳碳锅筒表面陶瓷涂层:
将涂层浆料涂刷至碳碳锅筒内外表面,自然晾干后进行一定温度处理,制得具有一定厚度的碳化硅陶瓷涂层,且具有较强的结合强度。
先驱体转化陶瓷基复合材料的性能及应用研究进展摘要:先驱体转化法是近些年发展起来的制备陶瓷基复合材料(CMCs)的新方法。
该方法工艺简单,制备温度低,可通过先驱体分子设计制备出所需组成和结构的陶瓷基体,是一种很有前途的制备连续纤维增强陶瓷基复合材料(CFRCMCs)的工艺。
所谓先驱体陶瓷(又称前驱体)转化陶瓷是通过化学合成的方法制得可经预处理转化为陶瓷材料的聚合物,进而热处理获得传统陶瓷工艺难以获得的先进陶瓷材料。
本文综述了先驱体转化陶瓷的发展历史、制备技术的特点、制备工艺、组成结构和性能的发展变化研究现状情况。
关键词:陶瓷基复合材料;先驱体转化法;技术特点;成型工艺;发展趋势。
陶瓷材料作为一种结构材料,因其具有高强度、高硬度、耐磨损、耐高温和抗腐蚀等优异性能,能应用于高温和某些苛刻环境中,被认为是21世纪高温结构部件最有希望的候选材料和“最终材料的梦想”。
其作为热结构材料主要应用在航空航天发动机涡轮的热端部件、大功率内燃机的增压涡轮、固体火箭发动机燃烧室和喷管以及完全代替金属的车辆发动机。
然而,作为结构材料,单相陶瓷的韧性很低,可瞬间即发生灾难性破坏,因此必须改善单相陶瓷的韧性。
从材料的断裂机理分析,提高陶瓷韧性的主要途径是:在陶瓷材料中设置其他耗能机制或形成能阻碍裂纹扩展的机制。
引入增强相是改善陶瓷韧性的有效途径,为此材料研究者提出了陶瓷基复合材料(Ceramic Matrix Composites,CMCs)的概念。
CMCs是在陶瓷基体中通过引入第二相来提高强度和韧性的多相材料,又称多相复合陶瓷或复相陶瓷。
先驱体转化法制备连续纤维增强陶瓷基复合材料(Continuous Fiber Reinforced Ceramic Matrix Composites,CFCC)是将耐高温的纤维植入陶瓷基体中形成的一种高性能复合材料。
由于其具有高强度和高韧性,特别是具有与普通陶瓷不同的非失效性断裂方式,使其受到世界各国的极大关注。
第 4 期第 34-42 页材料工程Vol.52Apr. 2024Journal of Materials EngineeringNo.4pp.34-42第 52 卷2024 年 4 月ZrO 2增强聚合物先驱体SiCNO 复合陶瓷的制备和力学性能Preparation and mechanical properties of ZrO 2-reinforced polymer -derived SiCNOcomposite ceramics费轩,余煜玺*,严远高,魏永金,赵刚,黄柳英*(厦门大学 材料学院 福建省特种先进材料重点实验室,福建 厦门 361005)FEI Xuan ,YU Yuxi *,YAN Yuangao ,WEI Yongjin ,ZHAO Gang ,HUANG Liuying *(Fujian Key Laboratory of Advanced Materials ,College of Materials ,Xiamen University ,Xiamen 361005,Fujian ,China )摘要:聚合物先驱体陶瓷(polymer -derived ceramics ,PDCs )技术具有制造简单、成分可调等优点,为制备新型陶瓷提供了有效途径。
然而,由于热解过程中微小分子的逃逸形成孔洞缺陷,先驱体技术制备的无定形聚合物衍生SiCNO 陶瓷(PDCs -SiCNO 陶瓷)的力学性能较差。
为解决上述问题,通过向陶瓷基体添加第二相(颗粒强化)来实现增强先驱体陶瓷。
对聚乙烯基硅氮烷(PVSZ )和ZrO 2进行先球磨后热解,制备ZrO 2颗粒增强PDCs -SiCNO 复合陶瓷(PDCs -SiCNO -ZrO 2),研究PDCs -SiCNO -ZrO 2复合陶瓷的结构和力学性能。
结果表明:引入的ZrO 2填料作为增强体嵌入SiCNO 陶瓷基体中,不仅能有效降低线收缩率,还能大幅提高PDCs -SiCNO -ZrO 2复合陶瓷的力学性能。
陶瓷材料的耐高温特性陶瓷材料是一种非金属材料,具有许多优异的性能,其中之一就是耐高温特性。
在高温环境下,陶瓷材料能够保持其稳定性和强度,不易发生变形或破裂。
本文将介绍陶瓷材料的耐高温特性及其应用领域。
一、陶瓷材料的耐高温特性1. 高熔点:陶瓷材料具有较高的熔点,一般在1000℃以上。
这使得陶瓷材料能够在高温环境下保持其结构的稳定性,不易熔化或变形。
2. 热膨胀系数低:陶瓷材料的热膨胀系数通常较低,这意味着在高温下,陶瓷材料的尺寸变化较小。
相比之下,金属材料的热膨胀系数较高,容易因温度变化而发生变形。
3. 良好的热导性:陶瓷材料具有良好的热导性,能够快速传导热量,使其能够在高温环境下保持相对稳定的温度分布。
4. 耐热震性:陶瓷材料具有较好的耐热震性,即在高温下能够承受热冲击而不破裂。
这使得陶瓷材料在高温环境下能够承受较大的压力和冲击。
5. 耐腐蚀性:陶瓷材料具有较好的耐腐蚀性,能够在高温下抵抗酸碱等腐蚀介质的侵蚀。
这使得陶瓷材料在化工、冶金等领域有广泛的应用。
二、陶瓷材料的应用领域1. 炉窑设备:陶瓷材料的耐高温特性使其成为炉窑设备的理想材料。
陶瓷炉窑能够在高温下稳定运行,广泛应用于冶金、化工、玻璃等行业。
2. 发动机部件:陶瓷材料的耐高温特性使其成为发动机部件的重要材料。
陶瓷涂层能够提高发动机的热效率和耐磨性,延长发动机的使用寿命。
3. 电子器件:陶瓷材料的耐高温特性使其成为电子器件的重要材料。
陶瓷基板能够在高温下保持电子器件的稳定性和可靠性,广泛应用于电子、通信等领域。
4. 化学反应器:陶瓷材料的耐腐蚀性和耐高温特性使其成为化学反应器的理想材料。
陶瓷反应器能够在高温和腐蚀介质下稳定运行,广泛应用于化工、制药等行业。
5. 空间航天:陶瓷材料的耐高温特性使其成为航天器的重要材料。
陶瓷热防护材料能够在高温和高速气流下保护航天器的结构和设备。
三、陶瓷材料的发展趋势随着科技的不断进步,陶瓷材料的耐高温特性得到了进一步的提升。
陶瓷的分类及特点分析
一、陶瓷的分类
陶瓷是一种多样而丰富的制品,具有着不同的用途和应用,因此它有
着繁多的分类。
1.根据烧结温度可以分为低温陶瓷、中温陶瓷和高温陶瓷。
低温陶瓷
的烧结温度一般低于1150摄氏度,其中以珐琅陶瓷为最常见;中温陶瓷
的烧结温度在1150摄氏度到1250摄氏度之间,其中以煤渣陶瓷、建筑陶
瓷为主;高温陶瓷的烧结温度超过1250摄氏度,其中以瓷器陶瓷为主。
2.根据成分不同可以分为铝氧陶瓷、硼钛陶瓷、碳氧陶瓷、磁性陶瓷、芳纶陶瓷等。
3.根据性能特征可以分为耐蚀陶瓷、绝缘陶瓷、耐热陶瓷、耐磨陶瓷、耐电强度陶瓷、耐温陶瓷、隔音陶瓷等。
4.根据制作工艺可以分为压制陶瓷、烧制陶瓷、抛光陶瓷、绘画陶瓷等。
二、陶瓷的特点分析
陶瓷是一种具有抗酸碱、耐热、耐冲击、磨耗性能等特点的综合材料。
它具有的优秀优势有:
1.热稳定性好:陶瓷具有较高的熔点,耐蚀性强,热稳定性好,使陶
瓷可以在高温下长期工作而不变形、碎裂和失效。
2.绝缘性好:陶瓷是一种绝缘材料,它具有良好的绝缘性能,可以有
效阻碍电流的流动,从而保护电子设备不受损坏。
摘要本文选用国内市场已经商品化的廉价易得含氢聚硅氧烷(HPSO)和二乙烯基苯(DVB)为原料,研究了HPSO-DVB体系的交联与裂解行为,以及聚硅氧烷转化制备陶瓷基复合材料的工艺以及材料的结构与性能进行了系统研究。
研究表明HPSO-DVB在氯铂酸的催化作用下才能有效交联固化;各组分的重量比例和温度是影响交联程度和陶瓷产率的关键因素。
运用红外光谱、热分析、拉曼光谱、X射线衍射对交联和裂解的产物及过程进行了表征。
结果表明,HPSO:DVB为2:1时,交联温度为120℃时,得到的交联体外观较好,为无色透明固体,符合成型需要,且陶瓷产率较高,为74.6%,是制备SiOC陶瓷基复合材料的合适先驱体。
裂解产物由Si、O、C元素组成,其中O全部与Si结合,C一部分与Si结合,另一部分以自由碳形式存在;裂解得到的陶瓷体为非晶态。
关键词:聚硅氧烷,陶瓷,先驱体,交联,裂解AbstractThis selection of the domestic market has been the commercialization of cheap and easy to get hydrogen polysiloxane (HPSO) and divinylbenzene (DVB) as a raw material, the cross-linking and cracking behavior HPSO-DVB system, as well as the conversion of polysiloxane Preparation of ceramic-based technology as well as the structure and properties of composite materials has been systematically studied. Studies show that HPSO-DVB in chloroplatinic acid catalysis can effectively crosslinking; each component weight ratio and temperature are the key factors affecting the degree of crosslinking and ceramic yield.The use of infrared spectroscopy, thermal analysis, Raman spectroscopy, x-ray diffraction to crosslinking and pyrolysis products and processes were characterized. The results showed that, HPSO:DVB 2:1, crosslinking temperature of 120℃, the resulting appearance is preferably crosslinked as a colorless transparent hard solid molding requires compliance, and high ceramic yield, 74.6% , is the preparation of SiOC ceramic matrix composites suitable precursor; cleaved product from Si, O, C of elements, all of which in combination with O Si, C and Si in part, to another part of the form of the free carbon; cleaved resulting ceramic body amorphous.Key Words: Polysiloxane,Ceramics,Precursor,Curing,Pyrolysis目录1 绪论 (5)1.1 先驱体转化陶瓷工艺概述 (5)1.2 先驱体陶瓷的发展历史及研究背景 (6)1.2.1 先驱体陶瓷的发展历史 (6)1.2.2先驱体陶瓷的研究背景 (7)1.3聚硅氧烷作为陶瓷前驱体制备陶瓷材料的研究情况 (8)1.3.1 制备陶瓷薄膜 (8)1.3.3 制备连接陶瓷材料 (9)1.3.4 制备多孔陶瓷材料 (9)1.4 聚硅氧烷的交联与热解 (10)1.5 Si-O-C陶瓷研究现状 (11)1.5.1 Si-O-C陶瓷的结构 (11)1.5.2 Si-O-C陶瓷的性能 (13)1.6 课题研究的主要内容与意义 (14)2 实验方法与测试技术 (15)2.1实验原料与实验设备 (15)2.1.1 实验原料 (15)2.1.2 实验设备 (16)2.2实验方案设计及实验过程 (16)2.2.1实验方案设计 (16)2.2.2 实验过程 (17)2.2.2工艺流程 (18)2.3 测试技术 (18)2.3.1 热分析 (18)2.3.2 红外光谱分析 (18)2.3.3拉曼光谱分析 (18)2.3.4 X射线衍射分析 (19)3 结果与分析 (20)3.1交联成型过程分析 (20)3.1.1 不同配比在不同交联温度条件下的样品形态分析 (20)3.1.2不同配比在不同交联温度条件下产物的的质量变化 (22)3.1.3不同配比在不同交联温度条件下样品的红外光谱分析 (23)3.2热解过程分析 (27)3.2.1交联体热解后的的样品形态分析 (27)3.2.2不同HPSO/DVB配比体系的热重与差热曲线分析 (28)3.2.3交联体经高温热处理后的拉曼光谱分析 (30)3.2.4交联体经高温热处理后的X射线衍射分析 (31)4 结论 (33)参考文献 (34)致谢 (37)1 绪论纵观人类历史,材料的发展可以被誉为人类文明进步的里程碑。