高水头电站冲击式(pdf 6页)
- 格式:pdf
- 大小:83.23 KB
- 文档页数:6
CCS水电站冲击式水轮机安装工艺概述摘要本文以厄瓜多尔科卡科多辛克雷水电站为例,讲述了CCS水电站冲击式水轮机的安装工艺。
厄瓜多尔科卡科多辛克雷水电站安装8台套单机容量为187.5MW的立轴冲击式水轮发电机组,总装机容量为1500MW。
该水电站水轮机单机容量目前位居国内已建及在建单机容量最大的冲击式机组首位。
本文针对该电站高水头、大容量立轴冲击式水轮机组的结构特点进行了介绍,对安装施工工艺进行了详细阐述,可供其他同类电站借鉴。
关键词CCS水电站;冲击式水轮机;安装工艺前言厄瓜多尔科卡科多辛克雷水电站(简称CCS水电站)位于厄瓜多尔东部的科卡河流域,电站坝址距首都基多约130km,为引水式电站,共安装8台套单机容量为187.5MW的6喷嘴立轴冲击式水轮发电机组,总装机容量为1500MW。
该电站工程由引水枢纽、输水隧洞、调蓄水库、压力管道、地下厂房、进场交通洞、500kV电缆洞、地面开关站及控制楼等组成。
地下主厂房内安装8台套立轴冲击式水轮发电机组及其附属设备,水轮机型号CJ1176N-L-333.9/6X28;转轮节圆直径3349mm;喷嘴数6个;额定转300r/min;额定功率188.266MW;额定流33.7m3/s;额定水头604.1m;最大水头618.4m;机组转向:俯视顺时针。
1 施工工艺1.1 尾水底板及里衬安装①依据主厂房基准坐标布置基准控制点及坐标控制点。
②依据一期预埋图纸预埋基础板、锚钩等基础埋件,其基础预埋板的高程偏差≤;中心和分布位置偏差≤;水平偏差≤,所有组合缝的内表面错牙≤,过流表面焊缝打磨平顺并按图纸要求进行无损探伤检查。
③按图纸确定其里衬的安装位置,调整里衬的X、Y轴线与机组X、Y轴线偏差≤,中心高程偏差≤。
④尾水里衬整体组装、焊接加固完成,经验收合格后移交工作面进行混凝土浇筑。
1.2 稳水栅安装①按照图纸所示方位和角度在尾水里衬底板预埋的基础板上安装主梁支柱,利用支柱下部螺栓调整其高程。
第四章水电站的水击及调节保证计算本章重点内容:水电站有压引水系统非恒定流现象和调节保证计算的任务、单管水击简化计算、复杂管路的水击解析计算及适用条件、机组转速变化的计算方法和改善调节保证的措施。
第一节概述一、水电站的不稳定工况由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。
其主要表现为:(1) 引起机组转速的较大变化丢弃负荷:剩余能量→机组转动部分动能→机组转速升高增加负荷:与丢弃负荷相反。
(2) 在有压引水管道中发生“水击”现象管道末端关闭→管道末端流量急剧变化→管道中流速和压力随之变化→“水击”。
导时关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。
导叶开启时则相反,将在压力管道和蜗壳内引起压力下降,而在尾水管中则引起压力上升。
(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。
二、调节保证计算的任务(一) 水击的危害(1) 压强升高过大→水管强度不够而破裂;(2) 尾水管中负压过大→尾水管汽蚀,水轮机运行时产生振动;(3) 压强波动→机组运行稳定性和供电质量下降。
(二) 调节保证计算水击和机组转速变化的计算,一般称为调节保证计算。
1.调节保证计算的任务:(1) 计算有压引水系统的最大和最小内水压力。
最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据;最小内水压力作为压力管道线路布置,防止压力管道中产生负压和校核尾水管内真空度的依据;(2) 计算丢弃负荷和增加负荷时转速变化率,并检验其是否在允许的范围内。
(3) 选择调速器合理的调节时间和调节规律,保证压力和转速变化不超过规定的允许值。
(4) 研究减小水击压强及机组转速变化的措施。
2.调节保证计算的目的正确合理地解决导叶启闭时间、水击压力和机组转速上升值三者之间的关系,最后选择适当的导叶启闭时间和方式,使水击压力和转速上升值均在经济合理的允许范围内。
第二节水击现象及其传播速度1、一、水击现象1.定义在水电站运行过程中,为了适应负荷变化或由于事故原因,而突然启闭水轮机导叶时,由于水流具有较大的惯性,进入水轮机的流量迅速改变,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,这种变化是交替升降的一种波动,如同锤击作用于管壁,有时还伴随轰轰的响声和振动,这种现象称为水击。
冲击式水轮机说明书一、概述1、冲击型水轮机适合于高水头电站,它的喷咀与转轮分水刃在同一平面上,射流方向为转轮园周的切线方向,来自压力管的水经喷咀转换为高速射流,切向冲击转轮的水斗,推动转轮旋转作功。
再通过发电机转化为电能。
该型水轮机的转轮高出尾水面,不存在因汽蚀要求开挖的问题,不用尾水管、蜗壳和复杂的导水机构。
因此,具有结构简单、维护管理方便、运行可靠等优点。
2、本机采用弹性联轴器和发电机直联或与发电机同轴,旋转方向从发电机向水轮机看为顺时针方向。
3、本机采用水力性能较好的62°/45°长喷咀和90°喷水弯管及引水弯管。
二、水轮机主要零部件结构和作用该型水轮机由主机、喷咀机构、引水部分、折向机构等主要部分组成。
1、主机部分包括有:转动部件,轴承部件和机壳部件。
转动部件有转轮、主轴、飞轮、弹性联轴器、甩水环等主要另件。
转轮是水轮机的心脏,转轮的特性对水轮机的性能起着决定性的作用。
转轮采用整铸结构。
水斗中间有一道分水刃,它使射向水斗的水流均匀地向两边分开,以减少水流碰撞损失,在水斗顶端有一个缺口,以免上一个水斗的射流冲击下一个水斗。
飞轮和弹性联轴器连成一体。
装设飞轮的目的在于增加机组的转动惯量和稳定性。
甩水环可以止住水流沿着轴向溢出。
轴承采用滑动轴承。
在两轴承中间支承着转轮,轴承主要用来承受机组转动部分的重量和径向力。
滑动轴承的轴瓦是上下两瓦,装在轴承座里,用46#透平油以主轴旋转带动油环旋转带油润滑。
轴承底座的油池内必须随时保持一定的润滑油。
必要时,立即补充或更换。
机壳部件有机座与机盖。
机座通过轴承来支承机组转动部分的重量。
机座前面装有咀嘴机构,在靠近折向器的地方,机座上开有圆孔,供观察水流和折向器工作情况。
2、喷咀机构装在机座前面,包括有喷咀部件和手、电动调器执行部分。
喷咀部件有喷咀、喷针、喷水弯管、导流支架、平衡活塞、封水压环、喷针杆等主要另件。
喷咀由喷咀体与喷咀口组成。
各类型水轮机的型式和适用情况表类型名称适用情况
反击式水轮机混流式应用普遍,性能稳定,效率较高(最高达94%),适用水头范围从十几米到六、七百米,单机容量从几个千瓦到几十个
千瓦,可适用于大、中、小型水电站
轴流式
轴流转浆式:适用于低水头(几米到几十米)、大流量,大、
中型水电站,单机容量最大可达二十多万千瓦,性能稳定,
高效率区宽广。
轴流定浆式:适用于低水头、大流量、中小型水电站,单机
容量从几个千瓦到数百千瓦,运行稳定性较差,低负荷运行
时效率低。
斜流式斜流式水轮机是一种新型机型,适用水头较广,最高达二百米,性能稳定,高效率区宽广,亦可适用于抽水蓄能电站。
贯流式过水能力大,水力损失较小,效率较高,结构紧凑,适用水头可达二十多米,单机容量从几个千瓦到几万千瓦,适用于
低水头电站和潮汐电站。
冲击
式水轮机水斗式
适用于高水头(最高达1760米)电站,单机容量从十多千
瓦到二十多万千瓦,性能稳定,效率较反击式水轮机低些,
但结构简单。
斜击式水头适用范围从二十多米到三百米,转轮结构较水斗式简单,制造容易,过水能力较水斗式大些。
冲击式水轮机专用调速器的应用体会。
在中小型冲击式水轮机中,常规配置ydt等电液调速器;近些年调速器厂家研制出了冲击式水轮机专用调速器,已在不少高水头电站中投入使用,运行效果比较理想;通过对比两类调速器的使用情况,简要谈谈使用专用调速器的一些体会。
水轮机调速器应用体会1概述冲击式水轮机适用于高水头、小流量的电站,它将来自压力管道的水,经喷嘴后转换为高速射流,切向冲击转轮,推动转轮旋转,从而带动发电机转子转动发电。
为了保证水轮发电机组能顺利地并网发电,必须配置调速器,它的主要功能是在机组运行时,保持其输出的电能频率、电压稳定。
通常,调速器是通过调节进人水轮机的水的流量来实现这一目的,对于冲击式水轮机来说,就是移动喷针以改变喷嘴的开度,从而改变水的流量。
我厂以往生产的冲击式水轮机,一般是配置电液自动调速器,近年,调速器厂家研制出了冲击式水轮机专用调速器(以下简称冲调),并逐渐在电站中开始应用。
2配置电液调速器时的特点电液自动调速器主要是指ydt、ywt型,后来发展为使用步进电机plc的bwt调速器,它的测频放大、回复及控制部分采用电气回路来实现,而液压放大、反馈机构、作功机构则采用机械液压装置,是目前应用最广泛的调速器。
由于冲击式水轮机的压力钢管一般比较长,因此,喷针不能关闭太快,否则会产生极大的水压,危害压力管的安全,同时,又必须在极短的时间内切除射流,以防止出现飞逸,现在的机组一般采用喷针与折向器双重调节的操作机构。
电液自动调速器输出的是扭矩,通过调速轴,把调速器的转臂与水轮机的操作机构联接在一起,调速器的指令通过连杆使操作机构中的配压阀活塞左、右移动,压力油通过配压阀上的孔口,流人接力器的两侧,操纵喷针启闭。
在调速轴的适当位置,另设1套拐臂、连杆来直接控制折向器,以保证折向器与喷针之间的协联关系。
单喷嘴机组的这种配置已应用多年,比较可靠,能保证水轮机稳定运行。
而对于双喷嘴冲击式水轮机,在运行时要求上、下喷针能同步移动,且与折向器保持协联关系。
冲击式水轮发电机组安装与日常检修技术摘要:随着科学技术的不断进步,水电作为我国主要的清洁能源,在我国国民经济发展中起着不可估量的作用。
然而,随着用电需求的不断增加,水电站开发程度不断加大,因此我国水电站可利用的资源日趋减少,大、中型水电站不断减少。
所以,高水头冲击式水轮发电机组由于容量大、受负荷变化影响小以及效率高,因此更具有开发优势,同时具有很大的发展前景。
本文主要通过借鉴某电站的实践经验,从而对冲击式水轮发电机组的安装与日常检修技术进行了研究与探讨。
关键词:冲击式水轮发电机组;安装;检修;技术水轮发电机组,即水轮机驱动的发电机组,是水电站最为常见的发电设备。
对于水轮发电机组的容量以及转速变化,主要是受自然条件的影响。
一般而言,高水头冲击式水轮发电机主要采用卧式结构,大、中型代速发电机一般采用立式结构。
由于水电站作为我国利用水资源的调控机构,一般建立在远离城市的地区,因此供电需要较长输电线路,换言之,对冲击式水轮发电机的稳定性有了更高的标准。
因此,为了使冲击式水轮发电机组的运行调度更加灵活,因此要不断更新冲击式水轮发电机组的安装与日常检修技术。
1.冲击式水轮发电机组安装与检修原则在冲击式水轮发电机组的安装过程中,首先要遵循国家的相关安装与检修标准,同时要结合实际的运行状况,主要表现在四个方面:一是安全性。
冲击式水轮发电机组的安装与检修在实际的工程中要积极遵循我国相关部门制定的安全防护以及环境保护要求。
一般而言,在发电机组及其附属设备达到指定地点时,要强化设备的检查工作;二是前期性。
在冲击式发电机组的安装前期,首先要认真研究相关的设计图纸以及技术要求,其次构建合理的安装和检修方案。
对于冲击式水轮发电机组安装,主要可以从三个方面进行,即水轮机安装、发电机安装以及实验调整,而对于冲击式水轮发电机组的检修主要分为水轮机的检修、发电机的检修以及实验调整三个方面;三是规范性。
冲击式水轮发电机组的安装应该积极按照设计单位的机组安装图来进行,同时结合相关的技术文件,遵循规范性原则,正确处理好制造厂在技术要求上与国家技术标准产生的矛盾。
附件2:浙江省重大科技专项项目大型冲击式水力发电设备开发及关键技术研究可行性报告一、立项的背景和意义经济繁荣带来用电负荷快速增长,国家政策与公众利益的推动力,市场的推动力,技术的推动力,经济利益的竞争,用户日益提升的需求,刺激和推动着能源设备的生产和能源技术的开发研究。
截止2007年12月,我国装机总容量7.13亿千瓦,同比增长14.36%,水电1.4526亿千瓦,占20.36%。
预计2007至2010年全社会用电量的年均增速在百分之十左右;到2010年,中国发电装机容量预计将达到9亿千瓦,到2020年,中国发电装机容量预计将达到12亿千瓦。
水电仍按照20.36%的增长率,几乎在目前基础上增加1.5亿千瓦。
短时间内需求迅猛的增长,按20万千瓦1.5亿人民币造价计算,市场之大惊人。
“大型水力发电设备开发及关键技术研究”将在引进、消化、模拟的同时,更加重视尊重有能力的自主创新开发,对关键技术解决表示出了相当的自信,这对于民族、地域工业的发展无疑是非常有益的。
大型水力发电设备中,中水头开发及生产我国我省都积累了较丰富的经验,低水头的生产我省我厂也有了一定的特色,高水头、超高水头冲击式水轮机的开发及生产都需要一个突破。
这种形式的水轮机水膜流动复杂、射流容易发生干涉,有开发难度。
但是,由于它结构简单、同比出力转轮直径约1/2、压力管引水无需筑坝,显示出投资减少及与环境和谐的绝大优势,投标首选迅速增温,受到爱戴。
预见长江、嘉陵江等上游及各支流,中西部地区已形成使用热点,可是我们对其技术拥有极低,缺乏竞争力,亟需开展这方面的研究及对应机型的研制。
大型水轮发电机组一台产值在1亿元以上,与火力发电相比其优点还在于:能量转换过程中几乎不会排出二氧化碳;与其它能源如风电、太阳能发电相比,在于水能转换效率要高出1.5~2倍多。
21世纪水电设备的主要特征●环境和谐再生能源发电的比例更高、环境与人要更加友好,少筑坝。
●高比转速高效单位能量发电能力更高、损耗更低、能源综合利用效率更高●可靠承受扰动与冲击的能力更强、运行更加安全●制造费用适中造价能够实现电力工业利益与公众利益的平衡利用冲击式水轮机发电,出力范围可从50kW到500MW,可以适用于30米至3000米较大的水头范围,特别是高水头范围其它类型水轮机无法适用,并且无须建筑水坝,无需建造下游尾水管,建筑经费只是其它类型水轮发电机组的几分之一,对自然环境影响也非常小。