大物 上海交大课后答案 第七章
- 格式:docx
- 大小:600.35 KB
- 文档页数:8
第七章静电场中的导体和电介质一、基本要求1. 掌握导体静电平衡的条件及静电平衡时导体电荷的分布规律;2. 学会计算电容器的电容;3. 了解介质的极化现象及其微观解释;4. 了解各向同性介质中D和E的关系和区别;5. 了解介质中电场的高斯定理;6. 理解电场能量密度的概念。
二、基本内容1. 导体静电平衡(1) 静电平衡条件:导体任一点的电场强度为零(2) 导体处于静电平衡时:①导体是等势体,其表面是等势面;②导体表面的场强垂直于导体表面。
(3) 导体处于静电平衡时,导体内部处处没有净电荷存在,电荷只能分布在导体的表面上。
2. 电容(1) 孤立导体的电容c=勺V电容的物理意义是使导体电势升高单位电势所需的电量。
电容是导体的重要属性之一,它反映导体本身具有储存电荷和储存电能的能力。
它的大小仅由导体的几何形状、大小和周围介质决定,与导体是否带电无关。
(2) 电容器的电容C =—9-V A~ Vq为构成电容器两极板上所带等量异号电荷的绝对值。
V A-V B为A、B两极间电势差。
电容器电容与电容器形状、大小及两极间介质有关,与电容器是否带电无关。
(3) 电容器的串并联串联的特点:各电容器的极板上所带电量相等,总电势差为各电容器上电势差之111 1和。
等效电容由一=—+—+川+一进行计算。
C C C C1 2 n并联的特点:电容器两极板间的电势差相等,不同电容器的电量不等,电容大者电量多。
等效电容为C=C +C ,川*C o 1 2 n(4) 计算电容的一般步骤+ 一%1设两极带电分别为q和q,由电荷分布求出两极间电场分布。
~ = J B%1由V V E dl求两极板间的电势差。
A B A%1根据电容定义求c wV A VB3. 电位移矢量D=£ +人为引入的辅助物理量,定义D E P, D既与E有关,又与P有关。
说明D 0不是单纯描述电场,也不是单纯描述电介质的极化,而是同时描述场和电介质的。
定义式无论对各向同性介质,还是各向号惟会质都适用。
第七章 恒定磁场7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( ) (A ) (B ) (C ) (D )分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比因而正确答案为(C )。
7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A ) (B ) (C ) (D )分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;.因而正确答案为(D ). 7 -3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。
因而正确答案为(B ).7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )r R B B 2=r R B B =r R B B =2r R B B 4=21==R r n n r R B r 2π2B r 2παB r cos π22αB r cos π2S B ⋅=m Φ(A ) ,(B ) ,(C ) ,(D ) ,分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).*7 -5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( ) (A )(B ) (C ) (D )分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).7 -6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速。
第一章 运动的描述1、解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v ()x x xd 62d 02⎰⎰+=v v v()2 213xx +=v2、解:=a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt tv 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰=x 2=t 3 /3+x 0 (SI)3、解: ct b t S +==d /d vc t a t ==d /d v()R ct b a n /2+=根据题意:a t =a n即()R ct b c /2+=解得cb c R t -=4、解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω24t =ω, 24Rt R ==ωvs t 1=时,v = 4Rt 2 = 8 m/s 2s /168/m Rt dt d a t ===v22s /32/m R a n ==v()8.352/122=+=nt a a a m/s 25、解:(1) 球相对地面的初速度=+='v v v 030 m/s抛出后上升高度9.4522='=gh v m/s 离地面高度H = (45.9+10) m =55.9 m(2) 球回到电梯上时电梯上升高度=球上升高度2021)(gt t t -+=v v v 08.420==gt v s 6、解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222s h l +=将上式对时间t 求导,得ts s t l ld d 2d d 2= 根据速度的定义,并注意到l ,s 是随t 减少的,∴tsv v t l v d d ,d d 0-==-=船绳即 θcos d d d d 00v v s lt l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度320222022002)(d d d d d d sv h s v s l s v s lv s v v s t sl t l st v a =+-=+-=-==船船 7、解:(1)大船看小艇,则有1221v v v-=,依题意作速度矢量图如图(a)由图可知1222121h km 50-⋅=+=v v v方向北偏西︒===87.3643arctan arctan21v v θ (2)小船看大船,则有2112v v v-=,依题意作出速度矢量图如图(b),同上法,得5012=v 1h km -⋅,方向南偏东o 87.36第二章 运动定律与力学中的守恒定律1、解:(1)位矢j t b i t a rωωsin cos += (SI)可写为t a x ωcos =,t b y ωsin =t a t x x ωωsin d d -==v ,t b ty ωωυcos d dy == 在A 点(a ,0) ,1cos =t ω,0sin =t ω E KA =2222212121ωmb m m y x =+v v 在B 点(0,b ) ,0cos =t ω,1sin =t ωE KB =2222212121ωma m m y x =+v v (2) j ma i ma F y x +==j t mb i t ma ωωωωsin cos 22--由A →B ⎰⎰-==020d cos d a a x x x t a m x F W ωω=⎰=-022221d a ma x x m ωω ⎰⎰-==b b y y t b m y F W 020dy sin d ωω=⎰-=-b mb y y m 022221d ωω2、解:A 、B 两球发生弹性正碰撞,由水平方向动量守恒与机械能守恒,得B B A A A A m m m v v v +=0①2220212121B B A A A A m m m v v v +=② 联立解出0A B A B AA m m m m v v +-=,02A BA AB m m m v v += 由于二球同时落地,∴0>A v ,B A m m >;且B B A A L L v v //=∴52==B A B A L L v v ,522=-A B Am m m 解出5/=B A m m3、解:(1) 释放后,弹簧恢复到原长时A 将要离开墙壁,设此时B 的速度为v B 0,由机械能守恒,有2/3212020B m kx v = 得mk x B 300=v A 离开墙壁后,系统在光滑水平面上运动,系统动量守恒,机械能守恒,当弹簧伸长量为x 时有022211B m m m v v v =+①202222221121212121B m m kx m v v v =++②当v 1 =v 2时,由式①解出v 1 =v 2mkx B 3434/300==v (2) 弹簧有最大伸长量时,A 、B 的相对速度为零v 1 =v 2 =3v B 0/4,再由式②解出0max 21x x =4、解:二滑块在弹力作用下将沿水平导杆作振动. 因导杆光滑,不产生摩擦阻力, 故整个系统的机械能守恒,而且沿水平方向的动量守恒(等于零).当二滑块运动到正好使弹簧垂直于二导杆时,二滑块所受的弹力的水平分力同时为零,这时二滑块的速度将分别达到其最大速度v 1和v 2且此时弹簧为原长,弹簧势能为零。
第一章习 题1-1. 已知质点位矢随时间变化的函数形式为)ωt sin ωt (cos j i +=R r其中ω为常量.求:(1)质点的轨道;(2)速度和速率。
解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω=消去t 可得轨道方程 222R y x =+2) j rv t Rcos sin ωωt ωR ωdtd +-==i R ωt ωR ωt ωR ωv =+-=2122])c o s ()s i n [(1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。
解:1)由j i r )t 23(t 42++=可知2t 4x =t 23y +=消去t 得轨道方程为:2)3y (x -=2)j i rv 2t 8dtd +==j i j i v r 24)dt 2t 8(dt 11+=+==⎰⎰Δ3) j v 2(0)= j i v 28(1)+=1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:1)j i rv 2t 2dt d +== i va 2dtd ==2)212212)1t (2]4)t 2[(v +=+= 1t t 2dtdv a 2t +==n a ==1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。
解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121at t v y += (1) 图 1-420221gt t v h y -+= (2)21y y = (3)解之t =1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的t d d r ,t d d v ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2)j i r )gt 21-h (t v (t)20+=(2)联立式(1)、式(2)得 22v 2gx h y -=(3)j i rgt -v t d d 0= 而 落地所用时间 gh 2t = 所以j i r 2gh -v t d d 0= j v g td d -= 2202y 2x )gt (v v v v -+=+=212220[()]g t dv dt v gt ==+1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。
习题77-1.如图所示的弓形线框中通有电流I ,求圆心O 处的磁感应强度B 。
解:圆弧在O 点的磁感应强度:00146I IB R Rμθμπ==,方向:; 直导线在O点的磁感应强度:000020[sin 60sin(60)]4cos602II B R Rμππ=--=,方向:⊗;∴总场强:01)23IB Rμ=,方向⊗。
7-2.如图所示,两个半径均为R 的线圈平行共轴放置,其圆心O 1、O 2相距为a ,在两线圈中通以电流强度均为I 的同方向电流。
(1)以O 1O 2连线的中点O 为原点,求轴线上坐标为x 的任意点的磁感应强度大小;(2)试证明:当a R =时,O 点处的磁场最为均匀。
解:见书中载流圆线圈轴线上的磁场,有公式:2032222()I R B R z μ=+。
(1)左线圈在x 处P 点产生的磁感应强度:20132222[()]2P I R B aR x μ=++,右线圈在x 处P 点产生的磁感应强度:20232222[()]2P I R B a R x μ=+-,1P B 和2P B 方向一致,均沿轴线水平向右,∴P 点磁感应强度:12P P P B B B =+=2330222222[()][()]222I R a a R x R x μ--⎧⎫++++-⎨⎬⎩⎭;(2)因为P B 随x 变化,变化率为d Bd x,若此变化率在0x =处的变化最缓慢,则O 点处的磁场最为均匀,下面讨论O 点附近磁感应强度随x 变化情况,即对P B 的各阶导数进行讨论。
对B 求一阶导数:d B d x 25502222223()[()]()[()]22222I R a a a a x R x x R x μ--⎧⎫=-++++-+-⎨⎬⎩⎭当0x =时,0d Bd x=,可见在O 点,磁感应强度B 有极值。
对B 求二阶导数:22()d d B d B d x d x d x== 222057572222222222225()5()311222[()][()][()][()]2222a a x x I R a a a a R x R x R x R x μ⎧⎫+-⎪⎪⎪⎪--+-⎨⎬⎪⎪+++++-+-⎪⎪⎩⎭当0x =时,202x d Bd x ==222072223[()]2a R I R a R μ-+, 可见,当a R >时,2020x d Bd x=>,O 点的磁感应强度B 有极小值, 当a R <时,2020x d Bd x =<,O 点的磁感应强度B 有极大值,当a R =时,2020x d Bd x ==,说明磁感应强度B 在O 点附近的磁场是相当均匀的,可看成匀强磁场。
习题727-2 三个平行金属板A,B和C的面积都是200cm,A和B相距4.0mm,A与C相距2.0 mm.B,C都接地,如题7-2图所示.如果使A板带正电3.0×-710C,略去边缘效应,问B板和C板上的感应电荷各是多少?以地的电势为零,则A板的电势是多少?解: 如题7-2图示,令A板左侧面电荷面密度为σ1,右侧面电荷面密度为σ2题7-2图(1)∵ UAC=UAB,即∴ EACdAC=EABdAB∴ σ1EACdAB===2 σ2EABdACqA S且σ1+σ2=得σ2=qA2q, σ1=A 3S3S而 qC=-σ1S=-2qA=-2⨯10-7C 3qB=-σ2S=-1⨯10-7C(2) UA=EACdAC= σ1dAC=2.3⨯103V ε07-3 两个半径分别为R1和R2(R1<R2)的同心薄金属球壳,现给内球壳带电+q,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电+q;球壳内表面带电则为-q,外表面带电为+q,且均匀分布,其电势题7-3图U=⎰∞R2 ∞E⋅dr=⎰qdrq= R24πεr24πε0R0(2)外壳接地时,外表面电荷+q入地,外表面不带电,内表面电荷仍为-q.所以球壳电势由内球+q与内表面-q产生:U=q4πε0R2-q4πε0R2=0(3)设此时内球壳带电量为q';则外壳内表面带电量为-q',外壳外表面带电量为-q+q' (电荷守恒),此时内球壳电势为零,且UA=q'4πε0R1-q'4πε0R2+-q+q'=0 4πε0R2得 q'=外球壳上电势 R1q R2-q+q'(R1-R2)q= 24πε0R24πε0R2UB=q'4πε0R2-q'4πε0R2+7-4 半径为R的金属球离地面很远,并用导线与地相联,在与球心相距为d=3R 处有一点电荷+q,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q',则球接地时电势UO=07-4图由电势叠加原理有:UO=q'q+=0 4πε0R4πε03Rq 3得 q'=-7-5有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为F0.试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;(2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.q2解: 由题意知F0= 24πε0r(1)小球3接触小球1后,小球3和小球1均带电q, 2小球3再与小球2接触后,小球2与小球3均带电3q''=q 4∴此时小球1与小球2间相互作用力 q'=32qq'q"3F1=-=F0 2284πε0r4πε0r(2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为2q. 322qq4∴小球1、2间的作用力F2==F0 4πε0r297-6如题7-6图所示,一平行板电容器两极板面积都是S,相距为d,分别维持电势UA=U,UB=0不变.现把一块带有电量q的导体薄片平行地放在两极板正中间,片的面积也是S,片的厚度略去不计.求导体薄片的电势.解: 依次设A,C,B从上到下的6个表面的面电荷密度分别为σ1,σ2,σ3,由静电平衡条件,电荷守恒定律及维持UAB=Uσ4,σ5,σ6如图所示.可得以下6个方程题7-6图ε0UqA1⎧σ+σ==CU=20⎪1SSd⎪⎪σ+σ=q4⎪3S⎪⎨σ+σ=qB=-ε0U56⎪Sd⎪σ+σ=03⎪2⎪σ4+σ5=0⎪⎩σ1=σ2+σ3+σ4+σ5+σ6q解得σ1=σ6= 2Sσ2=-σ3=ε0Ud-q 2Sσ4=-σ5=ε0Ud+q 2S所以CB间电场E2=σ4Uq=+ ε0d2ε0Sd1qd=(U+) 222ε0SUC=UCB=E2注意:因为C片带电,所以UC≠UU,若C片不带电,显然UC= 227-7 在半径为R1的金属球之外包有一层外半径为R2的均匀电介质球壳,介质相对介电常数为εr,金属球带电Q.试求:(1)电介质内、外的场强;(2)电介质层内、外的电势;(3)金属球的电势.解: 利用有介质时的高斯定理D⋅dS=∑q S(1)介质内(R1<r<R2)场强Qr QrD=,E内=; 334πr4πε0εrr介质外(r<R2)场强Qr QrD=,E外= 334πr4πε0r(2)介质外(r>R2)电势U=⎰介质内(R1<r<R2)电势∞r E外⋅dr=Q 4πε0rU=⎰∞r ∞ E内⋅dr+⎰E外⋅drr=11Q (-)+4πε0εrrR24πε0R21ε-1(+r) 4πε0εrrR2Qq=(3)金属球的电势R2 ∞ U=⎰E内⋅dr+⎰E外⋅dr R1R2R2=⎰=Qdr4πε0εrr2Q(R+⎰∞R2Qdr 4πε0r24πε0εr1εr-1+) R1R27-8如题7-8图所示,在平行板电容器的一半容积内充入相对介电常数为εr的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题7-8图所示,充满电介质部分场强为E2,真空部分场强为E1,自由电荷面密度分别为σ2与σ1 由D⋅dS=∑q0得D1=σ1,D2=σ2而D1=ε0E1,D2=ε0εrE2E1=E2=∴ U dσ2D2==εr σ1D1题7-8图7-9 金属球壳A和B的中心相距为r,A和B原来都不带电.现在A的中心放一点电荷q1,在B的中心放一点电荷q2,如题8-30图所示.试求:(1) q1对q2作用的库仑力,q2有无加速度;(2)去掉金属壳B,求q1作用在q2上的库仑力,此时q2有无加速度.解: (1)q1作用在q2的库仑力仍满足库仑定律,即F=1q1q2 4πε0r2但q2处于金属球壳中心,它受合力为零,没有加速度...(2)去掉金属壳B,q1作用在q2上的库仑力仍是F=受合力不为零,有加速度.1q1q2,但此时q24πε0r2题7-9图 7-10 半径为R1=2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为R2=4.0cm和R3=5.0cm,当内球带电荷Q=3.0×10C 时,求: -8(1)整个电场储存的能量;(2)此电容器的电容值.解: 如图,内球带电Q,外球壳内表面带电-Q,外表面带电Q题7-10图(1)在r<R1和R2<r<R3区域E=0在R1<r<R2时E1= Qr 34πε0rr>R3时 E2=∴在R1<r<R2区域Qr 4πε0r3W1=⎰R2R11Qε0()24πr2dr 224πε0rQ2drQ211=(-) 8πε0r28πε0R1R2=⎰在r>R3区域 R2R11QQ2122W2=⎰ε0()4πrdr= 2R328πε0R34πε0r∞Q2111(-+) ∴总能量W=W1+W2=8πε0R1R2R3 =1.82⨯10-4J(2)电容器电容C=2W11=4πε/(-) 02R1R2Q=4.49⨯10-12F。
习题1111-1.直角三角形ABC的A点上,有电荷C108.191-⨯=q,B点上有电荷C108.492-⨯-=q,试求C点的电场强度(设0.04mBC=,0.03mAC=)。
解:1q在C点产生的场强:1124ACqE irπε=,2q在C点产生的场强:2224BCqE jr=,∴C点的电场强度:44122.710 1.810E E E i j=+=⨯+⨯;C点的合场强:4123.2410VE m==⨯,方向如图:1.8arctan33.73342'2.7α===。
11-2.用细的塑料棒弯成半径为cm50的圆环,两端间空隙为cm2,电量为C1012.39-⨯和方向。
解:∵棒长为2 3.12l r d mπ=-=,∴电荷线密度:911.010q C mlλ--==⨯⋅可利用补偿法,若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去md02.0=长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷的塑料棒在O点产生的场强。
解法1:利用微元积分:21cos4O xRddERλθθπε=⋅,∴2000cos2sin2444OdE dR R Rααλλλθθααπεπεπε-==⋅≈⋅=⎰10.72V m-=⋅;解法2:直接利用点电荷场强公式:由于d r<<,该小段可看成点电荷:112.010q d Cλ-'==⨯,则圆心处场强:1191222.0109.0100.724(0.5)OqE V mRπε--'⨯==⨯⨯=⋅。
方向由圆心指向缝隙处。
11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB的半径为R,试求圆ix心O 点的场强。
解:以O 为坐标原点建立xOy 坐标,如图所示。
①对于半无限长导线A ∞在O 点的场强:有:00(cos cos )42(sin sin )42Ax A y E R E R λπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩②对于半无限长导线B ∞在O 点的场强:有:00(sin sin )42(cos cos )42B x B y E R E R λπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩③对于AB 圆弧在O 点的场强:有:20002000cos (sin sin )442sin (cos cos )442AB x AB y E d R R E d R R ππλλπθθππεπελλπθθππεπε==-=⎧⎪⎪⎨⎪⎪=--⎩⎰⎰∴总场强:04O x E R λπε=,04O y E R λπε=,得:0()4O E i j R λπε=+。
题7.1:1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32的上夸克和两个带e 31-下夸克构成,若将夸克作为经典粒子处理(夸克线度约为10-20 m ),中子内的两个下夸克之间相距2.60⨯10-15 m 。
求它们之间的斥力。
题7.1解:由于夸克可视为经典点电荷,由库仑定律r r 220r 2210N 78.394141e e e F ===r e r q q πεπεF 与r e 方向相同表明它们之间为斥力。
题7.2:质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k 。
证明电子的旋转频率满足42k20232me E εν=其中是0ε真空电容率,电子的运动可视为遵守经典力学规律。
题7.2分析:根据题意将电子作为经典粒子处理。
电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷。
点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有220241r e r v m πε= 由此出发命题可证。
证:由上述分析可得电子的动能为re mv E 202k 8121πε==电子旋转角速度为30224mr e πεω=由上述两式消去r ,得43k 20222324me E επων== 题7.3:在氯化铯晶体中,一价氯离于Cl -与其最邻近的八个一价格离子Cs +构成如图所示的立方晶格结构。
(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作品格缺陷),求此时氯离子所受的库仑力。
题7.3分析:铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加。
为方便计算可以利用晶格的对称性求氯离子所受的合力。
解:(l )由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故01=F (2)除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力2F 的值为N 1092.134920220212-⨯===ae rq q F πεπε2F 方向如图所示。
第七章课后习题解答一、选择题7-1处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们[ ](A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强(C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强分析:理想气体分子的平均平动动能,仅与温度有关,因此当氦气和32k kTε=氮气的平均平动动能相同时,温度也相同。
又由理想气体的压强公式,p nkT =当两者分子数密度相同时,它们压强也相同。
故选(C )。
7-2 理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子所具有的[ ](A) 动能为(B) 动能为2ikT 2iRT(C) 平均动能为(D) 平均平动动能为2ikT 2iRT分析:由理想气体分子的的平均平动动能和理想气体分子的的平均动32k kT ε=能,故选择(C )。
2ikT ε=7-3 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为,则其压强之比为 [ ]()()()1/21/21/222::2A B Cvv v =1:2:4A B C p :p :p (A)(B)(C)(D) 1:2:41:4:81:4:164:2:1,又由物态方程,所以当三=p nkT =容器中得分子数密度相同时,得。
故选择(C )。
123123::::1:4:16p p p T T T ==7-4 图7-4中两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线。
如果和分别表示氧气和氢气的最概然速率,则[ ]()2p O v ()2p H vh(A) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /4v v =(B) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(C) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(D) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /4v v =分析:在温度相同的情况下,由最概然速率公式p ν=尔质量,可知氢气的最概然速率大于氧气的最概然速率,故曲线对22H O M M <a 应于氧分子的速率分布曲线。
第一章 质点运动学【例题】例1-1 A t= 1.19 s 例1-2 D 例1-3 D 例1-4 B 例1-5 3 3 例1-6 D 例1-7 C例1-8 证明:2d d d d d d d d v xv vtx xv tv K -==⋅= ∴ d v /v =-K d x⎰⎰-=xx K 0d d 10v vvv , Kx -=0lnv v ∴ v =v 0e-Kx例1-9 1 s 1.5 m 例1-10 B【练习题】1-1 x=(y-3)2 1-2 -0.5m/s -6m/s 2.25m 1-3 D 1-4 不作匀变速率运动.因为质点若作匀变速率运动,其切向加速度大小t a 必为常数,即321t t t a a a ==,现在虽然321a a a ==, 但加速度与轨道各处的切线间夹角不同,这使得加速度在各处切线方向的投影并不相等,即321t t t a a a ≠≠,故该质点不作匀变速率运动。
1-5 D 1-6证明:设质点在x 处的速度为v 62d d d d d d 2x tx xta +=⋅==v v()x x xd 62d 02⎰⎰+=v v v()2 213xx +=v1-7 16 R t 24 rad /s21-8 Hv/(H-v) 1-9 C第二章 质点运动定律【例题】例2-1 B 例2-2 B 例2-3 解:(1) 子弹进入沙土后受力为-Kv ,由牛顿定律∴⎰⎰=-=-vv 00vv d d ,vv d d tt mKt m K ∴ mKt /0e -=v v (2) 求最大深度 tx d d =vt x mKt d ed /0-=vt x mKt txd ed /000-⎰⎰=v ∴ )e1()/(/0mKt K m x --=vK m x /0max v = 例2-4 D 例2-5 答:(1) 不正确。
向心力是质点所受合外力在法向方向的分量。
质点受到的作用力中,只要法向分量不为零,它对向心力就有贡献,不管它指向圆心还是不指向圆心,但它可能只提供向心力的一部分。
第七章 电磁感应选择题7-1 在闭合导线回路的电阻不变的情况下,下述正确的是 ( B ) (A) 穿过闭合回路所围面积的磁通量最大时,回路中的感应电流最大; (B) 穿过闭合回路所围面积的磁通量变化越快,回路中的感应电流越大; (C) 穿过闭合回路所围面积的磁通量变化越大,回路中的感应电流越大; (D) 穿过闭合回路所围面积的磁通量为零时,回路中的感应电流一定为零.7-2 导体细棒ab 与载流长直导线垂直.在如图所示的四种情况中,细棒ab 均以与载流导线平行的速度v 平动,且b 端到长直导线的距离都一样.在(a)、(b)和(c)三种情况中,细棒ab 与光滑金属框保持接触.设四种情况下细棒ab 上的感应电动势分别为a E 、b E 、c E 和d E ,则 ( C )(A) a b c d ==<E E E E ; (B) a b c d ==>E E E >E ; (C) a b c d ===E E E E ;(D) a b c d >>>E E E E .7-3 如图所示,半圆周和直径组成的封闭导线,处在垂直于匀强磁场的平面内.磁场的磁感应强度的大小为B ,直径AB 长为l .如果线圈以速度v 在线圈所在平面内平动, v 与AB 的夹角为θ,则 ( A )(A) 线圈上的感应电动势为零,AB 间的感应电动势sin AB Bl θ=E v ; (B) 线圈上的感应电动势为零,AB 间的感应电动势cos AB Bl θ=E v ;(C) 线圈上的感应电动势为i 2sin Bl θ=E v ,AB 间感应电动势为sin AB Bl θ=E v ; (D) 线圈上的感应电动势为i 2cos Bl θ=E v ,AB 间感应电动势为cos AB Bl θ=E v . 7-4 一个面积210cm S =的圆线圈,其电阻0.10R =Ω,处于垂直于匀强磁场的平面内,若磁感应强度的大小随时间的变化率1d 10T s d Bt-=⋅,则线圈中的感应电流的大小为( D )(A) 3i 1.010A I -=⨯; (B) 2i 1.010A I -=⨯; (C) 2i 1.010A I =⨯; (D) 1i 1.010A I -=⨯.7-5 导线元d l 在磁感应强度为B 的磁场中以速度v 运动时,其上的动生电动势为()i d d =⨯⋅B l E v( D ) (A) 当v 与d l 垂直时,一定有i d d B l =E v ; (B) 当v 与B 垂直时,一定有i d d B l =E v ; (C) 当d l 与B 垂直时,一定有i d d B l =E v ;(D) 只有在v 、B 和d l 三者相互垂直时,才有i d d B l =E v 或i d d B l =-E v .7-6 下述正确的是 ( C )(A) 静电场和感生电场的电场线都不闭合;(B) 静电场的电场线是闭合的,感生电场的电场线不闭合; (C) 感生电场的电场线是闭合的,静电场的电场线不闭合; (D) 静电场和感生电场的电场线都是闭合的.7-7 静止的导体中产生涡电流的原因是 ( C ) (A) 导体处于不均匀的稳恒磁场中; (B) 导体处于不均匀的静电场中; (C) 导体处于随时间变化磁场中; (D) 导体处于通有稳恒电流的线圈内. 7-8 在自感线圈中,电流i 随时间t 的变化曲线如图(a)所示.若以i 的正流向为正方向,则线圈中自感电动势L E 随时间t 的变化曲线应为图(b)中的 ( D )7-9 尺寸相同的铜环和铝环,穿过它们所围面积的磁通量的变化率相同.设铜环上的感应电动势和感应电流分别为1E 和1I ,铝环上的感应电动势和感应电流分别为2E 和2I ,则( C )(A) 12=E E , 12I I =; (B) 12>E E , 12I I >; (C) 12=E E , 12I I >; (D) 12>E E , 12I I =.7-10 如图所示,若一块磁铁沿着一根竖直放置的长铜管的轴线,自管口竖直下落,如果忽略空气阻力,则 ( C )(A) 磁铁越落越快,最后速度趋于无限大; (B) 磁铁越落越慢,最后速度趋于零; (C) 磁铁越落越快,最后达到一恒定速度; (D) 磁铁越落越慢,最后达到一恒定速度;计算题7-11 一个匝数100N =的导线圈,通过每匝线圈的磁通量41510sin10πΦt =⨯,式中1Φ的单为Wb ,t 的单位为s .求:(1) 任意时刻线圈上的感应电动势;(2) 在10s t =时,线圈上的感应电动势的大小.解 (1) 根据法拉第电磁感应定律,任意时刻线圈上的感应电动势为()41i d d100510sin10π0.5πcos10πd d ΦNt t t t-=-=-⨯=-E 式中t 的单位为s ,i E 的单位为V .(2) 10s t =时,线圈上的感应电动势为()i 0.5πcos 10π10 V 1.57 V =-⨯=-i E大小为i 1.57 V =i E7-12 若在一方向不变的磁场中,有一面积为20.03m 的平面线圈,线圈所在平面的法线与磁场的夹角为θ,磁感强度的大小为510B t =+,式中B 的单位为T ,t 的单位为s .求:(1) 当π3θ=时,线圈中的感应电动势的大小; (2) 当π2θ=,2s t =时,线圈中的感应电动势的大小; 解 穿过线圈所围平面的磁通量为()()cos 5100.03cos 0.150.3cos BS t t Φθθθ==+⨯=+线圈中的感应电动势为()i d d0.150.3cos 0.3cos d d t t tΦθθ=-=-+=-E (1) 在π3θ=的情况下,线圈中的感应电动势为 i π0.3cos V 0.15V 3⎛⎫=-=- ⎪⎝⎭E其大小为0.15V(2) 在π2θ=的情况下,2s t =时,线圈中的感应电动势为 i π0.3cos V 02⎛⎫=-= ⎪⎝⎭E7-13 如图所示,一正方形线圈与载流长直导线共面,线圈的匝数为N ,边长为a ,其两边与长直导线平行,与长直导线之间的最小距离为b .长直导线中的电流为I .(1) 求通过线圈的磁通量;(2) 若100N =,20cm a =,10cm b =,当长直导线中的电流I 以12A s -⋅的变化率增长时,求线圈中的感应电动势.解 (1) 坐标选取如图所示.以顺时针为线圈回路的正方向, 则线圈所围平面的法向单位矢量n e 垂直纸面向里.在线圈平面上,长直载流导线的磁感应强度为0n 2πIaxμ=B e .在x 处取面元dS d a x =,则面元矢量为n d d a x =S e .穿过面元的磁通量为0d d d 2πIaΦx xμ=⋅=B S穿过线圈所围平面的磁通量为00d d ln2π2πa bSaIaNIaa bΦN N x xbμμ++=⋅==⎰⎰B S(2) 若100N =,20cm a =,10cm b =,则7064π101000.200.200.10ln ln Wb2π2π0.10 4.4010WbNIaa b I Φb I μ--⎛⎫+⨯⨯⨯⨯+== ⎪⎝⎭=⨯ 线圈中的感应电动势为()666i d d 4.4010 4.40102 V 8.8010 V d d ΦIt t--=-=-⨯=-⨯⨯=-⨯E i 0<E ,表明线圈中的感应电动势沿逆时针方向.7-14 如图所示,矩形导线框ABCD 与载流为I 的长直导线共面,边长分别为b 和l ,AB 与长直导线平行.矩形线框以速度v 在其平面内向右运动,v 与直导线垂直.在时刻t ,AB 与长直导线间的距离为a .求此时线框上的感应电动势.解 在长直导线右侧的线框平面上,到长直导线的距离为r 的点上,载流长直导线的磁场,方向垂直于纸面向里,磁感应强度的大小为02πIB rμ=以顺时针为导线回路的正方向,线圈中的感应电动势为()()()()()i d d d d d ABCDAAB BC CD DA =⨯⋅=⨯⋅+⨯⋅+⨯⋅+⨯⋅⎰⎰⎰⎰⎰B l B l B l B l B lv v v v v E 在BC 和DA 段上,d l v ,()d 0⨯⋅=B l v ,因此积分为零.在时刻t ,AB 处的磁感应强度大小为012πIB aμ=,CD 处的磁感应强度大小为()022πIB a b μ=+.于是()()()i 1200000d d d d d d 11 2π2π2πAB CD AB CD llB l B lI lI l Il a a b a a b μμμ=⨯⋅+⨯⋅=+-⎛⎫=-=- ⎪++⎝⎭⎰⎰⎰⎰⎰⎰B l B l E v v v v v v vi 0>E ,表明线圈中的感应电动势沿顺时针方向.7-15 如图所示,匀强磁场的磁感应强度的大小为B ,方向垂直纸面向外.有一根长为L 的金属棒MN ,可绕点O 在纸面内逆时针旋转,角速度为ω,4LOM =.求金属棒两端之间的电动势.那一端的电势较高?解 如图所示,在棒MN 上,到点O 的距离为l 处,沿径向取位移元d l .d l 的速度v 的方向如图,既垂直于d l ,也垂直于B ,大小为l ω=v .d l 上的动生电动势为()i d d d Bl l ω=⨯⋅=B l dE vMN 上的动生电动势为32441d 4L L MN Bl l BL ωω==⎰E0MN >E ,表明动生电动势的方向为从M 到N ,N 端电势较高.7-16 如图所示,矩形导线框ABCD 与载流长直导线共面,AB 与长直导线平行,相互间的距离为a ,导线框的边长分别为b 和l .如果长直导线上的电流为0πcos 3I I t ω⎛⎫=+ ⎪⎝⎭,式中0I 和ω为常量.求在0t =时,导线框上的感应电动势.解 坐标选取如图所示.以ABCDA ,即顺时针为线框回路的正方向,则平面ABCD 的法向单位矢量n e 垂直纸面向里.在平面ABCD 上,长直载流导线的磁感应强度为0n 2πIx μ=B e .由于0πcos 3I I t ω⎛⎫=+ ⎪⎝⎭,因此B 的具体指向随时间变化.在x 处取面元dS d l x =,则面元矢量为n d d l x =S e .穿过面元的磁通量为0d d d d 2πIlΦB S x xμ=⋅==B S穿过线框所围平面的磁通量为00d d ln2π2πa bSaIlIla bΦx xaμμ++=⋅==⎰⎰B S 矩形线框ABCD 上的感应电动势为0i 0000d d ln d 2πd d ππ ln cos ln sin 2πd 32π3l a b I t a tl I l a b a b I t t a t a μΦμμωωω+=-=-+⎡⎤+⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦E0t =时0000i πlnsin ln2π34πI lI l a b a b a aμωω++==E i 0>E ,表明此时线框上的感应电动势沿顺时针方向.7-17 在一个长为0.6m 、直径为5.0cm 的纸筒上,密绕1200匝线圈.求这个长直螺线管的自感.解 长直螺线管的自感为()2220027223π44π101200π 5.010H 5.9210H40.6N SN d L llμμ---==⨯⨯⨯⨯⨯==⨯⨯7-18 一螺线管的自感为21.010H -⨯,流过的电流为2.0A .求其储存的磁场能.解 载流螺线管储存的磁场能为2222m 11 1.010 2.0J 2.010J 22W LI --⎛⎫==⨯⨯⨯=⨯ ⎪⎝⎭7-19 一个直径为0.01m 、长为0.10m 的长直密绕螺线管,共1000匝线圈,总电阻为7.76Ω.若把螺线管接到电动势为2V 的电池上,求电流稳定后,螺线管中储存的磁能和管内的磁能密度.解 长直螺线管的自感为()2220027223π44π101000π 1.010H 9.8710H40.1N SN d L llμμ--==⨯⨯⨯⨯⨯==⨯⨯线圈上稳定电流的强度为2A 0.258A 7.76U I R === 电流稳定后,螺线管中储存的磁能为2325m 119.87100.258J 3.2810J 22W LI --⎛⎫==⨯⨯⨯=⨯ ⎪⎝⎭载流螺线管中磁能密度为()533m m m 22244 3.2810J m 4.18J m ππ1.0100.1W W V d l ---⨯⨯===⋅=⋅⨯⨯w 7-20 在真空中,若一匀强电场中的电场能量密度与一0.5T 的匀强磁场的能量密度相等,求该电场的电场强度.解 设电场强度为E 的匀强电场的能量密度与0.5T B =的匀强磁场的能量密度相等,则有22001122B E εμ=由此可得181m 1.5010 V m E --==⋅=⨯⋅。
第七章 稳恒磁场习题7-1 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为多少?解:取平面S ’与半球面S 构成闭合曲面,根据高斯定理有 0m mS mS ΦΦΦ'=+=2cos mS mS r E ΦΦπα'=-=-球面外法线方向为其正方向7-2 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感应强度各为多少?08IR μ垂直画面向外0022II RR μμπ-垂直画面向里 00+42I IR Rμμπ垂直画面向外 7-3 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。
已知圆环的粗细均匀,求环中心O 的磁感应强度。
解: 如图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
且θ-πθ==21221R R I I 电阻电阻 1I 产生1B 方向⊥纸面向外πθπμ2)2(2101-=R I B2I 产生2B 方向⊥纸面向里πθμ22202R I B =∴1)2(2121=-=θθπI I B B 有0210=+=B B B7-4 如图所示,已知地球北极地磁场磁感强度B 的大小为6.0×10-5T 。
如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大?流向如何?(已知圆电流轴线上北极点的磁感强度()R IRR IR B 24202/32220μμ=+=)解:9042 1.7310A RBI μ==⨯方向如图所示7-5 有一同轴电缆,其尺寸如题图所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑。
试计算以下各处的磁感应强度:(1)r<R 1;(2)R 1<r<R 2;(3)R 2<r<R 3;(4)r>R 3。
解:同轴电缆的电流分布具有轴对称性在电缆各区域中磁感应线是以电缆轴线为对称轴的同心圆。
版权归原著所有 本答案仅供参考习题77-1.原长为m 5.0的弹簧,上端固定,下端挂一质量为kg 1.0的物体,当物体静止时,弹簧长为m 6.0.现将物体上推,使弹簧缩回到原长,然后放手,以放手时开始计时,取竖直向下为正向,写出振动式。
(g 取9.8)解:振动方程:cos()x A t ωϕ=+,在本题中,kx mg =,所以9.8k =;∴ω=== 取竖直向下为x 正向,弹簧伸长为0.1m 时为物体的平衡位置,所以如果使弹簧的初状态为原长,那么:A =0.1m ,当t =0时,x =-A ,那么就可以知道物体的初相位为π。
所以:0.1cos x π=+) 即:)x =-。
7-2.有一单摆,摆长m 0.1=l ,小球质量g 10=m ,0=t 时,小球正好经过rad 06.0-=θ处,并以角速度0.2rad/s θ=向平衡位置运动。
设小球的运动可看作简谐振动,试求:(1)角频率、频率、周期;(2)用余弦函数形式写出小球的振动式。
(g 取9.8)解:振动方程:cos()x A t ωϕ=+ 我们只要按照题意找到对应的各项就行了。
(1)角频率: 3.13/rad s ω===,频率:0.5Hz ν=== ,周期:22T s π===; (2)振动方程可表示为:cos 3.13A t θϕ=+(),∴ 3.13sin3.13A t θϕ=-+()根据初始条件,0t =时:cos Aθϕ=,0(12sin 0(343.13A θϕ>=-<,象限),象限)可解得:,-2.32rad 95.3227rad,108.802===⨯=-ϕA 所以得到振动方程: rad )32.213.3cos(108.82-⨯=-t θ。
7-3. 一竖直悬挂的弹簧下端挂一物体,最初用手将物体在弹簧原长处托住,然后放手,此系统便上下振动起来,已知物体最低位置是初始位置下方10.0cm 处,求:(1)振动频率;(2)物体在初始位置下方cm 0.8处的速度大小。
第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。
解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向-4q 。
7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。
(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。
解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =?d ?,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为=)(40L x x L-πελ方向沿?轴正向。
(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y204r dxdE πελ=θπελcos 420rdxdE y =, 因θθθθcos ,cos ,2yr d y dx ytg x ===, 代入上式,则)cos 1(400θπελ--=y=)11(4220Ly y+--πελ,方向沿x 轴负向。
00sin 4θπελy ==2204Ly y L+πελ7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。
q2q-4q2q 习题7-1图dq ?d ?P习题7-2 图ax θθπελθd y dE E x x ⎰⎰-=-=00sin 40dq xdxP习题7-2 图b ydE?y Q?0解:如图,在半环上任取d l =Rd ?的线元,其上所带的电荷为dq=?Rd ?。
对称分析E y =0。
θπεθλsin 420RRd dE x =2022Rqεπ=,如图,方向沿x 轴正向。
7-4 如图线电荷密度为λ1的无限长均匀带电直线与另一长度为l 、线电荷密度为λ2的均匀带电直线在同一平面内,二者互相垂直,求它们间的相互作用力。
习题77-1.如图所示的弓形线框中通有电流I ,求圆心O 处的磁感应强度B 。
解:圆弧在O 点的磁感应强度:00146I IB R Rμθμπ==,方向:;直导线在O点的磁感应强度:000020[sin 60sin(60)]4cos602II B R Rμππ=--=,方向:⊗;∴总场强:01)23IB Rμπ=-,方向⊗。
7-2.如图所示,两个半径均为R 的线圈平行共轴放置,其圆心O 1、O 2相距为a ,在两线圈中通以电流强度均为I 的同方向电流。
(1)以O 1O 2连线的中点O 为原点,求轴线上坐标为x 的任意点的磁感应强度大小;(2)试证明:当a R =时,O 点处的磁场最为均匀。
解:见书中载流圆线圈轴线上的磁场,有公式:2032222()I R B R z μ=+。
(1)左线圈在x 处P 点产生的磁感应强度:20132222[()]2P I R B a R x μ=++,右线圈在x 处P 点产生的磁感应强度:20232222[()]2P I R B aR x μ=+-,1P B 和2P B 方向一致,均沿轴线水平向右,∴P 点磁感应强度:12P P P B B B =+=2330222222[()][()]222I R a a R x R x μ--⎧⎫++++-⎨⎬⎩⎭;(2)因为P B 随x 变化,变化率为d Bd x,若此变化率在0x =处的变化最缓慢,则O 点处的磁场最为均匀,下面讨论O 点附近磁感应强度随x 变化情况,即对P B 的各阶导数进行讨论。
对B 求一阶导数:d B d x 25502222223()[()]()[()]22222I R a a a a x R x x R x μ--⎧⎫=-++++-+-⎨⎬⎩⎭当0x =时,0d Bd x=,可见在O 点,磁感应强度B 有极值。
对B 求二阶导数:22()d d B d B d x d x d x== 222057572222222222225()5()311222[()][()][()][()]2222a a x x I R a a a a R x R x R x R x μ⎧⎫+-⎪⎪⎪⎪--+-⎨⎬⎪⎪+++++-+-⎪⎪⎩⎭当0x =时,202x d Bd x ==222072223[()]2a R I R a R μ-+, 可见,当a R >时,2020x d Bd x=>,O 点的磁感应强度B 有极小值, 当a R <时,2020x d Bd x =<,O 点的磁感应强度B 有极大值,当a R =时,2020x d Bd x ==,说明磁感应强度B 在O 点附近的磁场是相当均匀的,可看成匀强磁场。
【利用此结论,一般在实验室中,用两个同轴、平行放置的N 匝线圈,相对距离等于线圈半径,通电后会在两线圈之间产生一个近似均匀的磁场,比长直螺线管产生的磁场方便实验,这样的线圈叫亥姆霍兹线圈】7-3.无限长细导线弯成如图所示的形状,其中c 部分是在xoy 平面内半径为R 的半圆,试求通以电流I 时O 点的磁感应强度。
解:∵a 段对O 点的磁感应强度可用0SB d l I μ⋅=∑⎰求得,有:04a I B R μπ=,∴04a IB j Rμπ=-b 段的延长线过O 点,0b B =,c 段产生的磁感应强度为:0044c I I B R R μμππ=⋅=,∴04c IB k R μ=则:O 点的总场强:0044O I IB j k R Rμμπ=-+,方向如图。
7-4.在半径cm 1=R 的无限长半圆柱形金属片中,有电流A 5=I 自下而上通过,如图所示。
试求圆柱轴线上一点P 处的磁感应强度的大小。
解:将半圆柱形无限长载流薄板细分成宽为dl R d θ=的长直电流, 有:dl d d I R θππ==,利用0S B d l I μ⋅=∑⎰。
在P 点处的磁感应强度为:00222d I I d dB R Rμμθππ==, ∴02sin sin 2x IdB dB d Rμθθθπ==,而因为对称性,0y B = 那么,005220sin 6.37102x x I IB B dB d T R Rπμμθθππ-=====⨯⎰⎰。
7-5.如图所示,长直电缆由半径为R 1的导体圆柱与同轴的内外半径分别为R 2、R 3的导体圆筒构成,电流沿轴线方向由一导体流入,从另一导体流出,设电流强度I 都均匀地分布在横截面上。
求距轴线为r 处的磁感应强度大小(∞<<r 0)。
解:利用安培环路定理0SB d l I μ⋅=∑⎰分段讨论。
(1)当10r R <≤时,有:210212r I B r R ππμπ⋅= ∴01212I rB R μπ=;(2)当12R r R ≤≤时,有:202B r I πμ⋅=,∴022IB r μπ=; (3)当23R r R ≤≤时,有:2223022322()r R B r I I R R πππμππ-⋅=--, ∴2232032232I B R r R rR μπ--=⋅; (4)当3r R >时,有:402()B r I I πμ⋅=-,∴40B =。
则:021011222323223230(0)()()0()222r R R r R B R r R r R I rR IrR r r I R R μπμπμπ⎧<≤⎪⎪⎪≤≤⎪⎪=⎨⎪-⎪⋅≤≤-⎪⎪>⎪⎩7-6.一边长为l =0.15m 的立方体如图放置在均匀磁场(63 1.5)T =++B i j k 中,计算(1)通过立方体上阴影面积的磁通量;(2)通过立方体六面的总磁通量。
解:(1)通过立方体上(右侧)阴影面积的磁通量为Wb135.015.066)5.136(21=⨯=⨯=⋅++=⋅=Φ⎰⎰⎰SSSm dS i dS k j i S d B(2)由于立方体左右两个面的外法线方向相反,通过这两个面的磁通量相互抵消,同理,上下两面和前后两面各相互抵消,因此通过立方体六面的总磁通量为0。
7-7.一根很长的直导线,载有电流10A ,有一边长为1m 的正方形平面与直导线共面,相距为1m ,如图所示,试计算通过正方形平面的磁感应通量。
解:将正方形平面分割成平行于直导线的窄条,对距离直导线为x 宽度为dx 的窄条,通过的磁通量为dx xIdx x I Bldx d m πμπμ21200=⨯⨯==Φ 通过整个正方形平面的磁通量为Wb 104122260210-⨯===Φ⎰.ln Idx x I m πμπμ7-8.如图所示,在长直导线旁有一矩形线圈,导线中通有电流120A =I ,线圈中通有电流210A =I ,已知d =1cm,b =9cm,l =20cm ,求矩形线圈上所受到的合力是多少?解:矩形线圈上下两边所受的磁力相互抵消。
矩形线圈左边所受的磁力为 N 10824102121-⨯===dI lI lB I F πμ 方向向左 矩形线圈右边所受的磁力为 N 108)(25102222-⨯=+==b d I lI lB I F πμ方向向右 矩形线圈上所受到的合力为 N 102.7421-⨯=-=F F F 方向向左7-9.无限长直线电流1I 与直线电流2I 共面,几何位置如图所示, 试求直线电流2I 受到电流1I 磁场的作用力。
解:在直线电流2I 上任意取一个小电流元dl I 2, 此电流元到长直线的距离为x ,无限长直线电流1I 在小电流元处产生的磁感应强度为:012I B xμπ=⊗,再利用d F I Bdl =,考虑到0cos60d xdl =,有:01202cos60I I d x d F x μπ=⋅, ∴0120120ln 2cos60b a I I I I d xb F x aμμππ=⋅=⎰。
7-10.一半径为R 的无限长半圆柱面导体,载有与轴线上的 长直导线的电流I 等值反向的电流,如图所示,试求轴线上长 直导线单位长度所受的磁力。
解:设半圆柱面导体的线电流分布为1I i Rπ=, 如图,由安培环路定理,i 电流在O 点处产生的磁感应强度为:02i d B Rd Rμθπ=⋅,可求得:00120sin 2O y iR I B d B d R Rπμμθθππ==⋅=⎰⎰; 又∵d F I dl B =⨯,故01222O I I d F B I dl dl Rμπ==, 有:0122I I d F f dl Rμπ==,而21I I =,所以:202πμ==Id F f dl R。
7-11.有一根U 形导线,质量为m ,两端浸没在水银槽中, 导线水平部分的长度为l ,处在磁感应强度大小为B 的均匀 磁场中,如图所示。
当接通电源时,U 导线就会从水银槽中 跳起来。
假定电流脉冲的时间与导线上升时间相比可忽略, 试由导线跳起所达到的高度h 计算电流脉冲的电荷量q 。
解:接通电流时有F BIl =⇒d v mBIl dt =,而d q I dt =, 则:mdv Bl dq =,积分有:0v m mvq dv Bl Bl==⎰; 又由机械能守恒:mgh mv =221,有:gh v 2=,∴mv q Bl ==7-12.截面积为S 、密度为ρ的铜导线被弯成正方形的三边, 可以绕水平轴O O '转动,如图14-53所示。
导线放在方向竖 直向上的匀强磁场中,当导线中的电流为I 时,导线离开原来 的竖直位置偏转一个角度θ而平衡,求磁感应强度。
解:设正方形的边长为a ,质量为m ,aS m ρ=。
平衡时重力矩等于磁力矩:由m M p B =⨯,磁力矩的大小:22sin (90)cos M BI a BI a θθ=-=; 重力矩为:sin 2sin 2sin 2aM mga mg mga θθθ=+⋅=平衡时:2cos 2sin BI a mga θθ=,∴22tan tan mg gSB I a Iρθθ==。
7-13.在电子显像管的电子束中,电子能量为12000eV ,这个显像管的取向使电子水平地由南向北运动。
该处地球磁场的竖直分量向下,大小为55.510T -⨯。
问: (1)电子束受地磁场的影响将偏向什么方向? (2)电子的加速度是多少?(3)电子束在显像管内在南北方向上通过20cm 时将偏离多远? 解:(1)根据f q v B =⨯可判断出电子束将偏向东。
(2)利用221mv E =,有:m E v 2=, 而ma qvB f ==,∴1141028.62-⋅⨯===s m m EmqB m qvB a(3)2211()3mm 22Ly at a v===。
7-14.如图所示,一个带有电荷q (0q >)的粒子,以速度v 平行于均匀带电的长直导线运动,该导线的线电荷密度为λ(0λ>),并载有传导电流I 。