积分变换习题解答1-4
- 格式:doc
- 大小:495.00 KB
- 文档页数:5
第一章 复数与复变函数1.1计算下列各式: (1) (1)(32);i i +--解: (1)(32)(1)322 3.i i i i i +--=+-+=-+ (2);(1)(2)ii i --解:2(13)3.(1)(2)2213101010i i i i i ii i i i i i +-====+----+-(3)1(1);1z z x iy z -=+≠-+ 解: 2222222211(1)(1)12.11(1)(1)(1)z x iy x iy x iy x y yi z x iy x y x y x y-+--++-+-===++++++++++ 1.3 将圆周方程22()0(0)a x y bx cy d a ++++=≠写成复数形式(即可z 与z 表示,其中z x iy =+).解: 把22,,22z z z z x y x y z z i+-==+=⋅代入圆周方程得: ()()0,222()()20,0.b caz z z z z z d iaz z b ic z b ic z d Az z Bz Bz C ⋅+++-+=⋅+-+++=⋅+++=故其中2,,2.A a B b ic C d ==+= 1.5 将下列各复数写成三角形式.(1) sin cos ;i αα+ 解: sin cos 1,i αα+= 故sin cos cos()sin().22i i ππαααα+=-+- (2) sincos.66i ππ--解: 2arg(sincos )arctan(cot ),666263i ππππππππ--=-=--=-s i n c o s 66i ππ--=2222cos()sin()cos()sin.3333i i ππππ-+-=- 1.7 指出满足下列各式的点z 的轨迹是什么曲线?(1) 1;z i +=解: 以(0,1)-为圆心,1为半径的圆周.(2) 0,zz az az b +++=其中a 为复数,为b 实常数;解: 由题设可知 2()()||0,z a z a b a +++-=即22||||,z a a b +=- 若2||,a b =则z 的轨迹为一点;a -若2||,a b >则z 的轨迹为圆,圆心在a -,若2||,a b <无意义.第二章 解析函数1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因0()()lim z f z z f z z∆→+∆-∆0()Re()Re lim z z z z z z zz∆→+∆+∆-=∆ 0Re Re Re limz z z z z z z z∆→∆+∆+∆∆=∆0Re lim(Re Re )z zz z z z∆→∆=+∆+∆ 000Re lim(Re )lim(Re ),z x y z xz zz z z x i y ∆→∆→∆→∆∆=+=+∆∆+∆ 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0.3.确定下列函数的解析区域和奇点,并求出导数.(1)(,).az bc d cz d++至少有一不为零 解: 当0c ≠时,()az b f z cz d +=+除d z c =-外在复平面上处处解析, dz c=-为奇点,222()()()()()()()()().()()az bf z cz daz b cz d cz d az b cz d a cz d c az b ad cb cz d cz d +''=+''++-++=++-+-==++当0c =时,显然有0d ≠,故()az b f z d +=在复平面上处处解析,且()af z d'=. 5.设()f z 在区域D 内解析,试证: 222222()|()|4|()|.f z f z x y ∂∂'+=∂∂证: 设 222(),|()|,f z u i v f z u v =+=+ 222(),|()|()().u uu u f z i f z x y x y∂∂∂∂''=-=+∂∂∂∂ 而2222222222222222222222222()|()|()()2()()()(),f z u v u v x y x y u u v v u u v v u v uv xx x x y y y y∂∂∂∂+=+++∂∂∂∂⎡⎤∂∂∂∂∂∂∂∂=+++++++⎢⎥∂∂∂∂∂∂∂∂⎣⎦又()f z 解析,则实部u 及虚部v 均为调和函数.故222222220,0.u u v vu v x yx y∂∂∂∂=+==+=∂∂∂∂则22222222()|()|4(()())4|()|.u uf z f z x y x y∂∂∂∂'+=+=∂∂∂∂ 7.设sin ,px v e y =求p 的值使v 为调和函数,并求出解析函数().f z u iv =+ 解: 要使(,)v x y 为调和函数,则有0.xx yy v v v ∆=+=即2sin sin 0,px px p e y e y -=所以1p =±时,v 为调和函数,要使()f z 解析,则有,.x y y x u v u v ==-1(,)cos cos (),1sin ()sin .px pxx pxpx y u x y u dx e ydx e y y pu e y y pe y pφφ===+'=-+=-⎰⎰所以11()()sin ,()()cos .px px y p e y y p e y C p pφφ'=-=-+即(,)cos ,px u x y pe y C =+故(cos sin ),1,()(cos sin ),1.x z xze y i y C e C pf z e y i y C e C p -⎧++=+=⎪⎨--+=-+=-⎪⎩9.求下列各式的值。
第一章 傅里叶变换内容提要:一 傅里叶变换定义1定义2定义34傅里叶积分定理二 δ函数型序列的充分条件构成δ1.)(21)(,)(21)(,)()( 为傅里叶积分公式即称则若设:dw e dx e x f t f dw e w F t f dt e t f w F iwt iwx iwt iwt ⎰⎰⎰⎰∞+∞--∞+∞-+∞∞--+∞∞-⎥⎦⎤⎢⎣⎡===ππ=)(t f [])(1-w F ℱ;)()()(21逆变换的傅里叶为Fourier w F dw e w F iwt ⎰+∞∞-=π=)(w F [])(t f ;)()()(变换的傅里叶为Fourier t f dt e t f iwt -+∞∞-⎰=ℱ .)(21)(,)(21)(,)()( 为傅里叶积分公式即称则若设:dw e dx e x f t f dw e w F t f dt e t f w F iwt iwx iwt iwt ⎰⎰⎰⎰∞+∞--∞+∞-+∞∞--+∞∞-⎥⎦⎤⎢⎣⎡===ππ满足如下两个条件:若函数)(t f 限个极值点;类间断点,且至多有有上连续或有有限个第一在即条件上满足狄利克雷在实轴的任何有限区间],[)( ,)(],[)( )b a t f Dirichlet b a t f i .],[)( )的反常积分收敛在区间+∞-∞t f ii .)()(,)(21)]0()0([21)(dt e t f w F dw e w F t f t f t f iwtiwt -∞+∞-∞+∞-⎰⎰==-++其中且的傅里叶变换存在,则函数π函数列的该趋向下,,则在)(的某种趋向下,函数若在参数可积,且满足在实轴的任何有限区间设普通函数βεβϕβ++∞∞→==⎰0,1)()(-dt t f t f ).()( )0)(( ))(1()(1)(t t f t f t f δδβϕβϕβϕββ→>=即:型序列,构成一个型序列几个常用 2δ⎪⎩⎪⎨⎧<<===⎩⎨⎧<<=. 0)0( 1)1(1)( . 0)10( 1)( )1其它,,则令其它,εεεεβεεt t f t f t t f ).()(lim 00t t δδδεεε=→+→+型序列,即时为当.)()1(1)(,1)(,)1(1)( )2(22-2πεεεεδπεw w f w dt t f t t f R +===+=⎰+∞∞构造:显然).()(lim 00w w R δδδεεε=→+→+即型序列,时为当.)cos(21sin )()(,sin ,sin )( )3(-⎰⎰-+∞∞=====RRIR dw wt t Rt Rt Rf t dt tt t tt f ππδππ构造:因为).()(lim t t R IR R δδδ=+∞→+∞→型序列,即时为当.2)1(1)(,2,2)( )4(2222-22πβββδππββw G t t ew f w dt eet f -∞+∞--====⎰构造:因为).()(lim 00w w G δδδβββ=→+→+型序列,即时为当函数的积分3δ).)(()()(lim )()()1-00-0处处无穷次可微,定义:t f dt t f t t dt t f t t ⎰⎰+∞∞→+∞∞-=-+εεδδ三 傅立叶变换的性质四 几个常用函数傅里叶变换对1.线性性质2.位移性质)( t f 若ℱ, )(w F 3.微分性质)( n1k ∑=t f C k k . )(1∑=nk k k w F C ℱ )( )1 a t f ±ℱ ;)( )(为实数a w F e iwa ±t iw et f 0)( )2±.)( )(00为实数w w w F ℱ)( t f k 若),,2,1( )(n k w F k =ℱ)( t f 若ℱ, )(w F )( )1 )(t fn ;)( )()(为自然数n w F iw n ℱ)()( )2t f -it n .)( )()(为自然数n w F n ℱ)( t f 若ℱ)(w F 4.积分性质 则ℱ []).(1)(w F iw t g =).( )10)((lim )(1lim )()(lim)()()2000-00-000t f t f dt t f dtt f t t dt t f t t t t =<<+==-=-+++→+→+∞∞→+∞∞⎰⎰⎰θεθεδδδεεεεε函数的筛选性质:2sin 2τw w E).2( 0),2( )()1⎪⎩⎪⎨⎧><=ττt t E t f ℱ)0( )0( 0)0( )()2>⎩⎨⎧<>=-ββt t e t f t 1iw+βℱ习题1.11. 求下列函数的Fourier 变换. (1)ℱ)]([t f =dt e A t i ⎰-τω0=0τωωt i e i A --=)1(ωτωi e i A --.(2) ℱ)]([t f =dt te e t i t⎰+∞∞---ωcos =dt te t i ⎰+∞+-0)1(cos ω+dt te t i ⎰∞--0)1(cos ω由201cos a a dt te at +=⎰+∞-,2001cos cos aa dt te dt te at at +==⎰⎰+∞-∞-, 可知:ℱ)]([t f =22)1(11)1(11ωωωωi i i i -+-++++=22424ωω-+.2. 求Fourier 逆变换. ℱ)]([1ωF -=ωπωωβd e et i ⎰+∞∞--21=ωωπωβωβd e d e it it ⎰⎰∞-++∞+-+0)(0)([21=⎥⎦⎤⎢⎣⎡∞-++∞++-++-010121)()(ωβωβββπit it e it e it=22221t +ββπ=)(22t +βπβ.3. ℱ)]([t f =⎰--⋅ππωdt e t t i sin=-⎰--ππωt d e t i cos =-⎰---⋅--⋅ππωωωππdt e t i te t i t i cos cos=()⎰-----ππωωωωπt d e i e e t i t i t i sin cos=⎰----⋅+-ππωωωωωdt te i i e e t i t i t i sin )(=⎰---+-ππωωωωdt teeeti ti ti sin 2ℱ)(1w iwπδ+)( )5t u )( )3t δℱ 1)( 2w πδ1)4ℱℱ)]([t f =1sin 22-ωωπi由ℱ)()]([1t f F =-ω可知下面的等式成立.4. 求下列函数的Fourier 积分。
积分变换复习题解答一、求下列函数的付氏变换1、设(),0,00,⎩⎨⎧<≥=-t t e t f t β求()[]()[]()[]t f F t f F t f F -+'',1,解:()()()2117152F f t j F f t j ωωβω---''==⎡⎤⎡⎤⎣⎦⎣⎦+()()11415(1)11j j F f t eF f t ej ωωβω---⋅-+==⎡⎤⎡⎤⎣⎦⎣⎦+()()1212151F f t F j ωβω----=-=⎡⎤⎣⎦-2、()()()()1151141722111122{[]}{}itj j F e u t F u t eF u t e j ωωωωωωωωπδωω-----⋅-⋅=+=+=+⎡⎤⎡⎤-=-==+⎡⎤⎢⎥⎣⎦⎣⎦⎣⎦()2(1)11(1)j e j ωπδωω-+⎡⎤=++⎢⎥+⎣⎦3、[]()()112000sin F t j ωωδωωδωω-=+--⎡⎤⎣⎦4、()()()55114173351353j j F u t F u t e F u t e j ωωπδωω----⎡⎤⎡⎤⎛⎫-=-==+⎡⎤⎡⎤ ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭⎣⎦⎣⎦5、()()()()()1181721122d d d F tu t j F u t j F u t j j d d d j πδωπδωωωωωω--⎡⎤'===+=-+⎡⎤⎡⎤⎡⎤⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦6、()()()()()114118111j j j j F t eF t e j F t e j j e ωωωωδδωδωω---⋅---''-===⋅=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦7、()()()()1111111[11]cos F t t F t t t δδπδδππ-++-=++-=⎡⎤⎡⎤⎣⎦⎣⎦8、()110323itF e πδω-⎡⎤=-⎣⎦二、计算:1、()127sin sin 0332t t dt ππδ-+∞-∞⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭⎰2、128sin sin 42242t t dt ππππδ-+∞-∞⎛⎫⎛⎫⎛⎫-+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰三、求卷积:1、设()(),0,00,,0,00,221⎩⎨⎧<≥=⎩⎨⎧<≥=--t t e t f t t e t f t t 求:()()t f t f 21*解:0t <时:12()()0f t f t *=0t ≥时:()()()22212120()()tttt tt t f t f t f f t d e ed ee d e e ττττττττ------*=-===-⎰⎰⎰212,0()()0,0t te e tf t f t t --⎧-≥∴*=⎨<⎩2、设()()212,0,0,0,00,0t t t t f t f t t t ≥⎧≥⎧==⎨⎨<<⎩⎩,求:()()t f t f 21* 解:0t <时:12()()0f t f t *=0t ≥时:()()()24121201()()12ttf t f t f f t d t d t ττττττ*=-=-=⎰⎰ 412,0()()120,0t t f t f t t ⎧≥⎪∴*=⎨⎪<⎩四、求下列函数的拉氏变换: 1、219126333222255[sin5][sin5]5(3)5ts s s s L e t L t s s ---=-=-===+-+ 2、()(1)1221[cos2][cos2]12t ts L et e L e t e s ---+=⋅=⋅++同上题3、()()()(){}22221521812422222222231442[2]1[2][]ss s d d d L t u t L u t e L u t e e ds ds ds s s s s -------⎧⎫⎛⎫-=--==⋅=++⎨⎬ ⎪⎩⎭⎝⎭4、()222511[521]2ts L e t t e s s sδ-+-++=+++- 5、[]272822211sin sin cos cos sin sin cos 444221121s s L t L t t L t t s s s πππ--⎡⎤-⎛⎫⎡⎤⎡⎤-=-=-=-= ⎪⎢⎥⎢⎥⎢⎥+++⎝⎭⎣⎦⎣⎦⎣⎦6、(){}21312191271122[cos2]1[cos2]{[cos2]}2tts s s s d d d sL te t L e t L t ds dsds s -----=-=-⎧⎫=-=-=-⎨⎬+⎩⎭()22222123(1)225d s s s ds s s s ⎧⎫---=-=⎨⎬-+⎩⎭-+ 7、⎥⎦⎤⎢⎣⎡t t L 2sin []21712822sin 2arctan arctan 2222ss s s sL t ds ds s π---+∞+∞+∞====-+⎰⎰ 8、⎥⎦⎤⎢⎣⎡⎰-tt tdt e L 023sin []()21621912622221113sin3sin323t s s L e t L t s ss s -----=+⎡⎤==⋅=⋅⎣⎦++9、20t t e e dt t --+∞-⎰21722000111ln ln 2122t ts L e e ds ds s s s --+∞+∞--+∞+⎛⎫⎡⎤=-=-== ⎪⎣⎦+++⎝⎭⎰⎰10、设()5,122,24,0,4t f t t t ≤<⎧⎪=≤<⎨⎪≥⎩试用单位阶跃函数及延迟了的单位阶跃函数表示()t f ,并求[])(t f L 。
1-41.证明下列各式:2)()1f t ()()()()()23123f t f t f t f t f t ⎡⎤⎡⎤=⎣⎦⎣⎦;6)()()()()()()121212d dd;d d d f t f t f tf t f t f t t t t ⎡⎤==⎣⎦ 10)()()()d t f t u t f ττ-∞=⎰分析:根据卷积的定义证明. 证明: 2) ()()()123f t f t f t ⎡⎤⎣⎦()()()123d f f t f t ττττ+∞-∞⎡⎤=--⎣⎦⎰ ()()()132d f f u f t u du τττ+∞+∞-∞-∞⎡⎤=--⎢⎥⎣⎦⎰⎰ ()()()132d d f f u f t u u τττ+∞+∞-∞-∞=--⎰⎰()()()123d d f f t u f u uτττ+∞+∞-∞-∞⎡⎤=--⎢⎥⎣⎦⎰⎰ ()()()123d f t u f t u f u u +∞-∞⎡⎤=--⎣⎦⎰ ()()()123f t f t f t ⎡⎤=⎣⎦6)()()()()1212d d d d d f t f t f f t t t τττ+∞-∞⎡⎤⎡⎤=⋅-⎢⎥⎣⎦⎣⎦⎰ ()()()()1212dddd dff t f t f t t t τττ+∞-∞⎡⎤=⋅-=⎣⎦⎰, ()()()()1212d d d d d f t f t f t f t t τττ+∞-∞⎡⎤⎡⎤=-⋅⎢⎥⎣⎦⎣⎦⎰ ()()()()1212d d d d d f t f f t f t t t τττ+∞-∞⎡⎤=-⋅=⎢⎥⎣⎦⎰.10) ()()()()d f t u t f u t τττ+∞-∞=-⎰()1,0,t u t t τττ⎛⎫⎧<⎪-= ⎪⎨ ⎪>⎪⎩⎝⎭()d t f ττ-∞=⎰. 2.若()()()()12e ,sin t f t u t f t tu t α-==,求()()12f t f t .注意:不能随意调换()1f t 和()2f t 的位置.解:由()()1e ,0e 0,0t tt f t u t t αα--⎧>⎪==⎨<⎪⎩,()()2sin ,0sin 0,0t t f t tu t t >⎧==⎨<⎩,所以 ()()()()1221f t f t f t f t =()()21d f f t τττ+∞-∞=-⎰要确定()()210f f t ττ-≠的区间,采用解不等式组的方法.因为()()210,0;0,0f t f t ττττ>≠->-≠.即必须满足 00t ττ>⎧⎨->⎩, 即0t ττ>⎧⎨<⎩, 因此()()()()1221f t f t f t f t =()()21d f f t τττ+∞-∞=-⎰()sin ed t t ατττ--=⎰e sin e d t t αατττ-=⎰(分部积分法)()2e sin cos e10ttατααττα-⎡⎤-=⎢⎥+⎣⎦ ()22e sin cos 1e11tαταατταα-⎡⎤-=+⎢⎥++⎣⎦2sin cos e 1tααττα--+=+4 .若()()()()1122,F f t F f t ωω⎡⎤⎡⎤==⎣⎦⎣⎦F F ,证明:()()()()11221*2πF f t t F f ωω⎡⎤⋅=⎣⎦F证明:()()()()121211d 2π2πF F F u F u u ωωω+∞-∞=⋅-⎰()()j 211e d d 2πutF u f t t u ω+∞+∞--∞-∞⎡⎤=-⋅⋅⎢⎥⎣⎦⎰⎰ ()()j 211e d d 2πut F u f t t u ω+∞+∞--∞-∞⎡⎤=-⎢⎥⎣⎦⎰⎰ ()()j 211e d d 2πutF u f t u t ω+∞+∞--∞-∞⎡⎤=-⎢⎥⎣⎦⎰⎰()()j 121e d d 2πut f t F u u t ω+∞+∞--∞-∞⎡⎤=-⎢⎥⎣⎦⎰⎰ ()()j j 121e e d d 2πst tf t F s s t ω+∞+∞--∞-∞⎡⎤=⋅⎢⎥⎣⎦⎰⎰ ()()()()j 1212e d t f t f t t f t f t ω+∞--∞⎡⎤=⋅⋅=⋅⎣⎦⎰F5.求下列函数的Fourier 变换: 1)()()0sin f t t u t ω=⋅; 2)()()0e sin t f t t u t βω-=⋅; 5)()()0j 0e t f t u t t ω=-;解: 1)已知()()1πδj u t ωω⎡⎤=+⎣⎦F ,又 ()()()()()00j j 01sin e e 2jtt f t t u t u t u t ωωω-=⋅=-. 由位移性质有()()()()()0000111πδπδ2j j j f t ωωωωωωωω⎛⎫⎡⎤=-+-+- ⎪⎣⎦ ⎪-+⎝⎭F ()()000220πδδ2j ωωωωωωω⎡⎤=--+-⎣⎦-. 2)由Fourier 变换的定义,有()()j 00e sin e sin e d t t tt u t t u t t ββωωω+∞----∞⎡⎤⋅=⋅⎣⎦⎰F ()j 00sin ed tt t βωω+∞-+=⎰()()()j 000220ej sin cos 0j tt t βωβωωωωβωω-+⎡⎤-+-+∞⎣⎦=++()22j ωβωω=++5)利用位移性质及()u t 的Fourier 变换,有()()0j 0e t u t t u t ω-⎡⎤⎡⎤-=⎣⎦⎣⎦F F ()0j 1e πδj t ωωω-⎛⎫=+ ⎪⎝⎭再由象函数的位移性质,有()()()()000j j 0001e e πδj t tu t t ωωωωωωω--⎡⎤⎡⎤-=+-⎢⎥⎣⎦-⎢⎥⎣⎦F 7.已知某信号的相关函数()21e 4a R ττ-=,求它的能量谱密度()S ω,其中0a >.解 由定义知()()j ed S R ωτωττ+∞--∞=⎰2j 1e e d 4a τωττ+∞---∞=⎰ 02j 2j 011e e d e e d 44a a τωττωτττ+∞----∞=+⎰⎰ ()()()2j 2j 001e 1e 42j 42j a a a a ωτωτωω--++∞=+--∞-+2211142j 2j 4aa a a ωωω⎛⎫=+= ⎪-++⎝⎭ 9.求函数()()()e ,0t f t u t αα-=>的能量谱密度. 解: 因为()()e ,0e0,0t tt f t u t t αα--⎧>⎪==⎨<⎪⎩,()()()()e ,e 0,t t t f t u t t ατατττττ-+-+⎧>-⎪+=+=⎨<-⎪⎩当0τ>时,()()0f t f t τ+≠的区间为()0,+∞,所以()()()()d e ed t t R f t f t t t αταττ+∞+∞-+--∞=+=⎰⎰22011ee d e e e 22t t t αταατααταα+∞-----+∞===--⎰当0τ<时,()()0f t f t τ+≠的区间为(),τ-+∞,所以()()()d R f t f t t ττ+∞-∞=+⎰()e ed t t t ατατ+∞-+--=⎰2eed tt ατατ+∞---=⎰21e e2t ατατα--+∞-=- 21e e 2ατατα-=1e 2ατα= 因此,()1e 2R αττα-=,现在可以求得()f t 的能量谱密度,即 ()()j e d S R ωτωττ+∞--∞=⎰j 1e e d 2ατωττα+∞---∞=⎰()()0j j 01e d e d 2αωταωτττα+∞--+-∞⎡⎤=+⎢⎥⎣⎦⎰⎰ ()()()j j 0111e e 2j j 0αωταωτααωαω--+⎡⎤+∞=+⎢⎥--∞-+⎣⎦1112j j ααωαω⎡⎤=+⎢⎥-+⎣⎦221αω=+。