胡汉才编著《理论力学》课后习题答案第5章习题解答
- 格式:doc
- 大小:801.50 KB
- 文档页数:10
理论力学课后答案第五章(周衍柏)第五章思考题5.1虚功原理中的“虚功”二字作何解释?用虚功原理理解平衡问题,有何优点和缺点?5.2 为什么在拉格朗日方程中,a θ不包含约束反作用力?又广义坐标与广义力的含义如何?我们根据什么关系由一个量的量纲定出另一个量的量纲?5.3广义动量a p 和广义速度a q 是不是只相差一个乘数m ?为什么a p 比a q 更富有意义?5.4既然a q T ∂∂是广义动量,那么根据动量定理,⎪⎪⎭⎫ ⎝⎛∂∂αq T dt d 是否应等于广义力a θ?为什么在拉格朗日方程()14.3.5式中多出了aq T ∂∂项?你能说出它的物理意义和所代表的物理量吗?5.5为什么在拉格朗日方程只适用于完整系?如为不完整系,能否由式()13.3.5得出式()14.3.5?5.6平衡位置附近的小振动的性质,由什么来决定?为什么22s 个常数只有2s 个是独立的?5.7什么叫简正坐标?怎样去找?它的数目和力学体系的自由度之间有何关系又每一简正坐标将作怎样的运动?5.8多自由度力学体系如果还有阻尼力,那么它们在平衡位置附近的运动和无阻尼时有何不同?能否列出它们的微分方程?5.9 dL 和L d 有何区别?a q L ∂∂和aq L ∂∂有何区别? 5.10哈密顿正则方程能适用于不完整系吗?为什么?能适用于非保守系吗?为什么?5.11哈密顿函数在什么情况下是整数?在什么情况下是总能量?试祥加讨论,有无是总能量而不为常数的情况?5.12何谓泊松括号与泊松定理?泊松定理在实际上的功用如何?5.13哈密顿原理是用什么方法运动规律的?为什么变分符号δ可置于积分号内也可移到积分号外?又全变分符号∆能否这样?5.14正则变换的目的及功用何在?又正则变换的关键何在?5.15哈密顿-雅可比理论的目的何在?试简述次理论解题时所应用的步骤.5.16正则方程()15.5.5与()10.10.5及()11.10.5之间关系如何?我们能否用一正则变换由前者得出后者?5.17在研究机械运动的力学中,刘维定理能否发挥作用?何故?5.18分析力学学完后,请把本章中的方程和原理与牛顿运动定律相比较,并加以评价.第五章思考题解答5.1 答:作.用于质点上的力在任意虚位移中做的功即为虚功,而虚位移是假想的、符合约束的、无限小的.即时位置变更,故虚功也是假想的、符合约束的、无限小的.且与过程无关的功,它与真实的功完全是两回事.从∑⋅=iii r F W δδ可知:虚功与选用的坐标系无关,这正是虚功与过程无关的反映;虚功对各虚位移中的功是线性迭加,虚功对应于虚位移的一次变分.在虚功的计算中应注意:在任意虚过程中假定隔离保持不变,这是虚位移无限小性的结果.虚功原理给出受约束质点系的平衡条件,比静力学给出的刚体平衡条件有更普遍的意义;再者,考虑到非惯性系中惯性力的虚功,利用虚功原理还可解决动力学问题,这是刚体力学的平衡条件无法比拟的;另外,利用虚功原理解理想约束下的质点系的平衡问题时,由于约束反力自动消去,可简便地球的平衡条件;最后又有广义坐标和广义力的引入得到广义虚位移原理,使之在非纯力学体系也能应用,增加了其普适性及使用过程中的灵活性.由于虚功方程中不含约束反力.故不能求出约束反力,这是虚功原理的缺点.但利用虚功原理并不是不能求出约束反力,一般如下两种方法:当刚体受到的主动力为已知时,解除某约束或某一方向的约束代之以约束反力;再者,利用拉格朗日方程未定乘数法,景观比较麻烦,但能同时求出平衡条件和约束反力.5.2 答 因拉格朗日方程是从虚功原理推出的,而徐公原理只适用于具有理想约束的力学体系虚功方程中不含约束反力,故拉格朗日方程也只适用于具有理想约束下的力学体系,αθ不含约束力;再者拉格朗日方程是从力学体系动能改变的观点讨论体系的运动,而约束反作用力不能改变体系的动能,故αθ不含约束反作用力,最后,几何约束下的力学体系其广义坐标数等于体系的自由度数,而几何约束限制力学体系的自由运动,使其自由度减小,这表明约束反作用力不对应有独立的广义坐标,故αθ不含约束反作用力.这里讨论的是完整系的拉格朗日方程,对受有几何约束的力学体系既非完整系,则必须借助拉格朗日未定乘数法对拉格朗日方程进行修正.广义坐标市确定质点或质点系完整的独立坐标,它不一定是长度,可以是角度或其他物理量,如面积、体积、电极化强度、磁化强度等.显然广义坐标不一定是长度的量纲.在完整约束下,广义坐标数等于力学体系的自由度数;广义力明威力实际上不一定有力的量纲可以是力也可以是力矩或其他物理量,如压强、场强等等,广义力还可以理解为;若让广义力对应的广义坐标作单位值的改变,且其余广义坐标不变,则广义力的数值等于外力的功由W q r F s i ni i δδθδααα==⋅∑∑==11 知,ααδθq 有功的量纲,据此关系已知其中一个量的量纲则可得到另一个量的量纲.若αq 是长度,则αθ一定是力,若αθ是力矩,则αq 一定是角度,若αq 是体积,则αθ一定是压强等.5.3 答 αp 与αq 不一定只相差一个常数m ,这要由问题的性质、坐标系的选取形式及广义坐标的选用而定。
第五章思考题5、1虚功原理中的“虚功”二字作何解释?用虚功原理理解平衡问题,有何优点与缺点? 5、2 为什么在拉格朗日方程中,a θ不包含约束反作用力?又广义坐标与广义力的含义如何?我们根据什么关系由一个量的量纲定出另一个量的量纲?5、3广义动量a p 与广义速度a q &就是不就是只相差一个乘数m ?为什么a p 比a q &更富有意义?5、4既然aq T &∂∂就是广义动量,那么根据动量定理,⎪⎪⎭⎫ ⎝⎛∂∂αq T dt d &就是否应等于广义力a θ?为什么在拉格朗日方程()14.3.5式中多出了a q T ∂∂项?您能说出它的物理意义与所代表的物理量不?5、5为什么在拉格朗日方程只适用于完整系?如为不完整系,能否由式()13.3.5得出式()14.3.5?5、6平衡位置附近的小振动的性质,由什么来决定?为什么22s 个常数只有2s 个就是独立的?5、7什么叫简正坐标?怎样去找?它的数目与力学体系的自由度之间有何关系又每一简正坐标将作怎样的运动?5、8多自由度力学体系如果还有阻尼力,那么它们在平衡位置附近的运动与无阻尼时有何不同?能否列出它们的微分方程?5、9 dL 与L d 有何区别?a q L ∂∂与aq L ∂∂有何区别? 5、10哈密顿正则方程能适用于不完整系不?为什么?能适用于非保守系不?为什么? 5、11哈密顿函数在什么情况下就是整数?在什么情况下就是总能量?试祥加讨论,有无就是总能量而不为常数的情况?5、12何谓泊松括号与泊松定理?泊松定理在实际上的功用如何?5、13哈密顿原理就是用什么方法运动规律的?为什么变分符号δ可置于积分号内也可移到积分号外?又全变分符号∆能否这样?5、14正则变换的目的及功用何在?又正则变换的关键何在?5、15哈密顿-雅可比理论的目的何在?试简述次理论解题时所应用的步骤、5、16正则方程()15.5.5与()10.10.5及()11.10.5之间关系如何?我们能否用一正则变换由前者得出后者?5、17在研究机械运动的力学中,刘维定理能否发挥作用?何故?5、18分析力学学完后,请把本章中的方程与原理与牛顿运动定律相比较,并加以评价、第五章思考题解答5、1 答:作、用于质点上的力在任意虚位移中做的功即为虚功,而虚位移就是假想的、符合约束的、无限小的、即时位置变更,故虚功也就是假想的、符合约束的、无限小的、且与过程无关的功,它与真实的功完全就是两回事、从∑⋅=ii i r F W ρρδδ可知:虚功与选用的坐标系无关,这正就是虚功与过程无关的反映;虚功对各虚位移中的功就是线性迭加,虚功对应于虚位移的一次变分、在虚功的计算中应注意:在任意虚过程中假定隔离保持不变,这就是虚位移无限小性的结果、虚功原理给出受约束质点系的平衡条件,比静力学给出的刚体平衡条件有更普遍的意义;再者,考虑到非惯性系中惯性力的虚功,利用虚功原理还可解决动力学问题,这就是刚体力学的平衡条件无法比拟的;另外,利用虚功原理解理想约束下的质点系的平衡问题时,由于约束反力自动消去,可简便地球的平衡条件;最后又有广义坐标与广义力的引入得到广义虚位移原理,使之在非纯力学体系也能应用,增加了其普适性及使用过程中的灵活性、由于虚功方程中不含约束反力、故不能求出约束反力,这就是虚功原理的缺点、但利用虚功原理并不就是不能求出约束反力,一般如下两种方法:当刚体受到的主动力为已知时,解除某约束或某一方向的约束代之以约束反力;再者,利用拉格朗日方程未定乘数法,景观比较麻烦,但能同时求出平衡条件与约束反力、5.2 答 因拉格朗日方程就是从虚功原理推出的,而徐公原理只适用于具有理想约束的力学体系虚功方程中不含约束反力,故拉格朗日方程也只适用于具有理想约束下的力学体系,αθ不含约束力;再者拉格朗日方程就是从力学体系动能改变的观点讨论体系的运动,而约束反作用力不能改变体系的动能,故αθ不含约束反作用力,最后,几何约束下的力学体系其广义坐标数等于体系的自由度数,而几何约束限制力学体系的自由运动,使其自由度减小,这表明约束反作用力不对应有独立的广义坐标,故αθ不含约束反作用力、这里讨论的就是完整系的拉格朗日方程,对受有几何约束的力学体系既非完整系,则必须借助拉格朗日未定乘数法对拉格朗日方程进行修正、广义坐标市确定质点或质点系完整的独立坐标,它不一定就是长度,可以就是角度或其她物理量,如面积、体积、电极化强度、磁化强度等、显然广义坐标不一定就是长度的量纲、在完整约束下,广义坐标数等于力学体系的自由度数;广义力明威力实际上不一定有力的量纲可以就是力也可以就是力矩或其她物理量,如压强、场强等等,广义力还可以理解为;若让广义力对应的广义坐标作单位值的改变,且其余广义坐标不变,则广义力的数值等于外力的功由W q r F s i ni i δδθδααα==⋅∑∑==11ρρ知,ααδθq 有功的量纲,据此关系已知其中一个量的量纲则可得到另一个量的量纲、若αq 就是长度,则αθ一定就是力,若αθ就是力矩,则αq 一定就是角度,若αq 就是体积,则αθ一定就是压强等、5.3 答 αp 与αq &不一定只相差一个常数m ,这要由问题的性质、坐标系的选取形式及广义坐标的选用而定。
理论力学(郝桐生)第一章习题1-1.画出下列指定物体的受力图。
解:习题1-2.画出下列各物系中指定物体的受力图。
解:习题1-3.画出下列各物系中指定物体的受力图。
解:第二章习题2-1.铆接薄钢板在孔心A、B和C处受三力作用如图,已知P1=100N沿铅垂方向,P2=50N沿AB方向,P3=50N沿水平方向;求该力系的合成结果。
解:属平面汇交力系;合力大小和方向:习题2-2.图示简支梁受集中荷载P=20kN,求图示两种情况下支座A、B的约束反力。
解:(1)研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:(2) 研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:习题2-3.电机重P=5kN放在水平梁AB的中央,梁的A端以铰链固定,B端以撑杆BC支持。
求撑杆BC所受的力。
解:(1)研究整体,受力分析:(2) 画力三角形:(3) 求BC受力习题2-4.简易起重机用钢丝绳吊起重量G=2kN的重物,不计杆件自重、磨擦及滑轮大小,A、B、C三处简化为铰链连接;求杆AB和AC所受的力。
解:(1) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆受拉,BC杆受压。
(2) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆实际受力方向与假设相反,为受压;BC杆受压。
习题2-5.三铰门式刚架受集中荷载P作用,不计架重;求图示两种情况下支座A、B的约束反力。
解:(1) 研究整体,受力分析(AC是二力杆);画力三角形:求约束反力:(2) 研究整体,受力分析(BC是二力杆);画力三角形:几何关系:求约束反力:习题2-6.四根绳索AC、CB、CE、ED连接如图,其中B、D两端固定在支架上,A端系在重物上,人在E点向下施力P,若P=400N,α=4o,求所能吊起的重量G。
解:(1) 研究铰E,受力分析,画力三角形:由图知:(2) 研究铰C,受力分析,画力三角形:由图知:习题2-7.夹具中所用的两种连杆增力机构如图所示,书籍推力P作用于A点,夹紧平衡时杆AB与水平线的夹角为;求对于工件的夹紧力Q和当α=10o时的增力倍数Q/P。
理论力学教科书课后习题及解析第一章偶,大小是260Nm,转向是逆时针。
.求图示平面力系的合成结果,长度单位为m1习题4-习题4-3.求下列各图中平行分布力的合力和对于A点之矩。
A点的矩是:(1) 解:平行力系对O(1) 解:取点为简化中心,求平面力系的主矢:B取点为简化中心,平行力系的主矢是:求平面力系对点的主矩:O 点的主矩是:B 平行力系对B RB向点简化的结果是一个力,且:M和一个力偶合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力(2) B.理论力学教科书课后习题及解析A,且:M向A点简化的结果是一个力如图所示;R和一个力偶A如图所示;将,使满足:d R向下平移一段距离B的大小等于载荷分布的其几何意义是:。
R最后简化为一个力R,大小等于R B,使满足:d R将向右平移一段距离A矩形面积,作用点通过矩形的形心。
A(2) 取点为简化中心,平行力系的主矢是:的大小等于载荷分布的R。
其几何意义是:RR最后简化为一个力,大小等于A三角形面积,作用点通过三角形的形心。
点的主矩是:A平行力系对.理论力学教科书课后习题及解析列平衡方程:。
.求下列各梁和刚架的支座反力,长度单位为习题4-4m解方程组:反力的实际方向如图示。
校核:解:(1) 研究AB杆,受力分析,画受力图:结果正确。
(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:理论力学教科书课后习题及解析(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:列平衡方程:反力的实际方向如图示。
校核:解方程组:结果正确。
.理论力学教科书课后习题及解析反力的实际方向如图示。
校核:结果正确。
的约束反力A.重物悬挂如图,已知习题4-5G=1.8kN,其他重量不计;求铰链和杆BC所受的力。
列平衡方程:解方程组:BC是二力杆),画受力图:研究整体,受力分析((1) 解:反力的实际方向如图示。
理论力学(郝桐生)第一章习题1-1.画出下列指定物体的受力图。
解:习题1-2.画出下列各物系中指定物体的受力图。
解:习题1-3.画出下列各物系中指定物体的受力图。
解:第二章习题2-1.铆接薄钢板在孔心A、B和C处受三力作用如图,已知P1=100N沿铅垂方向,P2=50N沿AB方向,P3=50N沿水平方向;求该力系的合成结果。
解:属平面汇交力系;合力大小和方向:习题2-2.图示简支梁受集中荷载P=20kN,求图示两种情况下支座A、B的约束反力。
解:(1)研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:(2) 研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:习题2-3.电机重P=5kN放在水平梁AB的中央,梁的A端以铰链固定,B端以撑杆BC支持。
求撑杆BC所受的力。
解:(1)研究整体,受力分析:(2) 画力三角形:(3) 求BC受力习题2-4.简易起重机用钢丝绳吊起重量G=2kN的重物,不计杆件自重、磨擦及滑轮大小,A、B、C三处简化为铰链连接;求杆AB和AC所受的力。
解:(1) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆受拉,BC杆受压。
(2) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆实际受力方向与假设相反,为受压;BC杆受压。
习题2-5.三铰门式刚架受集中荷载P作用,不计架重;求图示两种情况下支座A、B的约束反力。
解:(1) 研究整体,受力分析(AC是二力杆);画力三角形:求约束反力:(2) 研究整体,受力分析(BC是二力杆);画力三角形:几何关系:求约束反力:习题2-6.四根绳索AC、CB、CE、ED连接如图,其中B、D两端固定在支架上,A端系在重物上,人在E点向下施力P,若P=400N,α=4o,求所能吊起的重量G。
解:(1) 研究铰E,受力分析,画力三角形:由图知:(2) 研究铰C,受力分析,画力三角形:由图知:习题2-7.夹具中所用的两种连杆增力机构如图所示,书籍推力P作用于A点,夹紧平衡时杆AB与水平线的夹角为;求对于工件的夹紧力Q和当α=10o时的增力倍数Q/P。
《理论力学》第五章作业参考答案习题5-5解: 设当线段AB 水平时套管A 所处的位置为原点,则根据几何关系,222l x AB +=套管A 的运动方程可以写为:22l AB x -=因此,套管A 的速度dtdABx l x dt dABl AB ABdtdx v 2222+=-==由于绳索以等速拉下时,线段AB 缩短,故0v dtdAB=-,所以 022v xl x v +-=(即方向向上)相应地,套管A 的加速度32202220x l v x dt dx l x dt dAB x v dt dv a -=⎪⎪⎪⎪⎭⎫ ⎝⎛+--== (即方向向上)答:套管A 的速度和加速度与距离x 的关系分别为:022v xl x v +-=和3220xlv a -=。
习题5-10解:由于动点M 的切向加速度与速度均沿切线方向τ,根据题意: ()βτcos ,cos ==aaa t22n t a a a +=所以动点M 的切向加速度和法向加速度分别为 66.82310cos =⨯==βa a t (m/s 2)566.8102222=-=-=t n a a a (m/s 2)又动点M 的速度为j i v34+=,所以53422=+=v (m/s)根据关系式ρ2v a n =我们有:55522===n a v ρ(m)答:轨迹在动点密切面内的曲率半径为5m 、切向加速度为8.66m/s 2。
习题5-11解:根据题意,小环M 的运动方程可以写做:22x vty pvt⎧=⎨=⎩ 所以小环M 的速度:22x yv x v pv p v y v x pvt ⎧==⎪⎪⎨⎪===⎪⎩2212M x y pv v v v x=+=+小环M 的加速度:202x x y y a v v p a v x x⎧==⎪⎪⎨⎪==-⎪⎩22M y v p a a xx==-答:小环M 的速度和加速度分别为12p v x +和22v p xx-。
理论力学参考答案第5章第5章摩擦· ·47· 47·第5章摩擦一、是非题正确的在括号内打“√”、错误的打“×” 1静滑动摩擦力与最大静滑动摩擦力是相等的。
× 2最大静摩擦力的方向总是与相对滑动趋势的方向相反。
√ 3摩擦定律中的正压力即法向约束反力是指接触面处物体的重力。
× 4当物体静止在支撑面上时支撑面全约束反力与法线间的偏角不小于摩擦角。
× 5斜面自锁的条件是斜面的倾角小于斜面间的摩擦角。
√ 二、填空题1当物体处于平衡时静滑动摩擦力增大是有一定限度的它只能在0≤Fs≤Fsmax范围内变化而动摩擦力应该是不改变的。
2静滑动摩擦力等于最大静滑动摩擦力时物体的平衡状态称为临界平衡状态。
3对于作用于物体上的主动力若其合力的作用线在摩擦角以内则不论这个力有多大物体一定保持平衡这种现象称为自锁现象。
4当摩擦力达到最大值时支撑面全约束反力与法线间的夹角为摩擦角。
5重量为G的均质细杆AB与墙面的摩擦系数为0.6f如图5.12所示则摩擦力为0。
6物块B重2kNP物块A重5kNQ在B上作用一水平力F如图5.13所示。
当系A之绳与水平成30角B与水平面间的静滑动摩擦系数s102f.物块A与B之间的静滑动摩擦系数s2025f.要将物块B拉出时所需水平力F的最小值为2.37kN。
A CB G A B F 图5.12 图5.13 ·48·理论力学·48·三、选择题1如图5.14所示重量为P的物块静止在倾角为的斜面上已知摩擦系数为sfsF为摩擦力则sF的表达式为B 临界时sF的表达式为 A 。
A sscosFfP B ssinFP C sscosFfP D ssinFP NF P sF 图5.14 2重量为G的物块放置在粗糙的水平面上物块与水平面间的静摩擦系数为sf今在物块上作用水平推力P 后物块仍处于静止状态如图5.15所示那么水平面的全约束反力大小为C 。
第五章习题解答5.1解如题5.1.1图杆受理想约束,在满足题意的约束条件下杆的位置可由杆与水平方向夹角所唯一确定。
杆的自由度为1,由平衡条件:即mg y =0①变换方程y=2rcos sin-= rsin2②故③代回①式即因在约束下是任意的,要使上式成立必须有:rcos2-=0④又由于cos=故cos2=代回④式得5.2解如题5.2.1图三球受理想约束,球的位置可以由确定,自由度数为1,故。
得由虚功原理故①因在约束条件下是任意的,要使上式成立,必须故②又由得:③由②③可得5.3解如题5.3.1图,在相距2a的两钉处约束反力垂直于虚位移,为理想约束。
去掉绳代之以力T,且视为主动力后采用虚功原理,一确定便可确定ABCD的位置。
因此自由度数为1。
选为广义坐。
由虚功原理:w①又取变分得代入①式得:化简得②设因在约束条件下任意,欲使上式成立,须有:由此得5.4解自由度,质点位置为。
由①由已知得故②约束方程③联立②③可求得或又由于故或5.5解如题5.5.1图按题意仅重力作用,为保守系。
因为已知,故可认为自由度为1.选广义坐标,在球面坐标系中,质点的动能:由于所以又由于故取Ox为零势,体系势能为:故力学体系的拉氏函数为:5.6解如题5.6.1图.平面运动,一个自由度.选广义坐标为,广义速度因未定体系受力类型,由一般形式的拉格朗日方程①在广义力代入①得:②在极坐标系下:③故将以上各式代入②式得5.7解如题5.7.1图又由于所以①取坐标原点为零势面②拉氏函数③代入保守系拉格朗日方程得代入保守系拉格朗日方程得5.8解:如图5.8.1图.(1)由于细管以匀角速转动,因此=可以认为质点的自由度为1.(2)取广义坐标.(3)根据极坐标系中的动能取初始水平面为零势能面,势能:拉氏函数①(4),代入拉氏方程得:(5)先求齐次方程的解.②特解为故①式的通解为③在时:④⑤联立④⑤得将代回式③可得方程的解为:5.9解如题5.9.1图.(1)按题意为保守力系,质点被约束在圆锥面内运动,故自有度数为2. (2)选广义坐标,.(3)在柱坐标系中:以面为零势能面,则:拉氏函数-①(4)因为不显含,所以为循环坐标,即常数②对另一广义坐标代入保守系拉氏方程③有得④所以此质点的运动微分方程为(为常数)所以5.10解如题5.10.1图.(1)体系自由度数为2.(2)选广义坐标(3)质点的速度劈的速度故体系动能以面为零势面,体系势能:其中为劈势能.拉氏函数①(4)代入拉格郎日方程得:②代入拉格郎日方程得③联立②,③得5.11 解如题5.11.1图(1)本系统内虽有摩擦力,但不做功,故仍是保守系中有约束的平面平行运动,自由度(2)选取广义坐标(3)根据刚体力学其中绕质心转动惯量选为零势面,体系势能:其中C为常数.拉氏函数(4)代入保守系拉氏方程得:对于物体,有5.12解如题5.12.1图.(1)棒作平面运动,一个约束,故自由度. (2)选广义坐标(3)力学体系的动能根据运动合成又故设为绕质心的回转半径,代入①得动能②(4)由③(其中)则④因为、在约束条件下任意且独立,要使上式成立,必须:⑤(5)代入一般形式的拉氏方程得:⑥又代入一般形式的拉氏方程得:⑦⑥、⑦两式为运动微分方程(6)若摆动角很小,则,代入式得:,代入⑥⑦式得:⑧又故代入⑧式得:(因为角很小,故可略去项)5.13解如题5.13.1图(1)由于曲柄长度固定,自由度.(2)选广义坐标,受一力矩,重力忽略,故可利用基本形式拉格朗日方程:①(3)系统动能②(4)由定义式③(5)代入①得:得5.14.解如题5.14.1图.(1)因体系作平面平行运动,一个约束方程:(2)体系自由度,选广义坐标.虽有摩擦,但不做功,为保守体系(3)体系动能:轮平动动能轮质心转动动能轮质心动能轮绕质心转动动能.①以地面为零势面,体系势能则保守系的拉氏函数②(1)因为不显含,得知为循环坐标.故=常数③开始时:则代入得又时,所以5.15解如题5.15.1图(1)本系统作平面平行运动,干限制在球壳内运动,自由度;选广义坐标,体系摩擦力不做功,为保守力系,故可用保守系拉氏方程证明①(2)体系动能=球壳质心动能+球壳转动动能+杆质心动能+杆绕中心转动动能②其中代入②得以地面为零势面,则势能:(其中为常数)(3)因为是循环坐标,故常熟③而代入①式得④联立③、④可得(先由③式两边求导,再与④式联立)⑤⑤试乘并积分得:又由于当5.16解如题图5.16.1.(1)由已知条件可得系统自由度.(2)取广义坐标.(3)根据刚体力学,体系动能:①又将以上各式代入①式得:设原点为零势能点,所以体系势能体系的拉氏函数②(1)因为体系只有重力势能做工,因而为保守系,故可采用③代入③式得即(5)解方程得5.17解如题5.17.1图(1)由题设知系统动能①取轴为势能零点,系统势能拉氏函数②(2)体系只有重力做功,为保守系,故可采用保守系拉氏方程.代入拉氏方程得:又代入上式得即③同理又代入上式得④令代入③④式得:欲使有非零解,则须有解得周期5.18解如题5.18.1图(1)系统自由度(2)取广义坐标广义速度(3)因为是微震动,体系动能:以为势能零点,体系势能拉氏函数(4)即①同理②同理③设代入①②③式得欲使有非零解,必须解之又故可得周期5.19解如题5.19.1图(1)体系自由度(2)取广义坐标广义速度(3)体系动能体系势能体系的拉氏函数(4)体系中只有弹力做功,体系为保守系,可用①将以上各式代入①式得:②先求齐次方程③设代入③式得要使有非零,必须即又故通解为:其中又存在特解有②③式可得式中及为积分常数。
第5章 点的复合运动分析5-1 曲柄OA 在图示瞬时以ω0绕轴O 转动,并带动直角曲杆O 1BC 在图示平面内运动。
若d 为已知,试求曲杆O 1BC 的角速度。
解:1、运动分析:动点:A ,动系:曲杆O 1BC ,牵连运动:定轴转动,相对运动:直线,绝对运动:圆周运动。
2、速度分析:r e a v v v +=0a 2ωl v =;0e a 2ωl v v ==1e1ωω==AO v BCO (顺时针)5-2 图示曲柄滑杆机构中、滑杆上有圆弧滑道,其半径cm 10=R ,圆心O 1在导杆BC 上。
曲柄长cm 10=OA ,以匀角速rad/s 4πω=绕O 轴转动。
当机构在图示位置时,曲柄与水平线交角 30=φ。
求此时滑杆CB 的速度。
解:1、运动分析:动点:A ,动系:BC ,牵连运动:平移,相对运动:圆周运动,绝对运动:圆周运动。
2、速度分析:r e a v v v += πω401a =⋅=A O v cm/s ; 12640a e ====πv v v BC cm/s5-3 图示刨床的加速机构由两平行轴O 和O 1、曲柄OA 和滑道摇杆O 1B 组成。
曲柄OA 的末端与滑块铰接,滑块可沿摇杆O 1B 上的滑道滑动。
已知曲柄OA 长r 并以等角速度ω转动,两轴间的距离是OO 1 = d 。
试求滑块滑道中的相对运动方程,以及摇杆的转动方程。
解:分析几何关系:A 点坐标 d t r x +=ωϕcos cos 1 (1) t r x ωϕsin sin 1= (2) (1)、(2)两式求平方,相加,再开方,得: 1.相对运动方程trd r d t r d t rd t r x ωωωωcos 2sin cos 2cos 22222221++=+++=将(1)、(2)式相除,得: 2.摇杆转动方程: dt r tr +=ωωϕcos sin tandt r t r +=ωωϕcos sin arctan5-4 曲柄摇杆机构如图所示。
5-1 凸轮以匀角速度ω绕O 轴转动,杆AB 的A 端搁在凸轮上。
图示瞬时AB 杆处于水平位置,OA 为铅直。
试求该瞬时AB 杆的角速度的大小及转向。
解: r e a v v v += 其中,22e r v e -=ω
e v v e a ωφ==tg
所以 l
e l v a AB ωω==
(逆时针)
5-2. 平底顶杆凸轮机构如图所示,顶杆AB 可沿导轨上下移动,偏心圆盘绕轴O 转动,轴O 位于顶杆轴线上。
工作时顶杆的平底始终接触凸轮表面。
该凸轮半径为R ,偏心距e OC =,凸轮绕轴O 转动的角速度为ω,OC 与水平线成夹角ϕ。
求当︒=0ϕ时,顶杆的速度。
(1)运动分析
轮心C 为动点,动系固结于AB ;牵连运动为上下直线平移,相对运动为与平底平行直线,绝对运动为绕O 圆周运动。
(2)速度分析,如图b 所示
5-3. 曲柄CE 在图示瞬时以ω0绕轴E 转动,并带动直角曲杆ABD 在图示平面内运动。
若d 为已知,试求曲杆ABD 的角速度。
解:1、运动分析:动点:A ,动系:曲杆O 1BC ,牵连运动:定轴转动,相对运动:直线,绝对运动:圆周运动。
2、速度分析:r e a
v v v +=
0a 2ωl v =;0e a 2ωl v v ==
01e
1
ωω==
A
O v BC O (顺时针) 5-4. 在图示平面机构中,已知:AB OO =1,cm 31===r B O OA ,摇杆D O 2在
D 点与套在A
E 杆上的套筒铰接。
OA 以匀角速度rad/s 20=ω转动,
cm 332==l D O 。
试求:当︒=30ϕ时,D O 2的角速度和角加速度。
解:取套筒D 为动点,动系固连于AE 上,牵连运动为平动 (1)由r e a v v v += ① 得D 点速度合成如图(a ) 得 ϕtg e a v v =, 而r v e 0ω= 因为 r v a 033
1
ω⨯=
,所以 rad/s 67.02
==
l
v a
D O ω 方向如图(a)所示
(2)由r e n
a a a a a a +=+τ ②
得D 点加速度分析如图(b ) 将②式向DY 轴投影得
θϕϕτsin sin cos e n a a a a a -=-错了 而r a l
a e D O n a 2
02
2
ωω==
θϕsin sin r l =
所以ϕ
θ
ϕτ
cos sin sin e n
a a a a a -=
2rad/s 05.2cos sin sin 2
-=-==ϕ
θϕετl a a l a e n a a D
O 什么东西,方向与图(b)所示相反。
.
5-5.图示铰接平行四边形机构中,m m 10021==B O A O ,又AB O O =21,杆A O 1以等角速度s rad 2=ω绕1O 轴转动。
杆AB 上有一套筒C ,此筒与杆CD 相铰接。
机构的各部件都在同一铅直面内。
求当︒=60ϕ时,杆CD 的速度和加速度。
5-6. 平面内的曲柄连杆机构带动摇杆EH 绕E 轴摆动,在连杆ABD 上装有两个滑块,滑
块B 沿水平槽滑动,而滑块D 则沿摇杆EH 滑动。
已知:曲柄OA 以匀角速度ω逆时针转动,OA =AB =BD =r 。
在图示位置时=300,EHOE 。
试求该瞬时摇杆EH 的角速度ωE 和角加速度αE 。
5-7图示圆盘绕AB 轴转动,其角速度rad/s 2t =ω。
点M 沿圆盘半径ON 离开中
心向外缘运动,其运动规律为mm 402t OM =。
半径ON 与AB 轴间成︒60倾角。
求当s 1=t 时点M 的绝对加速度的大小。
解 点M 为动点,动系Oxyz 固结于圆盘;牵连运动为定轴转动,相对运动为沿
径向直线运动,绝对运动为空间曲线。
其中轴x 垂直圆盘指向外,加速度分析如图所示,当t =1 s 时
代入数据得
5-8.半径r 的圆环以匀角速度ω绕垂直于 纸面的O 轴转动,OA 杆固定于水平方向,小环M 套在大圆环及杆上。
试用点的合成运动方法求当OC 垂直于CM 时,小环M 的速度和加速度。
解:以小环M 为动点,圆环上固结动系 (1)求
ω
ωω
ωr V r V r OM V V V V M r e r
e M 2 ,2 2 ===
=+=得式中
方向如图所示。
(2)求M αρ
22 2
2
2 2
2
4
2
4
/
2
,
45
cos
45
cos
,
ω
ω
ω
ω
ω
ω
ξ
α
α
α
α
ατ
r
a
r
V
a
r
r
V
a
r
M
O
a
a
a
a
a
M
r
k
r
n
r
n
e
k
n
r
n
e
M
k
r
n
r
n
e
M
=
=
=
=
=
=
⋅
=
-
+
=
+
+
+
=
得
式中
得
轴投影
上式在
ρ
ρ
ρ
ρ
ρ
ρ
ο
ο
方向如图所示。
5-9.已知:OA杆以匀角速度ω0=2rad/s绕O轴转动,半径r=2cm的小轮沿OA 杆作无滑动的滚动,轮心相对OA杆的运用规律b=4t2(式中b以cm计,t以s 计)。
当t=1s时,=60°,试求该瞬时轮心O1的绝对速度和绝对加速度。
解:动点:轮心O1,动系:固结OA杆
r
e
a
v
v
v+
=
2
2
y 222
21/2
0r
e 2r 2e cm/s cm/s cm/s cm/s cm/s cm/s cm/s
)]cos(63.4v 2v v [v
cm/s cm/s 32524626862683229179488948212
200001.)a a (a .sin a a a a .cos a a ,a v a .a a a a a .v v .OO v /y x n e c r n e x r r c n e c
r n e a a r e =+==-==-=====++==-+===⋅=ωω
5-10. 图示直角曲杆OBC 绕O 轴转动,使套在其上的小环P 沿固定直杆OA 滑动。
已知:m 1.0=OB ,曲杆的角速度s
rad
5
.0=ω,角加速度为零。
求当︒=60ϕ时,小环P 的速度和加速度。
解:1、运动分析(图5-4):
动点:小环M ;动系:固连于OBC ; 绝对运动:沿OA 杆的直线运动; 相对运动:沿BC 杆的直线运动;
牵连运动:绕O 点的定轴转动。
2、速度分析:
r e a v v v += (a ) 其中 v a 、v e 、v r 方向如图所示。
v e =OP ω⋅=×=s ;
于是(a)式中只有v a 、v r 二者大小未知。
从而由速度平行四边形解得小环M 的速度
v a
e =s 此外,还可求得
v r =2 v e =s 。
2.加速度分析(图5-10)。
a a =en a +r a +C a
应用投影方法,将上式加速度合成定理的矢量方程沿垂直BC 方向投影,有
a en cos cos C a a a =-+ϕϕ a en 2C a a a =-+ 由此解得
35.0a ==a a M m/s 2
方向如图所示。
5-11.绕轴O 转动的圆盘及直杆OA 上均有一导槽,两导槽间有一活动销子M 如图所示,m 1.0=b 。
设在图示位置时,圆盘及直杆的角速度分别为s rad 91=ω和
s rad 32=ω。
求此瞬时销子M 的速度和加速度。
解(1)运动分析
①活动销子M 为动点,动系固结于轮O;牵连运动为绕O 定轴转动,相对运动为沿轮上导槽直线,绝对运动为平面曲线。
②活动销子M 为动点,动系固结于杆OA;牵连运动为绕O 定轴转动,相对运动为沿OA 直线,绝对运动为平面曲线。
速度分析如图b 所示,由式(1)、(2)得
5-12.直线AB以大小为
v的速度沿垂直于AB的方向向上移动;直线CD以大小
1
为
v的速度沿垂直于CD的方向向左上方移动,如图所示。
如两直线间的交角为2
,求两直线交点M的速度和加速度。