高数习题第五章习题黄立宏第4版
- 格式:doc
- 大小:642.50 KB
- 文档页数:16
高等数学一第5章课后习题详解课后习题全解习题5-1★★1.利用定积分的定义计算由抛物线21y x =+,直线x a =,x b =()b a >及横轴所围成的图形的面积知识点:定积分的定义及几何意义 思路:根据求定积分的三步骤做 解:将[],a b 分成n 等分,取(1,2,)i i n ξ=为第i 个小区间1[(),()]i ia b a a b a n n-+-+-的右端点,则,i b a x n λ-=∆=,i b aa i nξ-=+ 显然, 0,n λ→⇔→∞于是根据定积分的几何意义,该图形面积lim ()nbi i ai A ydx y x λξ→===∆∑⎰ 21lim [()1]nn i b a b aa in n→∞=--=++∑ 22221()lim [12]n n i b a b a b a a ai i n n n→∞=---=+++∑222211()lim [(1)2]nnn i i b a b a b a n a a i in n n →∞==---=+++∑∑22232()(1)()1lim{()[1(1)(21)]}26n a b a n n b a b a a n n n n n →∞-+-=-+++++221()11()lim[1()(1)(1)(2)]6n b a b a a a b a n n n→∞-=-++-++++ 222()()[1]3b a b a a ab a -=-++-+33().3b a b a -=+- ★★2.利用定积分的定义计算下列积分:知识点:定积分的定义 思路:根据求定积分的三步骤做(1)baxdx ⎰()a b <.解:易见函数[](),f x x C a b =∈,从而可积,将[],a b 分成n 等分,则,i b ax nλ-=∆=于是0,n λ→⇔→∞;取(1,2,)i i n ξ=为第i 个小区间的右端点,则,0,1,2,,1,ib aa ii n nξ-=+=-所以110lim ()lim ()n n bi i an i i b a b axdx f x a in nλξ--→→∞==--=∆=+∑∑⎰1()lim{[(0121)]}n b ab a na n n n→∞-=-+++++-2(1)()lim[]2n b a n n b a a n →∞--=-+1()lim[(1)]2n b a b a a n→∞-=-+-221()()().22b a b a a b a -=-+=-(2)1ln exdx ⎰解:用分点(0,1,,)i ni x e i n ==划分区间[]1,e :11,1,2,,i i nni i i x x x e e i n --∆=-=-=, 取i ξ是区间右端点,则 ,()ln()ln ,i i nnii i i i x e f e nξξξ=====作和,并取极限得:111ln lim ()lim ()i i nnenn i i n n i i i xdx f x e e nξ-→∞→∞===∆=-∑∑⎰111111lim{[()]}i i i nn n n nn i i i i e e e n n n --→∞==-=-+∑∑11111(1)lim lim (1)i nn n n i n e e e e n n e -→∞→∞=-=-=--∑111(1)lim ()1n n e e n e →∞=--- 记()1xx g x e =-,则当0x →时,()g x 是0型的,由洛必达法则, 有 001lim lim 11x xx x x e e →→==---从而,当n →+∞时,有111lim 11n nne →+∞=--,故1ln (1) 1.exdx e e =+-=⎰★3.利用定积分的几何意义,说明下列等式:(1)121xdx =⎰.知识点:定积分的几何意义思路:定积分的几何意义为被积函数与边界所形成曲边梯形的面积解:等式左边为直线2y x =与x 轴和1x =三条直线所围成的面积,该面积等于11212==等式右边. (2)sin 0xdx ππ-=⎰解: 等式左边为正弦曲线sin y x =与x 轴在x π=及x π=-之间所围成的面积,其左右两边面积互为相反数. 则sin ()0xdx A A ππ-=-+==⎰等式右边★★4.用定积分的几何意义求a⎰(0)b >的值.知识点:定积分的几何意义思路:定积分的几何意义为被积函数与边界所形成曲边梯形的面积 解:=是以2a b +为圆心,2b a-为半径的上半圆,其面积为:2221()()2228b a b a S r πππ--===由定积分的几何意义知:2().8ab a π-=⎰★★★5.试将和式的极限112lim p p pp n n n +→∞+++(0)p >表示成定积分.知识点:定积分的定义思路:根据定积分的定义推导过程可知,求和的极限公式可表示为定积分解: 112112limlim [()()()]p p p p pp p n n n n n n n nn +→∞→∞+++=+++11lim ()n pn i i n n→∞==∑设()p f x x =,则用定义求解1()f x dx ⎰为:①、等分[0,1]为n 个小区间:11[,], 1,2,, i i ii n x n nn-=∆=②、求和:取区间1[,]i i n n -上的右端点为i ξ,即i in ξ=,作和:111()n ni i i i i f x nn ξ==∆=⨯∑∑③、求极限:011111lim()lim ()lim ()nnn p pi i n n i i i i i f x nn n n λξ→→∞→∞===∆=⨯=∑∑∑∴1101121lim lim ()p p p n pp p n n i n i x dx n n n+→∞→∞=+++==∑⎰ ★★★6.有一河,宽为200米,从一岸到正对岸每隔20米测量一次水深,测得数据如下:试用梯形公式求此河横截面面积的近似值.知识点:定积分的几何意义思路:由定积分定义知:求定积分(曲边梯形面积)的第二步:用小矩形面积近似代替小曲边梯形面积,即1()()ii x i i x f x f x dx ξ-∆≈⎰,若用小梯形面积近似代替小曲边梯形面积则为:111[()()]()2i i x i i i x f x f x x f x dx --+∆≈⎰。
习题4-11. 利用定义计算下列定积分: 定积分 定积分的概念定积分的定义(1) d ();b ax x a b <⎰ 10(2)e d .x x ⎰解:(1)将区间[a , b ]n 等分,分点为(), 1,2,,1;i i b a x a i n n-=+=-L 记每个小区间1[,]i i x x -长度为,i b ax n-∆=取, 1,2,,,i i x i n ξ==L 则得和式211()2(1)()[()]()2nni i i i i b a b a n n f x a b a a b a n n n ξ==--+∆=+-⋅=-+∑∑ 由定积分定义得220122()(1) d lim ()lim[()]21().2nbi i an i b a n n x x f x a b a nb a λξ→→∞=-+=∆=-+=-∑⎰(2) 将区间[0, 1] n 等分,分点为 (1,2,,1),i i x i n n ==-L 记每个小区间长度1,i x n∆=取 (1,2,,),i i x i n ξ==L 则和式111()innni i i i f x enξ==∆=∑∑ 12101111111e d lim e lim (e e e )1e (1e )1e (e 1)limlim 1e e 11e (e 1)1lim e 1.1i nn xn n n n n n i n n n nn n n n n x n n n nn n n →∞→∞=→∞→∞→∞==+++--==---==-∑⎰L2. 利用定积分概念求下列极限:定积分 定积分的概念定积分的定义111(1)lim 122n n n n →+∞⎛⎫+++ ⎪++⎝⎭L ;21(2)lim n n →+∞+L解:(1)原式110011111lim d ln 2.ln(1)121111n x x n n xnn n →+∞⎛⎫+++⎪=⋅===++++ ⎪+⎝⎭⎰L (2)原式13200122lim ..33n x x n →+∞====⎰L 3. 用定积分的几何意义求下列积分值:定积分 定积分的概念定积分的定义10(1)2 d x x ⎰;(2)(0)x R >⎰.解:(1)由几何意义可知,该定积分的值等于由x 轴、直线x =1、y =2x 所围成的三角形的面积,故原式=1.(2) 由几何意义可知,该定积分的值等于以原点为圆心,半径为R 的圆在第一象限内的面积,故原式=21π4R . 4. 证明下列不等式: 定积分 定积分的性质定积分的性质2e 22e(1)e e ln d 2(e e)x x -≤≤-⎰; 21(2)1e d e.x x ≤≤⎰证明:(1)当2e e x ≤≤时,2ln e ln ln e ,x ≤≤即1ln e.x ≤≤由积分的保序性知:222e e e e eed ln d 2d x x x x ≤≤⎰⎰⎰即 2e 22ee e ln d 2(e e).x x -≤≤-⎰(2) 证明:当0 1.x ≤≤时,21e e,x ≤≤ 由积分的保序性知:2111d e d ed x x x x ≤≤⎰⎰⎰即211e d e.x x ≤≤⎰5. 证明:(1) 12lim 0;nn x →∞=⎰(2) π40lim sin d 0.n n x x →∞=⎰定积分定积分的性质 定积分的性质 定积分定积分的性质 积分中值定理证明:(1) 当102x ≤≤时,0,n n x ≤≤于是1112200110d (),12n n x x n +≤≤=⋅+⎰⎰ 而111lim()0,12n n n +→∞⋅=+由夹逼准则知:12lim 0.nn x →∞=⎰(2) 由中值定理得π440ππsin d sin (0)sin ,44n n x x ξξ=⋅-=⎰其中π0,4ξ≤≤故π4πlim sin d lim sin 0 ( 0sin 1).4n n n n x x ξξ→∞→∞==≤<⎰Q习题4-21. 计算下列定积分: 定积分 定积分的计算微积分学基本定理3(1)x ⎰; 221(2)d x x x --⎰;π(3)()d f x x ⎰,其中π,0,2()πsin ,π;2x x f x x x ⎧≤≤⎪⎪=⎨⎪<≤⎪⎩;222(4)max{1,}d x x -⎰;(5)x .解:(1)原式43238233x ==-(2)原式01222211()d ()d ()d x x x x x x x x x -=-+-+-⎰⎰⎰01232233210111111132233251511.6666x x x x x x -⎛⎫⎛⎫⎛⎫=++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=++= (3)原式πππ2π222π0π221πd sin d cos 1.28x x x x xx=+=-=+⎰⎰(4)原式121122233211212011d d d 2.333x x x x x x x -----=++=++=⎰⎰⎰(5)原式πππ242π04d (cos sin )d (sin cos )d sin cos x x x x x x x x x ==-+--⎰⎰⎰ππ24π04(sin cos )(cos sin )1).x x x x =++--=2. 计算下列导数: 定积分 定积分积分法复合函数求导法20d (1)d x t x ⎰;32d (2)d x x x ⎰解:(1)原式2=(2)原式32200d d d d x x x x =-=⎰⎰3. 求由参数式2020sin d cos d t tx u uy u u⎧=⎪⎨⎪=⎩⎰⎰所确定的函数y 对x 的导数d d y x .定积分 定积分积分法 复合函数求导法解:222d d cos d cot .d d sin d yy t t t x x tt=== 4. 求由方程e d cos d 0yxt t t t +=⎰⎰所确定的隐函数()y y x =的导数.定积分 定积分积分法 复合函数求导法解:方程两边对x 求导,有e cos 0y y x '⋅+=又 e 1sin yx =- 故 cos sin 1xy x '=-.5. 求下列极限: 定积分 定积分积分法微积分学基本定理2030ln(12)d (1)lim xx t t x →+⎰; 2220020e d (2)lim e d x t xx t t t t→⎡⎤⎣⎦⎰⎰.解: (1)原式21222300ln(12)22lim lim ln(12).333x x x x x x →→+==+=(2)原式2222222002e d e e d 1lim2lim2lim2.12e e xxt xt xxx x x t tx x x →→→⋅====+⎰⎰6. a , b , c 取何实数值才能使201lim sin x bx t c x ax →=-⎰ 成立.定积分 定积分积分法 复合函数求导法解:因为0x →时,sin 0x ax -→而该极限又存在,故b =0.用洛必达法则,有220000,1,lim lim 2cos cos lim 2, 1.sin x x x a x x x x a x a a x→→→≠⎧⎪==⎨--=-=⎪-⎩ 所以 1,0,2a b c ===- 或 1,0,0a b c ≠==.习题4-31. 利用基本积分公式及性质求下列积分:不定积分 求不定积分的方法基本积分公式2(1)5)d x x -;解:原式51732222210d 5d 73x x x x x x c =-=-+⎰⎰. (2)3e d x x x ⎰;解:原式=(3e)(3e)d .ln(3e)xxx c =+⎰23(3)d ;1x x ⎛ +⎝⎰ 解:原式=321d 23arctan 2arcsin .1x x x x c x -=-++⎰22(4)d ;1x x x +⎰解:原式=22211d d d arcsin .11x xx x x x c x x +-=-=-+++⎰⎰⎰ 2(5)sin d 2x x ⎰; 解:原式=1cos 1d sin .222x x x x c -=-+⎰21(6);1x x ⎛- ⎝⎰解:原式=357144444d d 4.7x x x x x x c ---=++⎰⎰2d (7);x x⎰解:原式=21d x x c x-=-+⎰.(8);x ⎰解:原式=35222d 5x x x c =+⎰.(9)解:原式=25322d 3x x x c --=-+⎰.2(10)(32)d ;x x x -+⎰解:原式=32132.32x x x c -++ 422331(11)d ;1x x x x +++⎰解:原式=23213d d arctan .1x x x x x c x +=+++⎰⎰ 3(12)d 2e x x x ⎛⎫+ ⎪⎝⎭⎰;解:原式=2e 3ln .xx c ++(13)e d ;1x xx x -⎛⎫- ⎪⎝⎭⎰解:原式=e d d e 2.xx x x x c x-=-+⎰⎰2352(14)d ;3x xxx ⋅-⋅⎰ 解:原式=5222d 5d 2233ln 3x xx x x c ⎛⎫⎛⎫-=-⋅+ ⎪ ⎪⎝⎭⎝⎭⎰⎰. (15)sec (sec tan )d x x x x -⎰;解:原式=2sec d sec tan d tan sec x x x x x x x c -=-+⎰⎰.1(16)d 1cos 2x x+⎰;解:原式=22111d sec d tan 2cos 22x x x x c x ==+⎰⎰.cos 2(17)d cos sin xx x x-⎰;解:原式=(cos sin )d sin cos .x x x x x c +=-+⎰22cos 2(18)d cos sin xx x x ⎰.解:原式=2211d d cot tan .sin cos x x x x c xx -=--+⎰⎰ 2. 一平面曲线过点(1,0),且曲线上任一点(x , y )处的切线斜率为2x -2,求该曲线方程. 不定积分 求不定积分的方法 基本积分公式 解:依题意知:22y x '=- 两边积分,有22y x x c =-+又x =1时,y =0代入上式得c =1,故所求曲线方程为221y x x =-+. 3. 在下列各式等号右端的空白处填入适当的系数,使等式成立.不定积分 求不定积分的方法 基本积分公式(1)()2(1)xdx d x =-;(2)()22x xx dx d e e =;(3)()(35ln )d xx xd -=; (4)()33(1)x x a a dx d =-;(5)()sin3cos3xdx d x=;(6)()2cos5tan5dxxd x =;(7)()221ln1x x ddx x=--;(8)()l2552ndd xxx=--;()(1arcs in)d x-=;(10)()2arcta9n13ddxxx=+;(11)()()2(3)(3)4dx dx x=---;(12)()22(1)x xx de d e--+=. 4.利用换元法求下列积分:不定积分求不定积分的方法基本积分公式2(1)cos()dx x x⎰;解:原式=22211cos d sin.22x x x c=+⎰(2)x;解:原式=12333(sin cos)d(sin cos)(sin cos).2x x x x x x c---=-+⎰2d(3)21xx-⎰;解:原式=1d112x c=+-+⎰.c=+3(4)cos d x x⎰;解:原式=231(1sin)dsin sin sin.3x x x x c-=-+⎰(5)cos cos d2xx x⎰;解:原式=1133d sin sin.cos cos232222xxx x cx⎛⎫=+++⎪⎝⎭⎰(6)sin2cos3dx x x⎰;解:原式=111(sin5sin)d cos cos5.2210x x x x x c-=-+⎰2arccos(7)xx;解:原式=2arccos 2arccos 1110d(2arccos )10.22ln10xx x c -=-⋅+⎰ 21ln (8)d (ln )xx x x +⎰;解:原式=21(ln )d(ln ).ln x x x x c x x-=-+⎰(9)x ;解:原式=2.c =+⎰ln tan (10)d cos sin xx x x⎰;解:原式=21ln tan d(ln tan )(ln tan ).2x x x c =+⎰5(11)e d x x -⎰;解:原式=51e5xc --+.d (12)12xx -⎰; 解:原式=1ln .122c x -+-(13)t;解:原式=.c =-⎰102(14)tan sec d x x x ⎰;解:原式=10111tan d(tan )tan .10x x x c =+⎰2d (15)ln xx x⎰;解:原式=21(ln )d(ln ).ln x x c x--=+⎰(16)tan x ⎰;解:原式=ln .cos c =-+⎰d (17)sin cos xx x⎰;解:原式=2d d tan ln .tan tan cos tan x xc x x x x ==+⎰⎰2(18)e d x x x -⎰;解:原式=22211e d()e .22x x x c ----=-+⎰ 10(19)(4)d x x +⎰;解:原式=111(4)11x c ++. (20)解:原式=123311(23)d(23)(23)32x x x c ----=--+⎰.2(21)cos()d x x x ⎰;解:原式=2211sin()sin().22d x x c =+⎰(22)x ; 解:原式=122222d 1()d()2x x a a x a x -⎛⎫ ⎪=---⎰arcsin .xa c a =⋅d (23)e ex x x-+⎰;解:原式=2d(e )arctane .1(e )x x x c =++⎰ ln (24)d xx x⎰; 解:原式=21ln d(ln )(ln ).2x x x c =+⎰23(25)sin cos d x x x ⎰;解:原式=223511sin (1sin )d(sin )sin sin .35x x x x x c -=-+⎰(26);解:原式32tan 444sec cos 1sin d d d(sin )tan sin sin x tt t tt t t t t t =-==⎰⎰⎰令311,3sin sin c t t=-++又cos t t ==故上式.c =(27)⎰;d ln |1|ln(1.1tt t t c c t =-++=+++(28) d ;x x⎰解:原式3sec 223tan d 3(sec 1)d 3tan 3x tt t t t t t c ==-=-+⎰⎰令,又3tan arccos ,t t x ===故上式33arccosc x+.(29);解:原式2tan 3sec d cos d sin sec x ttt t t t c t ===+⎰⎰令,又sec t 所以sin t =,故上式c =+.(30)解:原式sin cos d sin cos x ttt t t =+⎰令① sin d sin cos tt t t +⎰②① + ② 1t c =+ ② - ① 2 l n sin cos t t c =++ 故cos 1d ln sin cos sin cos 2211arcsin ln .22t t t ct t t t x c x =++++=++⎰5. 用分部积分法求下列不定积分:不定积分 求不定积分的方法分部积分法2(1)sin d x x x ⎰;解:原式=222dcos cos 2cos d cos 2dsin x x x x x x x x x x x -=-+⋅=-+⎰⎰⎰2cos 2sin 2cos .x x x x x c =-+++(2)e d x x x -⎰;解:原式=de e e d e e .x x x x x x x x x c ------=-+=--+⎰⎰(3)ln d x x x ⎰;解:原式=222211111ln d ln d ln 22224x x x x x x x x x c ⋅=-=-+⎰⎰. 2(4)arctan d x x x ⎰;解:原式=3332111arctan d arctan d 3331x x x x x x x=-+⎰⎰ 322111arctan ln(1).366x x x x c =-+++ (5)arccos d x x ⎰;解:原式=arccos arccos x x x x x c +=.2(6)tan d x x x ⎰;解:原式=22211(sec 1)d d tan tan tan d 22x x x x x x x x x x x -=-=--⎰⎰⎰ 21tan ln .cos 2x x x c x =+-+(7)e cos d x x x -⎰;解:e cos d e dsin e sin e sin d x x x x x x x x x x ----==⋅+⎰⎰⎰e sin e dcos e sin e cos e cos d x x x x x x x x x x x -----=-=--⎰⎰∴原式=1e (sin cos ).2xx x c --+ (8)sin cos d x x x x ⎰;解:原式=1111sin 2d d cos 2cos 2cos 2d 2444x x x x x x x x x =-=-+⎰⎰⎰ 11cos 2sin 248x x x c =-++.32(ln )(9)d x x x⎰; 解:原式=332111(ln )d (ln )3(ln )d x x x x x x ⎛⎫⎛⎫-=--⎪⎪⎝⎭⎝⎭⎰⎰ 32131(ln )(ln )6ln d x x x x x x ⎛⎫=--- ⎪⎝⎭⎰321366(ln )(ln )ln .x x x c x x x x=----+(10)x .解:原式tan 23sec d .x a ta t t =⎰又32sec d sec (tan 1)d tan d(sec )sec d t t t t t t t t t =+=+⎰⎰⎰⎰ 3tan sec sec d ln sec tan t t t t t t =⋅-++⎰所以 311sec d tan sec ln sec tan 22t t t t c t t '=+++⎰故11ln .22x c x =+6. 求下列不定积分:不定积分 求不定积分的方法分部积分法221(1)d (1)(1)x x x x ++-⎰;解:原式=2111111d ln ln 1122122(1)(1)(1)x c x x x x x x ⎛⎫ ⎪-=++++-++ ⎪+++-⎝⎭⎰ 211ln .112c x x =++-+ 33d (2)1x x +⎰;解:原式=22211112d ln ln d 1122111x x x x x x x x x x x -+⎛⎫=-+++-+⎪-++-+⎝⎭⎰⎰c =+. 5438(3)d x x x x x+--⎰; 解:原式=2843d 111x x x x x x ⎛⎫+++-- ⎪+-⎝⎭⎰ 32118ln 4ln 3ln .1132x x x c x x x =+++--++- 26(4)d 1x x x +⎰;解:原式=33321d()1arctan .31()3x x c x =++⎰ sin (5)d 1sin xx x +⎰;解:原式=222sin 1d tan d (sec 1)d sec tan .cos cos x x x x x x x x x c x x-=--=-++⎰⎰⎰ cot (6)d sin cos 1xx x x ++⎰;解:原式22tan 222222212d 1111111d d d 22(1)22211111x t t t t t t t t t t t t t t t t t t =-⋅-++==-+⎛⎫-++⎪+++⎝⎭⎰⎰⎰⎰令1111ln ln tan .tan 222222x x t c c t =-+=-+(7)x ;解:原式=2.c =+(8)x ;解:原式=2d 2ln 21x x x x x ⎛=+-+⎝⎰ 又2x2221d 44d 11t t t t t t =+--⎰⎰142ln1t t c c t -''=++=++故原式=1)x c -+.习题4-4利用计分表,计算下列不定积分: (1)2sin3d x e x x -⎰;解:由积分表(十三)中公式(128)得()()()222221sin 32sin 33cos32312sin 33cos313x xxe xdx e x x C e x x C ---=--+-+=-++⎰(2)x ; 解:令u =,则dx =,由积分表(六)中公式(39)得(9ln 2ln 4u C C⎤==+⎥⎦=++(3)arcsin d 2xx x ⎰;()()2221142arcsin sin 22421arcsin 22x x x x dx acr C x x C⎛⎫=- ⎪⎝⎭⎛⎫=-+ ⎪⎝⎭⎰由积分表十二中公式得(4);()()12,,45211ln 221ln 22x u dx du u C x C ==⎡⎤==+⎢⎥⎣⎦=++令则由积分表七中公式得(5)()21d 1x x x -⎰;()()()2261111ln 11111ln xdx C x x x x xCx x--=-++--=--+⎰g 由积分表一中公式得(6)x ; ()()51111arccos arccos 1C Cx x =+=+由积分表七中公式得(7)x x ⎰;()()((256121ln .88x xx x C =-++⎰由积分表七中公式得(8)x ;()()().5961=arcsin .x C ==-+⎰⎰Q 由积分表八中公式和得(9)x ;()()12,3721313ln 32u x dx du C C x=====+令则,由积分表六中公式得(10)4sin d x x ⎰.()()432339513sin sin cos sin 441311sin cos sin cos 4422133sin cos sin cos 488xdx x x xdx x x x x dx x x x x x C=-+⎡⎤=-+-+⎢⎥⎣⎦=--++⎰⎰⎰由积分表十一中公式得习题4-51. 利用被积函数奇偶性,计算下列积分值(其中a 为正常数) 定积分 定积分的计算 微积分学基本定理(1)sin d ;||aa xx x -⎰解:因sin ||xx 为[-a , a ]上的奇函数, 故sin d 0.||a a xx x -=⎰(2)ln(a ax x -+⎰;解:因为ln(ln(x x -=-即被积函数为奇函数,所以原式=0.12212sin tan (3)d ln(1)3cos3x x x x x -⎡⎤+-⎢⎥+⎣⎦⎰;解:因为2sin tan 3cos3x xx+为奇函数,故原式=111222111222d 0ln(1)d ln(1)1xx x x x x x---++-=--⎰⎰()121231ln 3ln 2 1.ln 3ln 2ln(1)22x x -==----+-π242π23(4)sin d sin ln 3x x x x x -+⎛⎫+ ⎪-⎝⎭⎰.解:因为3ln3xx+-是奇函数,故 原式=ππ6622π02531π5sin d 2sin d 2π642216x x x x -==⋅⋅⋅⋅=⎰⎰2. 计算下列积分: 定积分 定积分的计算 ??此处更细还需看(1)1x -⎰;2e 1(2)⎰;π40sin (3)d 1sin xx x+⎰;0(4)x ⎰;231(5)ln d x x x ⎰; π220(6)e cos d x x x ⎰;322d (7)2x x x +-⎰;21(8)x ⎰; ππ3π(9)sin d 3x x ⎛⎫+ ⎪⎝⎭⎰; 2120(10)e d t t t -⎰;π22π6(11)cos d u u ⎰.解:(1)()()()()111111311122115451415441554541616125542541631616xx xx x----------=-=-+=---=---=⎰⎰⎰⎰⎰⎰g g(2)原式=221e211).(1ln)d(1ln)x x-=++=⎰(3)原式=πππ244422000sin(1sin)sind d tan dcos cosx xx x x xx x-=-⎰⎰⎰π4π12.tan4cosx xx⎛⎫==+-+⎪⎝⎭(4)原式=πππ2π0002d cos d cos dcosx x x x x xx==⎰⎰ππ2π02x x==(5)原式=22243411111151ln d d4ln2.ln44164x x x xx x=-=-⎰⎰(6)ππππ22222222000e cos d e dsin e sin2e sin dx x x xx x x x x x==⋅-⎰⎰⎰πππ2π2π222200e2e d cos e2e cos4e cos dx x xx x x x=+=+-⎰⎰所以,原式=π1(e2)5-.(7)原式=3322111111d ln ln2ln5.333122xxx x x-⎛⎫==--⎪-++⎝⎭⎰(8)原式11611d6d(1)t1t tt t t⎫=-⎪++⎝⎭()67ln 26ln ln ln(1)1t t ==--+(9)原式ππ3πcos 03x ⎛⎫=-=+ ⎪⎝⎭ (10)原式=2212122ed e 12t t t --⎛⎫-=-=-- ⎪⎝⎭⎰(11)原式=ππ22ππ661π11(1cos 2)d sin 22624u u u u ⎛⎫+==+ ⎪⎝⎭⎰3. 证明:2321()d ()d 2aa x f x x xf x x =⎰⎰ (a 为正常数);定积分 定积分的计算 换元法证明:左222222000111()d()()d ()d 222a a a x t x f x x tf t t xf x x ====⎰⎰⎰ 令右所以,等式成立.4. 证明:ππ2200sin cos πd d sin cos sin cos 4x x x x x x x x ==++⎰⎰,并由此计算0a⎰(a 为正常数)定积分 定积分的计算换元法证明:ππ2200sin cos d d sin cos sin cos x xx x x x x x=++⎰⎰又 πππ222000sin cos πd d d .sin cos sin cos 2x x x x x x x x x +==++⎰⎰⎰故等式成立.a⎰πsin 20cos πd .sin cos 4x a tx t t t ==+⎰令5. 已知201(2),(2)0,()d 12f f f x x '===⎰, 求120(2)d x f x x ''⎰.定积分定积分积分法分部积分法解:原式=11122000111d (2)2(2)d (2)222x f x xf x x x f x ''='-⎰⎰11100012001111(2)d (2)0(2)d (2)22221111(2)(2)d(2)1()d 1402444f x f x f x x xf x f f x x f t t '=-=-+=-+=-+=-+⨯=⎰⎰⎰⎰习题4-61. 用定义判断下列广义积分的敛散性,若收敛,则求其值: 定积分 反常积分 反常积分的计算:定积分的计算22π11(1)sin d x x x+∞⎰; 解:原式=22ππ1111lim sin d lim coslim cos1.b bb b b x bx x →+∞→+∞→+∞⎛⎫-=== ⎪⎝⎭⎰ 2d (2);22xx x +∞-∞++⎰解:原式=02200d(1)d(1)arctan(1)arctan(1)(1)1(1)1x x x x x x +∞+∞-∞-∞+++=+++++++⎰⎰πππππ.4242⎛⎫=-+-=- ⎪⎝⎭ 0(3)e d n x x x +∞-⎰(n 为正整数)解:原式=100e d deen x n xn xn x x x x +∞+∞+∞----+-=-⎰⎰100e d !e d !n xx n x x n x n +∞+∞---=+===⎰⎰L(4)(0)aa >⎰;解:原式=000πlim lim arcsin lim arcsin .12a a xa a εεεεεε+++--→→→⎛⎫===- ⎪⎝⎭⎰e1(5)⎰;解:原式=()e e 0110πlim arcsin(ln )lim lim arcsin .ln(e )2x εεεεεε+++--→→→===-⎰1(6)⎰.解:原式=1120+⎰22122111202lim 2lim πππlim lim 2222π.424εεεεε++-→→→→=⎛⎫=+=⋅+=- ⎪⎝⎭⎰2. 讨论下列广义积分的敛散性:定积分 定积分的计算 反常积分的计算:定积分的计算2d (1)(ln )kxx x +∞⎰; 解:原式=2122112,1ln(ln )1d(ln ),1(ln )1(ln )1(ln 2),1(ln )11k kkk k x x k x k x k x kk +∞+∞-+∞-+∞-⎧=∞=⎪⎪⎪=∞<=⎨-⎪⎪=>⎪--⎩⎰ 故该广义积分当1k >时收敛;1k ≤时发散.d (2)()()bkaxb a b x >-⎰.解:原式=1100011lim ()()1,1lim ()d()1lim 1ln()b k k b a k a b a k b x b a k k b x b x k k b x εεεεεε+++-----→→-→⎧>⎧⎪⎪=-⎨--⎪-<---=⎪⎨-⎩⎪⎪-=-⎩⎰ 发散,发散, 综上所述,当k <1时,该广义积分收敛,否则发散. 3. 已知0sin πd 2x x x +∞=⎰,求:定积分 定积分的计算反常积分的计算:定积分的计算sin cos (1)d ;x xx x+∞⎰220sin (2) d .x x x +∞⎰ 解:(1)原式=001sin(2)1sin πd(2)d .2224x t x t x t +∞+∞==⎰⎰ (2)222002200200020000sin 1cos 2d d 21cos 2d d 22111d cos 2d 2211111d cos 2dcos2222111sin 2cos 2d2222ππ0.22xx x xx x x x x x x x x x xx x x x x xx x xx x x +∞+∞+∞+∞+∞+∞+∞+∞+∞+∞+∞-==-=+=+⋅-⎡⎤=-+⋅+⎢⎥⎣⎦=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰4. 证明:无穷积分敛散性的比较判别法的极限形式,即节第六节定理2. 定积分 反常积分 反常积分敛散性定理 证明:如果|()|lim0()x f x g x ρ→+∞=≠,那么对于ε(使0ρε->),存在x 0,当0x x ≥时|()|0()f xg x ρερε<-<<+ 即 ()()|()|()()g x f x g x ρερε-<<+ 成立,显然()d ag x x +∞⎰与|()|d af x x +∞⎰同进收敛或发散.如果0ρ=,则有|()|()f x g x ε<, 显然()d ag x x +∞⎰收敛, 则|()|d af x x +∞⎰亦收敛.如果ρ=+∞,则有|()|()()f x g x ρε>-,显然()d ag x x +∞⎰发散,则|()|d af x x +∞⎰亦发散.习题四1.填空题(1)设40ln sin d I x x π=⎰,40ln cot d J x x π=⎰,40ln cos d K x x π=⎰,则,,I J K 的大小关系是 I K J << . 定积分 定积分积分法 牛顿莱布尼兹公式 (2)设2x e -是函数()f x 的一个原函数,则(2)d f x x =⎰2412x e C -+ .定积分 定积分的计算 换元法(3)设[]x 表示不超过x 的最大整数,则定积分[]()2012d x x x -⎰的值是多少 1006 .定积分 定积分的计算 牛顿莱布尼兹公式(4)已知函数()f x ,则1()()d f x f x x '''⎰的值为14.定积分定积分的计算复合函数求导法(5)反常积分220d (1)x x x +?+ò的值为 12.定积分 反常积分的计算定积分的计算2.选择题(1)设函数()f x 与()g x 在(,)-∞+∞内皆可导,且()()f x g x <,则必有( A ).定积分定积分的性质定积分性质A.0lim ()lim ()x x x x f x g x →→< B.()()f x g x ''< C.d ()dg()f x x < D.()d ()d xxf t tg t t <⎰⎰(2)下列定积分中,积分值不等于零的是( D ).定积分 定积分的计算A.20ln(sin x x π⎰B. 2cos 0sin(sin )d x e x x π⎰C.cos 2d x x ππ-⎰ D.2222sin cos d cos 2sin x xx x x ππ-++⎰(3)设()F x 是连续函数()f x 的一个原函数,“⇔M N ”表示“M 的充分必要条件是N ”,则必有( A ). (05年全国考研题第(8)题)定积分 定积分基本公式 原函数定义A.()F x 是偶函数⇔()f x 是奇函数B.()F x 是奇函数⇔()f x 是偶函数 B.()F x 是周期函数()⇔f x 是周期函数 D.()F x 是单调函数()⇔f x 是单调函数 (4)设ln xx为()f x 的一个原函数,则()d xf x x '=⎰( D ).定积分定积分基本公式 原函数定义A.ln x C x + B.2ln 1x C x ++ C.1C x + D.12ln xC x x-+ (5)设函数1()sin()d ,()ln(1)d xf x x t tg x x xt t =-=+⎰⎰,则当0x →时,()f x 是()g x 的( C ).定积分 定积分的计算 牛顿莱布尼兹公式A.高阶无穷小量B.低阶无穷小量C.等价无穷小量D.同阶但不等价无穷小量 3.利用定积分概念求下列极限:定积分 定积分的概念 定积分的定义(1)lim n →∞; 解:(1)()()11112001=lim 12131333nn n i n x d x →∞=-===++==⎰⎰g原式(2)1lim ln 1ln 1ln 1n n →∞⎡⎤⎛⎛⎛+++++⎢⎥ ⎢⎥⎝⎝⎝⎣⎦L . 解:(2)有定积分的定义可得(101lim ln 1ln 1ln 1ln 1n dx n →∞⎛⎫⎛⎛⎛+++++=+ ⎪ ⎪⎝⎝⎝⎝⎭⎰L ()120ln 1u du =+⎰(令2x u =)2111200011ln(1)ln 2(1)011u u u du u du du u u =+-=---++⎰⎰⎰11ln 21ln 222=-+-=4*. 已知曲线在点(,)x y 处的斜率为2sin cos x x +,且曲线过点(,0)π,求该曲线的方程. 不定积分 不定积分的计算 基本积分公式解:由已知2sin cos ,(2sin cos )2cos sin y x x y x x dx x x C '=+=+=-++⎰,由于曲线过(,0)π,则有2C =-,因此所求曲线方程为2cos sin 2y x x =-+-.5*. 设函数()f x 连续,且满足0()()d (2)2xx x t f t t x x e x -=-+⎰.(1)求函数()f x 的表达式;定积分定积分的计算 牛顿莱布尼兹公式(2)求函数()f x 的单调区间与极值.微分中值定理 函数的单调性与凹凸性 函数凹凸性判别法解:(1)00()()()()(2)2xxxx x t f t dt xf t dt tf t dt x x e x -=-=-+⎰⎰⎰,方程两边对x 求导数,则有20()(2)2xx f t dt e x =-+⎰,再对x 求导数得2()(22)x f x e x x =+-.(2)()(4)xf x x x e '=+,令()0f x '=得04x x ==-或.所以,函数()f x 的单调增加区间为(),4(0,)-∞-+∞与;单调减少区间为[]4,0-.函数()f x 的极大值为()446f e --=,极小值为()02f =-.6*.设函数2202(1)d ,0,(),0,x t e t x f x x A x ⎧-⎪≠=⎨⎪=⎩⎰问当A 取何值时,()f x 在0x =处可导,并求出(0)f '的值. (国防科大09-10年秋季第三大题第2小题)解:()()()()()()()()()()()22222224222020022020304221214limlimlim 02010lim lim 000110limlim2124limlim 33xt x x x x xt x x xt xt x x x x x e dte xx xxf x x e dtA f x f x x xA A e dt e dt x f xx exx →→→→→→→→→--====---=-==--'==-==⎰⎰⎰⎰Q g 若在处可导,则存在,若,则上述的极限不存在为无穷大,故于是283x =定积分 定积分的计算牛顿莱布尼兹公式7*.设函数()f x 在,22ππ⎡⎤-⎢⎥⎣⎦上连续,且满足2222()cos ()d x f x x xe f t t ππ-=++⎰,求()f x 的表达式.定积分定积分的计算 牛顿莱布尼兹公式解:设22()a f x dx ππ-=⎰,则有22()cos x f x x xe a =++,所以有222222(cos )2cos 2x a x xe a dx xdx a a ππππππ-=++=+=+⎰⎰,解得2(1)a ππ=-,因此所求函数的表达式为22()cos 2(1)xf x x xe ππ=++-.8. 求下列不定积分,并用求导方法验证其结果正确否:d (1)1exx+⎰; 不定积分 求不定积分的方法基本积分公式解:原式=e d 11de ln(1e ).e (1e )e 1e x x xx x x xx x c ⎛⎫==-++- ⎪++⎝⎭⎰⎰ 验证:e 1(ln(1e ))1.1e 1ex xx xx c '-++=-=++ 所以,结论成立.(2)ln(x x +⎰;不定积分求不定积分的方法分部积分法解:原式=ln(ln(.x x x x x c -=+-验证:ln(ln(x x x x c '⎡⎤=+++-⎣⎦ln(x =+所以,结论成立.2(3)ln(1)d x x +⎰;不定积分求不定积分的方法分部积分法解:原式=2222ln(1)2d ln(1)22arctan 1x x x x x x x x c x+-=+-+++⎰. 验证:2222222ln(1)2ln(1).ln(1)22arctan 11x x x x x x x x c x x'=++⋅-+=+⎡⎤+-++⎣⎦++ 所以,结论正确.(4)x ;不定积分 求不定积分的方法 基本积分公式解:原式=9212)arcsin (.232x x x c ++=++验证: 921arcsin (232x x '+⎡++⎢⎣211(2)32x=+==所以,结论正确.(5)sin(ln)dx x⎰;不定积分求不定积分的方法基本积分公式解:1sin(ln)d sin(ln)cos(ln)dx x x x x x xx=-⋅⋅⎰⎰sin(ln)cos(ln)sin(ln)dx x x x x x=--⎰所以,原式=().sin(ln)cos(ln)2xcx x+-验证:()sin(ln)cos(ln)2xcx x'⎡⎤+-⎢⎥⎣⎦()111sin(ln)cos(ln)cos(ln)sin(ln)22sin(ln).xx x x xx xx⎛⎫=+-⋅+⋅⎪⎝⎭=故结论成立.2e(6)d(e1)xxxx+⎰;不定积分求不定积分的方法分部积分法解:原式=1e1d d de1e1e11ee1xx x x xxx xx x x--⎛⎫-=-+=-+⎪+++++⎝⎭⎰⎰⎰ln(1e).e1xxxc--=-+++验证:22(e1)e e eln(1e)(e1)1e(e1)e1x x x xxx x xxx xxc---'-++--⎡⎤=-=-++⎢⎥++++⎣⎦.故结论成立.23/2ln(7)d(1)xxx+⎰;不定积分求不定积分的方法分部积分法解:原式=1ln d d ln(.x x x cx=-=++⎰验证:ln(x c '⎤-++⎥⎦2223/223/2(1ln )(1)ln ln .(1)(1)x x x x x x x =++-==++所以,结论成立.sin (8)d 1cos x x x x++⎰;不定积分 求不定积分的方法分部积分法解:原式=2d cos d d tan ln(1cos )1cos 22cos 2x x xx x x x x -=-++⎰⎰⎰tantan d ln(1cos )22tan ln(1cos )ln(1cos )2tan 2x xx x x xx x x c x x c=--+=++-++=+⎰验证:2221sin sin (tan)tan sec 22221cos 2cos 2cos 22x x x x x x xx c x x x x +'+=+⋅=+=+ 所以,原式成立.(9)()d xf x x ''⎰;不定积分求不定积分的方法分部积分法解:原式=d ()()()d ()().x f x xf x f x x xf x f x c ''''=-=-+⎰⎰验证:[]()()()().()()f x xf x f x xf x xf x f x c ''''''''=+-=-+ 故结论成立.(10)sin d n x x ⎰ (n >1,且为正整数).不定积分求不定积分的方法分部积分法解:1sin d sindcos nn n I x x x x -==-⎰⎰1221212cos sin (1)cos sin d cos sin (1)sin d (1)sin d cos sin (1)(1)n n n n n n n nx x n x x xx x n x x n x x x x n I n I ------=-+-=-+---=-+---⎰⎰⎰故 1211cos sin .n n n n I x x I n n---=-+ 验证: 1211cos sin sin d n n n x x x x n n --'-⎡⎤-+⎢⎥⎣⎦⎰ 22222111sin cos (1)sin cos sin 111sin (1sin )sin sin sin .n n n n n n n n x x n x x x n n n n n x x x x n n n x -----=-⋅-⋅+--=--+= 故结论成立.9. 求不定积分max(1,)d x x ⎰.不定积分求不定积分的方法 基本积分公式解: ,1max(1,)1,11,1x x x x x x -<-⎧⎪=-≤≤⎨⎪>⎩故原式=212231,12,111,12x c x x c x x c x ⎧-+<-⎪⎪+-≤≤⎨⎪⎪+>⎩又由函数的连续性,可知:213111,1,2c c c c c c =+=+= 所以 221,121max(1,)d ,11211,12x c x x x c x x x c x ⎧-+<-⎪⎪⎪=++-≤≤⎨⎪⎪++>⎪⎩⎰10.计算下列积分:(1)1解:210210211220,1,2,3110422=2111212ln 1112ln 2t x t dx tdt x t x t t tdt dtt t dt t t t ==-=-====-∴=--⎛⎫=+=⎡+-⎤ ⎪⎣⎦-⎝⎭=-⎰⎰⎰则当时,,当时,原式 (2)1定积分 定积分的计算基本积分公式解:原式=211112⎛⎫+ ⎪-== (3) ln3ln 2d e ex xx--⎰;定积分 定积分的计算基本积分公式解:原式=ln3ln32ln 2ln 2de 113e 1ln ln .(e )1222e 1x x x x -==-+⎰(4)x ⎰;定积分 定积分的计算分部积分法解:原式=π33π222π02d sin d sin sin d sin x x x x x x =-⎰⎰⎰ππ55222π02422.sin sin 555x x =-=(5)120ln(1)d (2)x x x +-⎰;定积分定积分的计算分部积分法解:原式=111000111ln(1)ln(1)d d 2212x x x x x x x ++=-⋅--+-⎰⎰101100111ln 2d 321111ln 2ln 2ln(2)ln(1)333x x x x x ⎛⎫=-+ ⎪-+⎝⎭=+-=-+⎰(6){}230max ,d x x x ⎰.解:{}2123301122401max ,1151724244x x dx xdx x dxxx =+=+=+=⎰⎰⎰11. 计算下列积分(n 为正整数): (1)1;n x ⎰定积分 定积分的计算换元法解:令sin x t =,d cos d x t t =, 当x =0时t =0,当x =1时t=π2, ππ12200sin cos d sin d cos n n n tx t t t t t==⎰⎰⎰由第四章第五节例8知11331π, 24221342, 253n n n n n n x n n n n n --⎧⋅⋅⋅⋅⋅⎪⎪-=⎨--⎪⋅⋅⋅⋅⎪-⎩⎰L L为偶数, 为奇数.(2)π240tan d .n x x ⎰定积分 定积分的计算分部积分法解:πππ2(1)22(1)22(1)4440π2(1)411tantan d tansec d tan d 1tan d tan 21n n n n n n n I x x x x x x x xx x I I n ------==-=-=--⎰⎰⎰⎰由递推公式 1121n n I I n -+=- 可得 111(1)(1)[(1)].43521n nn I n π--=---+-+-L。
1. 利用定义计算下列定积分: (1)d ();bax x a b <⎰解:将区间[a , b ]n 等分,分点为(), 1,2,,1;i i b a x a i n n-=+=- 记每个小区间1[,]i i x x -长度为,i b ax n-∆=取, 1,2,,,i i x i n ξ==则得和式211()2(1)()[()]()2nni i i i i b a b a n n f x a b a a b a n n n ξ==--+∆=+-⋅=-+∑∑ 由定积分定义得22122()(1) d lim ()lim[()]21().2nbi i an i b a n n x x f x a b a n b a λξ→→∞=-+=∆=-+=-∑⎰(2)1e d .x x ⎰解:将区间[0, 1] n 等分,分点为 (1,2,,1),i i x i n n ==- 记每个小区间长度1,i x n∆=取 (1,2,,),i i x i n ξ== 则和式111()innni i i i f x enξ==∆=∑∑ 12101111111e d lim e lim (e e e )1e (1e )1e (e 1)limlim 1e e 11e (e 1)1lim e 1.1i nn xn n n n n n i n n n nn n n n n x n n n nn n n →∞→∞=→∞→∞→∞==+++--==---==-∑⎰2. 用定积分的几何意义求下列积分值:1(1)2 d x x ⎰;解:由几何意义可知,该定积分的值等于由x 轴、直线x =1、y =2x 所围成的三角形的面积,故原式=1.(2)(0)x R >⎰.解:由几何意义可知,该定积分的值等于以原点为圆心,半径为R 的圆在第一象限内的面积,故原式=21π4R . 3. 证明下列不等式:2e 22e(1)e e ln d 2(e e)x x -≤≤-⎰;证明:当2e e x ≤≤时,2ln e ln ln e ,x ≤≤即1ln e.x ≤≤ 由积分的保序性知:222e e e e eed ln d 2d x x x x ≤≤⎰⎰⎰即 2e 22ee e ln d 2(e e).x x -≤≤-⎰(2) 211e d e.x x ≤≤⎰证明:当0 1.x ≤≤时,21e e,x ≤≤由积分的保序性知:2111d ed ed x x x x ≤≤⎰⎰⎰即211e d e.x x ≤≤⎰4. 证明: (1) 12lim0;nn x →∞=⎰证明:当12x ≤≤时,0,n n x ≤≤ 于是11120110d (),12n n x x n +≤≤=⋅+⎰⎰ 而111lim()0,12n n n +→∞⋅=+由夹逼准则知:12lim 0.nn x →∞=⎰(2) π4limsin d 0.n n x x →∞=⎰证明:由中值定理得π440ππsin d sin (0)sin ,44n n x x ξξ=⋅-=⎰其中π0,4ξ≤≤故π4πlim sin d lim sin 0 ( 0sin 1).4n n n n x x ξξ→∞→∞==≤<⎰5.计算下列定积分:3(1);x ⎰解:原式43238233x ==-.221(2)d x x x --⎰;解:原式01222211()d ()d ()d x x x x x x x x x -=-+-+-⎰⎰⎰1232233210111111132233251511.6666x x x x x x -⎛⎫⎛⎫⎛⎫=++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=++= π(3)()d f x x ⎰,其中π,0,2()πsin ,π;2x x f x x x ⎧≤≤⎪⎪=⎨⎪<≤⎪⎩ 解:原式πππ2π222π0π221πd sin d cos 1.28x x x x xx=+=-=+⎰⎰ 222(4)max{1,}d ;x x -⎰解:原式121122233211212011d d d 2.333x x x x x x x -----=++=++=⎰⎰⎰(5).x解:原式πππ242π04d (cos sin )d (sin cos )d sin cos x x x x x x x x x ==-+--⎰⎰⎰ππ24π04(sin cos )(cos sin )1).x x x x =++--=6. 计算下列导数:2d (1)d x t x ⎰解:原式2=32d (2)d x x x ⎰解:原式32200d d d d x x x x =-=⎰⎰ 7. 求由参数式2020sin d cos d t tx u uy u u⎧=⎪⎨⎪=⎩⎰⎰所确定的函数y 对x 的导数d d y x . 解:222d d cos d cot .d d sin d yy t t t x x tt=== 8. 求由方程e d cos d 0yxtt t t +=⎰⎰所确定的隐函数()y y x =的导数.解:方程两边对x 求导,有e cos 0y y x '⋅+=又 e 1sin yx =- 故 c o s s i n 1xy x '=-.9. 利用定积分概念求下列极限:111(1)lim 122n n n n →+∞⎛⎫+++ ⎪++⎝⎭解:原式110011111lim d ln 2.ln(1)121111n x x n n xnn n →+∞⎛⎫+++ ⎪=⋅===++++ ⎪+⎝⎭⎰21(2)limn n →+∞解:原式13200122lim ..33n x x n →+∞====+⎰ 10. 求下列极限:203ln(12)d (1)lim;xx t tx →+⎰解:原式21222300ln(12)22lim limln(12).333x x x x x x →→+==+=2220020e d (2)lim .e d x t x x tt t t→⎡⎤⎣⎦⎰⎰ 解:原式2222222002e d e e d 1lim2lim2lim2.12e e xxt xt xxx x x t tx x x →→→⋅====+⎰⎰11. a , b , c 取何实数值才能使201limsin x bx t c x ax →=-⎰ 成立. 解:因为0x →时,sin 0x ax -→而该极限又存在,故b =0.用洛必达法则,有220000,1,lim lim 2cos cos lim 2, 1.sin x x x a x x x x a x a a x→→→≠⎧⎪==⎨--=-=⎪-⎩ 所以 1,0,2a b c ===- 或 1,0,0a b c ≠==.12. 利用基本积分公式及性质求下列积分:2(1)5)d x x -;解:原式51732222210d 5d 73x x x x x x c =-=-+⎰⎰.(2)3e d x x x ⎰;解:原式=(3e)(3e)d .ln(3e)xxx c =+⎰23(3)d ;1x x⎛ +⎝⎰ 解:原式=321d 23arctan 2arcsin .1x x x x c x -=-++⎰22(4)d ;1x x x +⎰解:原式=22211d d d arcsin .11x xx x x x c x x+-=-=-+++⎰⎰⎰ 2(5)sin d 2x x ⎰;解:原式=1cos 1d sin .222x x x x c -=-+⎰21(6);1x x ⎛- ⎝⎰解:原式=357144444d d 4.7x x x x x x c ---=++⎰⎰2d (7);x x⎰解:原式=21d x x c x-=-+⎰.(8);x ⎰解:原式=35222d 5x x x c =+⎰.(9)解:原式=25322d 3x x x c --=-+⎰.2(10)(32)d ;x x x -+⎰解:原式=32132.32x x x c -++ 422331(11)d ;1x x x x +++⎰解:原式=23213d d arctan .1x x x x x c x +=+++⎰⎰ 3(12)d 2e x x x ⎛⎫+ ⎪⎝⎭⎰;解:原式=2e 3ln .xx c ++(13)e d ;1x xx-⎛ ⎝⎰解:原式=e d e .xx x x c-=-⎰2352(14)d ;3x xxx ⋅-⋅⎰解:原式=5222d 5d 2233ln 3x xx x x c ⎛⎫⎛⎫-=-⋅+ ⎪ ⎪⎝⎭⎝⎭⎰⎰. (15)sec (sec tan )d x x x x -⎰;解:原式=2sec d sec tan d tan sec x x x x x x x c -=-+⎰⎰.1(16)d 1cos 2x x+⎰;解:原式=22111d sec d tan 2cos 22x x x x c x ==+⎰⎰.cos 2(17)d cos sin xx x x-⎰;解:原式=(cos sin )d sin cos .x x x x x c +=-+⎰22cos 2(18)d cos sin xx x x⎰.解:原式=2211d d cot tan .sin cos x x x x c xx -=--+⎰⎰ 13. 一平面曲线过点(1,0),且曲线上任一点(x , y )处的切线斜率为2x -2,求该曲线方程.解:依题意知:22y x '=- 两边积分,有22y x x c =-+又x =1时,y =0代入上式得c =1,故所求曲线方程为221y x x =-+. 14. (略).15. 利用换元法求下列积分:2(1)cos()d x x x ⎰;解:原式=22211cos d sin .22x x x c =+⎰(2)x ;解:原式=12333(sin cos )d(sin cos )(sin cos ).2x x x x x x c ---=-+⎰21x -解:原式=1d 112x c =+-+⎰.c =+ 3(4)cos d x x ⎰;解:原式=231(1sin )dsin sin sin .3x x x x c -=-+⎰(5)cos cos d 2xx x ⎰;解:原式=1133d sin sin .cos cos 232222x x x x c x ⎛⎫=+++ ⎪⎝⎭⎰ (6)sin 2cos3d x x x ⎰;解:原式=111(sin 5sin )d cos cos5.2210x x x x x c -=-+⎰2arccos (7)xx ;解:原式=2arccos 2arccos 1110d(2arccos )10.22ln10x xx c -=-⋅+⎰ 21ln (8)d (ln )xx x x +⎰; 解:原式=21(ln )d(ln ).ln x x x x c x x-=-+⎰(9)x ;解:原式=22arctan.c =+⎰ln tan (10)d cos sin xx x x⎰;解:原式=21ln tan d(ln tan )(ln tan ).2x x x c =+⎰5(11)e d x x -⎰;解:原式=51e5xc --+.12x -解:原式=1ln .122c x -+-(13)t;解:原式=2sin .c =-⎰102(14)tan sec d x x x ⎰;解:原式=10111tan d(tan )tan .10x x x c =+⎰2d (15)ln xx x⎰;解:原式=21(ln )d(ln ).ln x x c x--=+⎰(16)tan x ⎰;解:原式=ln .c =-+⎰d (17)sin cos xx x⎰;解:原式=2d d tan ln .tan tan cos tan x xc x x x x==+⎰⎰ 2(18)e d x x x -⎰;解:原式=22211e d()e .22x x x c ----=-+⎰ 10(19)(4)d x x +⎰;解:原式=111(4)11x c ++.(20)解:原式=123311(23)d(23)(23)32x x x c ----=--+⎰.(21)x ;解:原式=12222d 1112(94)d(94)arcsin .2823x x x x c -⎛⎫ ⎪+--=+⎰(22)x ; 解:原式=122222d 1()d()2x x a a x a x -⎛⎫ ⎪=--⎰⎰arcsin .xa c a=⋅- d (23)e ex xx-+⎰; 解:原式=2d(e )arctane .1(e )x xx c =++⎰ ln (24)d xx x⎰; 解:原式=21ln d(ln )(ln ).2x x x c =+⎰23(25)sin cos d x x x ⎰;解:原式=223511sin (1sin )d(sin )sin sin .35x x x x x c -=-+⎰(26);解:原式32tan 444sec cos 1sin d d d(sin )tan sin sin x tt t tt t t t t t =-==⎰⎰⎰令311,3sin sin c t t=-++又cos t t ==故上式23(2.3x c x-=+(27)100d ln |1|ln(1.1tt t t c c t =-++=+++(28) ;x 解:原式3sec 223tan d 3(sec 1)d 3tan 3x tt t t t t t c ==-=-+⎰⎰令,又3tan arccos ,t t x === 故上式33arccosc x+. (29);解:原式2tan 3sec d cos d sin sec x ttt t t t c t ===+⎰⎰令,又sec t =所以sin t =,故上式c =+.(30)解:原式sin cos d sin cos x ttt t t =+⎰令① sin d sin cos tt t t +⎰②① + ② = t + c 1② - ① = ln |sin t +cos t | + c 2 故cos 1d ln sin cos sin cos 2211arcsin ln .22t t t ct t t t x c x =++++=++⎰16. 用分部积分法求下列不定积分:2(1)sin d x x x ⎰;解:原式=222d cos cos 2cos d cos 2d sin x x x x x x x x x x x -=-+⋅=-+⎰⎰⎰1012cos 2sin 2cos .x x x x x c =-+++ (2)e d x x x -⎰;解:原式=dee e d e e .xx x x x x x x x c ------=-+=--+⎰⎰(3)ln d x x x ⎰;解:原式=222211111ln d ln d ln 22224x x x x x x x x x c ⋅=-=-+⎰⎰. 2(4)arctan d x x x ⎰;解:原式=3332111arctan d arctan d 3331x x x x x x x=-+⎰⎰ 322111arctan ln(1).366x x x x c =-+++ (5)arccos d x x ⎰;解:原式=arccos arccos x x x x x c +=.2(6)tan d x x x ⎰;解:原式=22211(sec 1)d d tan tan tan d 22x x x x x x x x x x x -=-=--⎰⎰⎰ 21tan ln .cos 2x x x c x =+-+(7)e cos d x x x -⎰;解:ecos d e d sin e sin e sin d xx x x x x x x x x ----==⋅+⎰⎰⎰e sin e d cos e sin e cos e cos d x x x x x x x x x x x -----=-=--⎰⎰∴原式=1e (sin cos ).2xx x c --+ (8)sin cos d x x x x ⎰;解:原式=1111sin 2d d cos 2cos 2cos 2d 2444x x x x x x x x x =-=-+⎰⎰⎰ 11cos 2sin 248x x x c =-++.32(ln )(9)d x x x ⎰;102解:原式=332111(ln )d (ln )3(ln )d x x x x x x ⎛⎫⎛⎫-=--⎪ ⎪⎝⎭⎝⎭⎰⎰32131(ln )(ln )6ln d x x x x x x ⎛⎫=--- ⎪⎝⎭⎰321366(ln )(ln )ln .x x x c x x x x =----+(10)x ⎰.解:原式tan 23sec d .x a ta t t =⎰又32sec d sec (tan 1)d tan d(sec )sec d t t t t t t t t t =+=+⎰⎰⎰⎰ 3tan sec sec d ln sec tan t t t t t t =⋅-++⎰所以 311sec d tan sec ln sec tan 22t t t t c t t '=+++⎰ 故11ln .22x c x =+17. 求下列不定积分:221(1)d (1)(1)x x x x ++-⎰; 解:原式=2111111d ln ln 1122122(1)(1)(1)x c x x x x x x ⎛⎫ ⎪-=++++-++ ⎪+++-⎝⎭⎰ 211ln .112c x x =++-+ 33d (2)1xx +⎰; 解:原式=22211112d ln ln d 1122111x x x x x x x x x x x -+⎛⎫=-+++-+⎪-++-+⎝⎭⎰⎰c =. 5438(3)d x x x x x+--⎰; 解:原式=2843d 111x x x x x x ⎛⎫+++-- ⎪+-⎝⎭⎰10332118ln 4ln 3ln .1132x x x c x x x =+++--++- 26(4)d 1x x x +⎰;解:原式=33321d()1arctan .31()3x x c x =++⎰ sin (5)d 1sin xx x +⎰;解:原式=222sin 1d tan d (sec 1)d sec tan .cos cos x x x x x x x x x c x x-=--=-++⎰⎰⎰ cot (6)d sin cos 1xx x x ++⎰;解:原式22tan 222222212d 1111111d d d 22(1)22211111x t t t t t t t t t t t t t t t t t t =-⋅-++==-+⎛⎫-++⎪+++⎝⎭⎰⎰⎰⎰令1111ln ln tan .tan 222222x x t c c t =-+=-+(7)x ;解:原式=2.c =+(8)x ;解:原式=2d 2ln 2d 1x x x x x x ⎛=+-+⎝⎰⎰ 又2x2221d 44d 11t t t t t t =+--⎰⎰142ln1t t c c t -''=++=+故原式=1)x c -+.18. 求下列不定积分,并用求导方法验证其结果正确否:104d (1)1e xx+⎰; 解:原式=e d 11de ln(1e ).e (1e )e 1e x x xx x x xx x c ⎛⎫==-++- ⎪++⎝⎭⎰⎰ 验证:e 1(ln(1e ))1.1e 1ex xx xx c '-++=-=++ 所以,结论成立.(2)ln(x x +⎰;解:原式=ln(ln(.x x x x x c -=+验证:ln(ln(x x x x c '⎡⎤=+++-⎣⎦ln(x =+所以,结论成立.2(3)ln(1)d x x +⎰;解:原式=2222ln(1)2d ln(1)22arctan 1x x x x x x x x c x+-=+-+++⎰. 验证:2222222ln(1)2ln(1).ln(1)22arctan 11x x x x x x x x c x x'=++⋅-+=+⎡⎤+-++⎣⎦++ 所以,结论正确.(4)x ;解:原式=9212)arcsin (.232x x x c ++=++验证:921arcsin (232x x '+⎡++⎢⎣211(2)32x =+== 所以,结论正确.(5)sin(ln )d x x ⎰;105解:1sin(ln )d sin(ln )cos(ln )d x x x x x x x x=-⋅⋅⎰⎰ sin(ln )cos(ln )sin(ln )d x x x x x x =--⎰所以,原式=().sin(ln )cos(ln )2xc x x +- 验证: ()sin(ln )cos(ln )2x c x x '⎡⎤+-⎢⎥⎣⎦()111sin(ln )cos(ln )cos(ln )sin(ln )22sin(ln ).x x x x x x x x ⎛⎫=+-⋅+⋅ ⎪⎝⎭= 故结论成立.2e (6)d (e 1)xx x x +⎰; 解:原式=1e 1d d d e 1e 1e 11e e 1x x x x xx x x x x x --⎛⎫-=-+=-+ ⎪+++++⎝⎭⎰⎰⎰ ln(1e ).e 1x xxc --=-+++ 验证:22(e 1)e e e ln(1e )(e 1)1e (e 1)e 1x xx x xx x x x x x x c ---'-++--⎡⎤=-=-++⎢⎥++++⎣⎦. 故结论成立.23/2ln (7)d (1)xx x +⎰; 解:原式=1ln d d ln(.x x x c x =-=++⎰验证:ln(x c '⎤-+⎥⎦2223/223/2(1ln )(1)ln ln .(1)(1)x x x x x x x =++-==++所以,结论成立.sin (8)d 1cos x x x x++⎰;106解:原式=2d cos d d tan ln(1cos )1cos 22cos 2x x xx x x x x -=-++⎰⎰⎰tan tan d ln(1cos )22tan ln(1cos )ln(1cos )2tan 2x xx x x xx x x c x x c=--+=++-++=+⎰验证:2221sin sin (tan)tan sec 22221cos 2cos 2cos 22x x x x x x xx c x x x x +'+=+⋅=+=+ 所以,原式成立.(9)()d xf x x ''⎰;解:原式=d ()()()d ()().x f x xf x f x x xf x f x c ''''=-=-+⎰⎰验证:[]()()()().()()f x xf x f x xf x xf x f x c ''''''''=+-=-+ 故结论成立.(10)sin d n x x ⎰ (n >1,且为正整数).解:1sin d sind cos nn n I x x x x -==-⎰⎰1221212cos sin (1)cos sin d cos sin (1)sin d (1)sin d cos sin (1)(1)n n n n n n n nx x n x x xx x n x x n x x x x n I n I ------=-+-=-+---=-+---⎰⎰⎰ 故 1211cos sin .n n n n I x x I n n---=-+ 验证: 1211cos sin sin d n n n x x x x n n --'-⎡⎤-+⎢⎥⎣⎦⎰22222111sin cos (1)sin cos sin 111sin (1sin )sin sin sin .n n n n n n n n x x n x x x n n n n n x x x xn n n x -----=-⋅-⋅+--=--+= 故结论成立.19. 求不定积分max(1,)d x x ⎰.107解: ,1max(1,)1,11,1x x x x x x -<-⎧⎪=-≤≤⎨⎪>⎩故原式=212231,12,111,12x c x x c x x c x ⎧-+<-⎪⎪+-≤≤⎨⎪⎪+>⎩又由函数的连续性,可知:213111,1,2c c c c c c =+=+= 所以 221,121max(1,)d ,11211,12x c x x x c x x x c x ⎧-+<-⎪⎪⎪=++-≤≤⎨⎪⎪++>⎪⎩⎰20. 计算下列积分:4(1)x ⎰;333211221313d .36222t t t t ⎛⎫⎛⎫==++ ⎪ ⎪⎝⎭⎝⎭2e 1(2)⎰;解:原式=221e211).(1ln )d(1ln )x x -=++=⎰1(3);解:原式=211112⎛⎫+ ⎪-== π40sin (4)d 1sin xx x+⎰;108解:原式=πππ244422000sin(1sin )sin d d tan d cos cos x xx x x x xx -=-⎰⎰⎰π40π1 2.tan 4cos x x x ⎛⎫==+-+ ⎪⎝⎭ ln3ln 2d (5)e e x xx--⎰;解:原式=ln 3ln 32ln 2ln 2de 113e 1ln ln .(e )1222e 1x x x x -==-+⎰(6)x ⎰;解:原式=πππ2π02d cos d cos d cos x x x x x x x ==⎰⎰ππ2π02xx==(7)x ⎰;解:原式=π33π222π02d sin d sin sin d sin x x x x x x =-⎰⎰⎰ππ55222π02422.sin sin 555x x =-=231(8)ln d x x x ⎰;解:原式=22243411111151ln d d 4ln 2.ln 44164x x x x x x =-=-⎰⎰π220(9)e cos d x x x ⎰;解:ππππ222222220e cos d e dsin e sin 2e sin d xx xx x x x xx x ==⋅-⎰⎰⎰πππ2π2π22220e 2e d cos e 2e cos 4e cos d xxx x xx x =+=+-⎰⎰所以,原式=π1(e 2)5-.109120ln(1)(10)d (2)x x x +-⎰;解:原式=111000111ln(1)ln(1)dd 2212x x x x x x x ++=-⋅--+-⎰⎰ 101100111ln 2d 321111ln 2ln 2ln(2)ln(1)333x x x x x ⎛⎫=-+ ⎪-+⎝⎭=+-=-+⎰322d (11)2xx x +-⎰; 解:原式=3322111111d ln ln 2ln 5.333122x x x x x -⎛⎫==-- ⎪-++⎝⎭⎰21(12)x ⎰; 解:原式11611d 6d (1)t 1t t t t t ⎫=-⎪++⎝⎭()67ln 26ln ln ln(1)1t t ==--+ππ3π(13)sin d 3x x ⎛⎫+ ⎪⎝⎭⎰;解:原式ππ3πcos 03x ⎛⎫=-=+ ⎪⎝⎭ 212(14)e d t t t -⎰;解:原式=221212200ed e 12t t t --⎛⎫-=-=-- ⎪⎝⎭⎰π22π6(15)cos d u u ⎰.解:原式=ππ22ππ661π11(1cos 2)d sin 226824u u u u ⎛⎫+==-+ ⎪⎝⎭⎰21. 计算下列积分(n 为正整数):110(1)1;n x ⎰解:令sin x t =,d cos d x t t =, 当x =0时t =0,当x =1时t=π2, ππ12200sin cos d sin d cos n n n tx t t t t t==⎰⎰⎰由第四章第五节例8知11331π, 24221342,253n n n n n n x n n n n n --⎧⋅⋅⋅⋅⋅⎪⎪-=⎨--⎪⋅⋅⋅⋅⎪-⎩⎰为偶数, 为奇数. (2)π240tan d .n x x ⎰解:πππ2(1)22(1)22(1)4440π2(1)411tan tan d tansec d tan d 1tan d tan 21n n n n n n n I x x x x x x x xx x I I n ------==-=-=--⎰⎰⎰⎰由递推公式 1121n n I I n -+=- 可得 111(1)(1)[(1)].43521n nn I n π--=---+-+- 22. 证明下列等式:232001(1)()d ()d 2aa x f x x xf x x =⎰⎰ (a 为正常数);证明:左222222000111()d()()d ()d 222a a a x t x f x x tf t t xf x x ====⎰⎰⎰ 令右所以,等式成立.(2)若()[,]f x c a b ∈,则ππ220(sin )d (cos )d f x x f x x =⎰⎰.证明:左πππ0222π02(cos )(d )(cos )d (cos )d x tf t t f t t f x x =--==⎰⎰⎰令.所以,等式成立.23. 利用被积函数奇偶性计算下列积分值(其中a 为正常数)(1)sin d ;||aa x x x -⎰111解:因sin ||xx 为[-a , a ]上的奇函数, 故s i n d 0.||aa xx x -=⎰(2)ln(aax x -⎰;解:因为ln(ln(x x -=-+即被积函数为奇函数,所以原式=0.12212sin tan (3)d ln(1)3cos3x x x x x -⎡⎤+-⎢⎥+⎣⎦⎰;解:因为2sin tan 3cos3x xx+为奇函数,故原式=111222111222d 0ln(1)d ln(1)1xx x x x x x---++-=--⎰⎰()121231ln 3ln 2 1.ln 3ln 2ln(1)22x x -==----+-π242π23(4)sin d sin ln 3x x x x x -+⎛⎫+ ⎪-⎝⎭⎰.解:因为3ln3xx+-是奇函数,故 原式=ππ6622π02531π5sin d 2sin d 2π642216x x x x -==⋅⋅⋅⋅=⎰⎰24. 利用习题22(2)证明:ππ2200sin cos πd d sin cos sin cos 4x x x x x x x x ==++⎰⎰,并由此计算a⎰(a 为正常数)证明:由习题22(2)可知ππ2200sin cos d d sin cos sin cos x xx x x x x x=++⎰⎰又πππ222000sin cos πd d d .sin cos sin cos 2x x x x x x x x x +==++⎰⎰⎰112故等式成立.a⎰πsin 20cos πd .sin cos 4x a tx t t t ==+⎰令25. 已知201(2),(2)0,()d 12f f f x x '===⎰, 求120(2)d x f x x ''⎰.解:原式=11122000111d (2)2(2)d (2)222x f x xf x x x f x ''='-⎰⎰11100012001111(2)d (2)0(2)d (2)22221111(2)(2)d(2)1()d 1402444f x f x f x x xf x f f x x f t t '=-=-+=-+=-+=-+⨯=⎰⎰⎰⎰26. 用定义判断下列广义积分的敛散性,若收敛,则求其值:22π11(1)sin d x x x+∞⎰; 解:原式=22ππ1111lim sin d lim cos lim cos 1.bbb b b x b x x →+∞→+∞→+∞⎛⎫-=== ⎪⎝⎭⎰2d (2);22xx x +∞-∞++⎰解:原式=02200d(1)d(1)arctan(1)arctan(1)(1)1(1)1x x x x x x +∞+∞-∞-∞+++=+++++++⎰⎰πππππ.4242⎛⎫=-+-=- ⎪⎝⎭ 0(3)e d n x x x +∞-⎰(n 为正整数)解:原式=10e d deen x n xn xn x x x x +∞+∞+∞----+-=-⎰⎰100e d !e d !n x x n x x n x n +∞+∞---=+===⎰⎰(4)(0)aa >⎰;解:原式=00000πlim lim arcsin lim arcsin .12a a xa a εεεεεε+++--→→→⎛⎫===- ⎪⎝⎭⎰e1(5)⎰;113解:原式=()e e 011πlim arcsin(ln )lim lim arcsin .ln(e )2x εεεεεε+++--→→→===-⎰1(6)⎰解:原式=110+⎰21212211121202lim 2lim πππlim arcsin lim 2222π.424εεεεεε++-→→→→=⎛⎫=+=⋅+=- ⎪⎝⎭⎰⎰27. 讨论下列广义积分的敛散性:2d (1)(ln )kxx x +∞⎰;解:原式=2122112,1ln(ln )1d(ln ),1(ln )1(ln )1(ln 2),1(ln )11k kkk k x x k x k x k x k k +∞+∞-+∞-+∞-⎧=∞=⎪⎪⎪=∞<=⎨-⎪⎪=>⎪--⎩⎰ 故该广义积分当1k >时收敛;1k ≤时发散.d (2)()()bkaxb a b x >-⎰. 解:原式=1100011lim ()()1,1lim ()d()1lim 1ln()b kk b a k a b a k b x b a k k b x b x k k b x εεεεεε+++-----→→-→⎧>⎧⎪⎪=-⎨--⎪-<---=⎪⎨-⎩⎪⎪-=-⎩⎰ 发散,发散, 综上所述,当k <1时,该广义积分收敛,否则发散.28. 已知0sin πd 2x x x +∞=⎰,求: 0sin cos (1)d ;x x x x+∞⎰解:(1)原式=001sin(2)1sin πd(2)d .2224x t x t x t +∞+∞==⎰⎰22sin (2) d .xx x +∞⎰114解:222002200200020000sin 1cos 2d d 21cos 2d d 22111d cos 2d 2211111d cos 2dcos2222111sin 2cos 2d2222ππ0.22xx x xx x x x x x x x x x xx x x x x xx x xx x x +∞+∞+∞+∞+∞+∞+∞+∞+∞+∞+∞-==-=+=+⋅-⎡⎤=-+⋅+⎢⎥⎣⎦=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰29. 已知()d 1p x x +∞-∞=⎰,其中1,()0,1,x p x x <=≥⎩求c .解:1111()d 0d 0d p x x x x x x +∞-+∞-∞-∞--=⋅++⋅=⎰⎰⎰⎰⎰11001arcsin arcsin π1x x c x c xc --=+=⋅+⋅==⎰⎰所以1πc =. 30. 证明:无穷积分敛散性的比较判别法的极限形式,即节第六节定理2. 证明:如果|()|lim0()x f x g x ρ→+∞=≠,那么对于ε(使0ρε->),存在x 0,当0x x ≥时|()|0()f xg x ρερε<-<<+ 即 ()()|()|()()g x f x g x ρερε-<<+ 成立,显然()d ag x x +∞⎰与|()|d af x x +∞⎰同进收敛或发散.如果0ρ=,则有|()|()f x g x ε<, 显然()d ag x x +∞⎰收敛, 则|()|d af x x +∞⎰亦收敛.如果ρ=+∞,则有|()|()()f x g x ρε>-,显然()d ag x x +∞⎰发散,则|()|d af x x +∞⎰亦发散.*31. 计算下列广义积分的柯西主值:(1) V.P.x +∞-∞⎰;115解:原式=0lim AA x x -→+∞⎡⎤+⎢⎥⎣⎦⎰⎰lim lim 0.11A A A →+∞→+∞⎤=⎦==+212d (2) V.P.ln xx x⎰; 解:原式=121211001212d d lim lim ln ln ln ln ln ln x x x x x x x x εεεεεε++--+→→+⎡⎤⎡⎤⎢⎥+=+⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰01lim ln ln(1)ln ln ln 2ln ln(1)0.ln 2εεε+→⎡⎤=--+-+=⎢⎥⎣⎦2d (3) V.P.32xx x +∞-+⎰; 解:x =1, x =2是奇点. 故 原式1222201200d d d lim323232b n b x x x x x x x x x εηεηε++--++→→→+∞⎡⎤=++⎢⎥-+-+-+⎣⎦⎰⎰⎰ 120000120222lim ln lim ln lim ln 111bb x x x x x x εηεεηεηη++++--→→→++→∞→⎡-⎤⎡-⎤⎡-⎤=++⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦ 0000112lim ln ln 2lim ln ln lim ln ln 1111ln 2ln .2b b b εεηηεηεηεηεη++++→→→→∞→⎡⎤⎡⎤+--⎡⎤=-+-+-⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦⎣⎦=-=30d (4) V.P.1xx-⎰. 解:原式=1313010001d d lim lim ln ln 1111xx x xx x εεεεεε++--+→→+⎡⎤⎡⎤=--+--⎢⎥⎢⎥--⎣⎦⎢⎥⎣⎦⎰⎰ []0lim ln 2ln ln 2ln εεε+→==---+.。
习题1-11. 下列函数是否相等,为什么?222(1)()();(2)sin (31),sin (31);1(3)(),() 1.1f xg x y x u t x x f x g x x x ===+=+-==+- 解: (1)相等.因为两函数的定义域相同,都是实数集R ;x =知两函数的对应法则也相同;所以两函数相等.(2)相等.因为两函数的定义域相同,都是实数集R ,由已知函数关系式显然可得两函数的对应法则也相同,所以两函数相等.(3)不相等.因为函数()f x 的定义域是{,1}x x x ∈≠R ,而函数()g x 的定义域是实数集R ,两函数的定义域不同,所以两函数不相等. 2. 求下列函数的定义域211(1)arctan ;(2);lg(1)(3); (4)arccos(2sin ).1y y x x xy y x x ==-==-解: (1)要使函数有意义,必须400x x -≥⎧⎨≠⎩即 40x x ≤⎧⎨≠⎩所以函数的定义域是(,0)(0,4]-∞.(2)要使函数有意义,必须30lg(1)010x x x +≥⎧⎪-≠⎨⎪->⎩即 301x x x ≥-⎧⎪≠⎨⎪<⎩所以函数的定义域是[-3,0)∪(0,1).(3)要使函数有意义,必须210x -≠ 即 1x ≠±所以函数的定义域是(,1)(1,1)(1,)-∞--+∞.(4)要使函数有意义,必须12sin 1x -≤≤ 即 11sin 22x -≤≤即ππ2π2π66k x k -+≤≤+或5π7π2π2π66k x k +≤≤+,(k 为整数). 也即ππππ66k x k -+≤≤+ (k 为整数).3. 设1()1x f x x -=+,求1(0),(),().f f x f x-解: 10(0)110f -==+,1()1(),1()1x x f x x x --+-==+--1111().111x x f x x x--==++ 4. 设1,10()1,02x f x x x -≤<⎧=⎨+≤≤⎩,求(1)f x -.解: 1,1101,01(1).(1)1,012,13x x f x x x x x -≤-<≤<⎧⎧-==⎨⎨-+≤-≤≤≤⎩⎩5. 设()2,()ln xf xg x x x ==,求(()),(()),(())f g x g f x f f x 和(())g g x . 解: ()ln (())22,g x x x f g x ==(())()ln ()2ln 2(ln 2)2,x x x g f x f x f x x ==⋅=⋅()2(())22,(())()ln ()ln ln(ln ).xf x f f xg g x g x g x x x x x ====6. 求下列函数的反函数及其定义域:2531(1); (2)ln(2)1;1(3)3; (4)1cos ,[0,π].x xy y x xy y x x +-==+++==+∈ 解: (1)由11xy x-=+解得11y x y -=+,所以函数11x y x -=+的反函数为1(1)1xy x x-=≠-+. (2)由ln(2)1y x =++得1e 2y x -=-,所以,函数ln(2)1y x =++的反函数为1e2()x y x -=-∈ R .(3)由253x y +=解得31(log 5)2x y =- 所以,函数253x y +=的反函数为31(log 5)(0)2y x x =-> .(4)由31cos y x =+得cos x =又[0,π]x ∈,故x =又由1cos 1x -≤≤得301cos 2x ≤+≤,即02y ≤≤,故可得反函数的定义域为[0,2],所以,函数31cos ,[0,π]y x x =+∈的反函数为3arccos 1(02)y x x =-≤≤ .7. 判断下列函数在定义域内的有界性及单调性:2(1); (2)ln 1xy y x x x ==++ 解: (1)函数的定义域为(-∞,+∞), 当0x ≤时,有201x x ≤+,当0x >时,有21122x x x x ≤=+, 故(,),x ∀∈-∞+∞有12y ≤.即函数21xy x =+有上界. 又因为函数21xy x =+为奇函数,所以函数的图形关于原点对称,由对称性及函数有上界知,函数必有下界,因而函数21xy x =+有界. 又由1212121222221212()(1)11(1)(1)x x x x x x y y x x x x ---=-=++++知,当12x x >且121x x <时,12y y >,而 当12x x >且121x x >时,12y y <. 故函数21xy x=+在定义域内不单调. (2)函数的定义域为(0,+∞),10,0M x ∀>∃>且12;e 0M x M x >∃>>,使2ln x M >.取012max{,}x x x =,则有0012ln ln 2x x x x M M +>+>>, 所以函数ln y x x =+在定义域内是无界的. 又当120x x <<时,有12120,ln ln 0x x x x -<-<故1211221212(ln )(ln )()(ln ln )0y y x x x x x x x x -=+-+=-+-<. 即当120x x <<时,恒有12y y <,所以函数ln y x x =+在(0,)+∞内单调递增.8. 已知水渠的横断面为等腰梯形,斜角ϕ=40°,如图所示.当过水断面ABCD 的面积为定值S 0时,求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式,并指明其定义域.图1-1解:011()(2cot )(cot )22S h AD BC h h BC BC h BC h ϕϕ=+=++=+从而 0cot SBC h hϕ=-.000()22cot sin sin 2cos 2cos 40sin sin 40L AB BC CD AB CD S h hBC h hS S h h h hϕϕϕϕϕ=++==+=+---=+=+由00,cot 0S h BC h hϕ>=->得定义域为.9. 下列函数是由哪些基本初等函数复合而成的?5122412(1)(1);(2)sin (12);1(3)(110);(4).1arcsin 2xy x y x y y x-=+=+=+=+解: (1)124(1)y x =+是由124,1y u u x ==+复合而成.(2)2sin (12)y x =+是由2,sin ,12y u u v v x ===+复合而成. (3)512(110)x y -=+是由152,1,10,w y u u v v w x ==+==-复合而成.(4)11arcsin 2y x=+是由1,1,arcsin ,2y u u v v w w x -==+==复合而成.习题1-21. 写出下列数列的通项公式,并观察其变化趋势:1234579(1)0,,,,,; (2)1,0,3,0,5,0,7,0,; (3)3,,,,.3456357----解: 1(1),1n n x n -=+当n →∞时,1n x →.1(2)cos π2n n x n -=,当n 无限增大时,有三种变化趋势:趋向于+∞,趋向于0,趋向于-∞.21(3)(1)21n n n x n +=--,当n 无限增大时,变化趁势有两种,分别趋于1,-1.2. 对下列数列求lim n n a x →∞=,并对给定的ε确定正整数()N ε,使对所有()n N ε>,有n x a ε-<:1π(1)sin ,0.001; (2)0.0001.2n n n x x n εε====解: (1)lim 0n n a x →∞==,0ε∀>,要使11π0sin2n n x n n ε-=<<,只须1n ε>.取1N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,必有0n x ε-<.当0.001ε=时,110000.001N ⎡⎤==⎢⎥⎣⎦或大于1000的整数. (2)lim 0n n a x →∞==,0ε∀>,要使0n x ε-==<=<1ε>即21n ε>即可.取21N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,有0n x ε-<. 当0.0001ε=时, 821100.0001N ⎡⎤==⎢⎥⎣⎦或大于108的整数. 3. 根据数列极限的定义,证明:21313(1)lim0;(2)lim ;212(3)1;(4)lim 0.999 1.n n n n n n n n →∞→∞→∞→∞-==+== 个证: (1)0ε∀>,要使22110n n ε=<-,只要n >.取N =,则当n>N 时,恒有210nε<-.故21lim 0n n →∞=. (2) 0ε∀>,要使555313,2(21)4212n n n n n ε-=<<<-++只要5n ε>,取5N ε⎡⎤=⎢⎥⎣⎦,则当n>N 时,恒有313212n n ε-<-+.故313lim212n n n →∞-=+. (3) 0ε∀>,要使2221a n ε=<<-,只要n >,取n =,则当n>N 时,1ε<-,从而lim 1n →∞=. (4)因为对于所有的正整数n ,有10.99991n <-个,故0ε∀>,不防设1ε<,要使1,0.999110n n ε=<-个只要ln ,ln10n ε->取ln ,ln10N ε-⎡⎤=⎢⎥⎣⎦则当n N >时,恒有,0.9991n ε<-个故lim 0.9991n n →∞=个.4. 若lim n n x a →∞=,证明lim n n x a →∞=,并举反例说明反之不一定成立.证:lim 0n n x →∞=,由极限的定义知,0,0N ε∀>∃>,当n N >时,恒有n x a ε-<.而 n n x x a a ε-<-<0,0N ε∴∀>∃>,当n N >时,恒有n x a ε-<,由极限的定义知lim .n n x a →∞=但这个结论的逆不成立.如(1),lim 1,nn n n x x →∞=-=但lim n n x →∞不存在.5. 利用收敛准则证明下列数列有极限,并求其极限值:1111(1)1,2,; (2)1,1,1,2,.1nn n nx x x n x x n x ++=====+=+证: (1)122x =<,不妨设2k x <,则12k x +<=.故对所有正整数n 有2n x<,即数列{}n x 有上界.又1n n n x x x+-==0>,又由2n x <从而10n n x x +->即1n n x x +>, 即数列{}n x 是单调递增的.由极限的单调有界准则知,数列{}n x 有极限. 设lim n n x a →∞=,则a =,于是22a a =,2,0a a ==(不合题意,舍去),lim 2n n x →∞∴=.(2) 因为110x =>,且111nn nx x x +=++, 所以02n x <<, 即数列有界又 111111111(1)(1)nn n n n n n n n n x x x x x x x xx x --+---⎛⎫⎛⎫++-=-= ⎪ ⎪++++⎝⎭⎝⎭由110,10n n x x -+>+>知1n n x x +-与1n n x x --同号, 从而可推得1n n x x +-与21x x -同号, 而 1221131,1,022x x x x ==+=-> 故10n n x x +->, 即1n n x x +>所以数列{}n x 单调递增,由单调有界准则知,{}n x 的极限存在. 设lim n n x a →∞=, 则11a a a=++, 解得1122a a +-==(不合题意,舍去). 所以1lim 2n n x →∞+=习题1-31. 选择题 (1)设1,1()0,1x f x x ≠⎧=⎨=⎩,则0lim ()x f x →=( ) A.不存在 B.∞ C.0 D.1(2)设()f x x =,则1lim ()x f x →=( ) A.1- B.1 C.0 D.不存在(3)0(0)f x +与0(0)f x -都存在是函数()f x 在点0x x =处有极限的一个( )A.必要条件B.充分条件C.充要条件D.无关条件(4)函数()f x 在点0x x =处有定义,是当0x x →时()f x 有极限的( )A.必要条件B.充分条件C.充分必要条件D.无关条件 (5)设1()1x f x x -=-,则1lim ()x f x →=( )A.0B.1-C.1D.不存在 2.证明01lim arctanx x→不存在. 3. 用函数极限定义证明:22222102sin 314(1)lim 0; (2)lim 3; (3)lim 4; 42141(4)lim 2; (5)lim sin 0.21x x x x x x x x xx x x x x x →+∞→∞→-→→---===-++-==+证:(1)0ε∀>,要使1sin sin 0x xx x xε=≤<-, 只须1x ε>,取1X ε>,则当x X >时,必有sin 0xxε<-, 故sin lim0x xx→+∞=.(2)0ε∀>,要使22221313313||44x x x x ε-=<<-++,只须x >取X =X x >时,必有223134x x ε-<-+, 故2231lim 34x x x →∞-=+. (3) 0ε∀>,要使24(4)22x x x ε-=<--++, 只要取δε=,则当02x δ<<+时,必有24(4)2x x ε-<--+,故224lim42x x x →--=-+.(4) 0ε∀>,要使21142221221x x x x ε-==<+-++,只须122x ε<+,取2εδ=,则当102x δ<<+时,必有214221x x ε-<-+故21214lim 221x x x →--=+.(5) 0ε∀>,要使11sin0sin x x x x xε=≤<-, 只要取δε=,则当00x δ<<-时,必有1sin0x xε<-, 故01lim sin0x x x→=. 习题1-41. 选择题:(1)设α和β分别是同一变化过程中的无穷小量与无穷大量,则αβ+是同一变化过程中的( )A.无穷小量B.有界变量C.常量D.无穷大量(2)“当0x x →时,()f x A -是一个无穷小量”是“函数()f x 在点0x x =处以A 为极限”的( )A.必要而不充分条件B.充分而不必要的条件C.充分必要条件D.无关条件 (3)当0x →时,11cos x x是( ) A.无穷小量 B.无穷大量 C.无界变量 D.有界变量 2.求下列极限:(1)201lim cos x x x →; (2)arctan lim x xx→∞.习题1-51.若对某极限过程,()lim f x 与()lim g x 均不存在,问()()()lim f x g x ±是否一定不存在?举例说明.2.若对某极限过程,()lim f x 存在,()lim g x 不存在,问()()()lim f x g x ±,()()()lim f x g x ⋅是否存在?为什么?3. 求下列极限:2222313242233112131(1)lim ;(2)lim ;1211(3)lim ;(4)lim ;3121131(5)lim ;(6)lim ;111(7)lim 1x x x x x x x x x x x x x x x x x x x x x x x x →→∞→→∞→∞→→→--+---+-++-⎛⎫- ⎪---⎝⎭- ()()33212(8)lim .23x x x x x →∞+--+-解:()()2232233lim 33933(1)lim 1lim 9151x x x x x x x →→→---===+++. 22223334224241111(2)limlim .1121221111lim (3)lim lim 0.3131311lim 1x x x x x x x x x x x xx x x x x x x x x x x x →∞→∞→∞→∞→∞→∞--==----⎛⎫-- ⎪-⎝⎭===-+⎛⎫-+-+ ⎪⎝⎭(4)(5) (6) (7) (8)习题1-61. 选择题:(1)当n →∞时,1sinn n是一个( ) A.无穷小量 B.无穷大量 C.无界变量 D.有界变量(2)若x a →时,有0()()f x g x ≤≤,则lim ()0x ag x →=是()f x 在x a →过程中为无穷小量的( )A.必要条件B.充分条件C.充要条件D.无关条件 2. 利用夹逼定理求下列数列的极限:1(1)(2)lim[(1)],01;(3);(4)lim(123).n k k n n nn nn n n k →∞→∞+-<<++其中为给定的正常数解: (1)11111n n<+<+ 而1lim10,lim(1)1n n n→∞→∞=+=故 1n =. 1111(2)0(1)(1)1(1)1k k k kk k n n n n n n n -⎡⎤⎡⎤<+-=<=+-+-⎢⎥⎢⎥⎣⎦⎣⎦而lim 00n →∞=,当1k <时,11lim0kn n -→∞=lim[(1)]0k k n n n →∞∴+-=.(3)记12max{,,,}m a a a a =则有n<<即 1na m a <<⋅而1lim , lim ,nn n a a m a a →∞→∞=⋅=故n a =即 12lim max{,,,}m n a a a =.(4)111(3)(123)(33)n nn n nn n<++<⋅即 113(123)3n nn nn+<++<而 1lim33,lim33n nn n +→∞→∞==故 1lim(123)3nn nn →∞++=.3.求下列极限:(1)0sin 2lim;sin 5x xx → (2) 0lim cot ;x x x →(3)0arctan lim;x x x → (4) 201lim 1;xx x →⎛⎫+ ⎪⎝⎭(5)213lim ;2x x x x +→∞+⎛⎫ ⎪-⎝⎭(6) ()2cot 2lim 13tan ;xx x →+习题1-71. 当1x →时,无穷小量1x -与221(1)1,(2)(1)2x x --是否同阶?是否等价? 解:211111(1)limlim 112x x x x x →→-==-+ ∴当1x →时,1x -是与21x -同阶的无穷小.2111(1)12(2)lim lim 112x x x xx →→-+==-∴当1x →时,1x -是与21(1)2x -等价的无穷小.2. 当0x →时,22x x -与23x x -相比,哪个是高阶无穷小量?解:232200limlim 022x x x x x x x x x→→--==-- ∴当0x →时,23x x -是比22x x -高阶的无穷小量.3.利用等价无穷小量,求下列极限:(1)0sin lim;sin x mxnx → 0(2)lim cot ;x x x →01cos 2(3)lim ;sin x xx x→- (4) tan sin 601lim 1x x x e e →--. 解:(1)因为当0x →时,sin ~,sin ~,mx mx nx nx所以00sin limlim .sin x x mx mx mnx nx n→→==00002000limcos cos (2)lim cot lim cos lim 1.sin sin sin lim1cos 22sin sin (3)lim lim 2lim 2.sin sin x x x x x x x x x x x x x x x xx x xx x x x x x x x→→→→→→→→=⋅===-=== (4)习题1-81. 研究下列函数的连续性,并画出图形:2,1,,01,(1)()(2)()1,1;2,12;x x x x f x f x x x x≤⎧≤≤⎧==⎨⎨>-<<⎩⎩ 解:(1)由初等函数的连续性知,()f x 在(0,1),(1,2)内连续, 又21111lim ()lim(2)1,lim ()lim 1x x x x f x x f x x ++--→→→→=-=== 1lim ()1,x f x →∴= 而(1)1f =,()f x ∴在1x =处连续,又,由2lim ()lim 0(0)x x f x x f ++→→===,知()f x 在0x =处右连续, 综上所述,函数()f x 在[0,2)内连续. 函数图形如下:图1-2(2) 由初等函数的连续性知()f x 在(,1),(1,1),(1,)-∞--+∞内连续,又由1111lim ()lim 11,lim ()lim 1,x x x x f x f x x --++→-→-→-→-====-知1lim ()x f x -→-不存在,于是()f x 在1x =-处不连续.又由1111lim ()lim 1,lim ()lim11,x x x x f x x f x --++→→→→==== 及(1)1f =知1lim ()(1)x f x f →=,从而()f x 在x =1处连续,综上所述,函数()f x 在(,1)-∞-及(1,)-+∞内连续,在1x =-处间断.函数图形如下:图1-32. 下列函数在指定点处间断,说明它们属于哪一类间断点,如果是可去间断点,则补充或改变函数的定义,使它连续:221(1),1,2;32π(2),π,π,0,1,2,.tan 2x y x x x x x y x k x k k x -===-+===+=±±解:22111(1)(1)(1)lim lim 232(1)(2)x x x x x x x x x →→--+==--+-- 2221lim 32x x x x →-=∞-+ 1x ∴=是函数的可去间断点.因为函数在x =1处无定义,若补充定义(1)2f =-,则函数在x =1处连续;x =2是无穷间断点.π0π2(2)lim1,lim 0tan tan x x k x x x x →→+==当0k ≠时,πlimtan x k xx →=∞.π0,π,0,1,2,2x x k k ∴==+=±±为可去间断点,分别补充定义f (0)=1,π(π)02f k +=,可使函数在x =0,及ππ2x k =+处连续.(0,1,2,k =±±);π,0,1,2,x k k k =≠=±±为无穷间断点3. 当x =0时,下列函数无定义,试定义(0)f 的值,使其在x =0处连续:tan2(1)()(2)().xf x f xx ==解:0003(1)lim ()2x x x f x →→→=== ∴补充定义3(0),2f =可使函数在x =0处连续. 000tan 22(2)lim ()lim lim 2.x x x x xf x x x→→→=== ∴补充定义(0)2,f =可使函数在x =0处连续. 4. 怎样选取a , b 的值,使f (x )在(-∞,+∞)上连续?π1,,e ,0,2(1)()(2)()π,0;sin ,.2xax x x f x f x a x x x b x ⎧+<⎪⎧<⎪==⎨⎨+≥⎩⎪+≥⎪⎩解:(1)()f x 在(,0),(0,)-∞+∞上显然连续,而0lim ()lim(),x x f x a x a ++→→=+= 0lim ()lim e 1,xx x f x --→→== 且(0)f a =, ∴当(0)(0)(0)f f f -+==,即1a =时,()f x 在0x =处连续,所以,当1a =时,()f x 在(,)-∞+∞上连续.(2)()f x 在ππ(,),(,)22-∞+∞内显然连续.而ππ22ππ22lim ()lim (sin )1,πlim ()lim (1)1,2π()1,2x x x x f x x b b f x ax a f b ++--→→→→=+=+=+=+=+ ∴当π112b a +=+,即π2b a =时,()f x 在π2x =处连续,因而()f x 在(,)-∞+∞上连续.5. 试证:方程21xx ⋅=至少有一个小于1的正根.证:令()21xf x x =⋅-,则()f x 在[0,1]上连续,且(0)10,(1)10f f =-<=>,由零点定理,(0,1)ξ∃∈使()0f ξ=即210ξξ⋅-=即方程21xx ⋅=有一个小于1的正根. 6. 利用取对数的方法求下列幂指函数的极限:()11002(1)lim ;(2)lim ;e 3111(3)lim ;(4)lim .sin cos 1x x xxxxx x x xx x a b c x x x x →→→∞→∞⎛⎫+++ ⎪⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭(5) ()23lim cos 2.x x x →解:(1)令1(e )xxy x =+,则1ln ln(e )x y x x=+于是:()0000ln e ln 111e lim ln lim ln lim ln e lim 1e e x x x x x x x x x x x y x x x x →→→→⎛⎫++ ⎪⎛⎫⎝⎭===++ ⎪⎝⎭e 0001e 1lim 1lim lim ln 1ln 11e e e e 11ln e 2x xxx x x x x x x x x x →→→⎡⎤⎛⎫⎛⎫==+⋅+⋅++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=+⋅= 即()lim ln 2x y →= 即20lim e x y →= 即()120lim e e x x x x →=+. (2)令13xxxxa b c y ⎛⎫++= ⎪⎝⎭,则1ln ln3x x x a b c y x ++= 于是00333303300001lim(ln )lim ln 313lim ln 1333lim lim ln 1331111lim ln lim 13x x x x x x xxx x x xx x a b c x x x a b c x xxxxxxa b c x x x x x x x x x x a b c y x a b c x a b c a b c x a b c a b c x x x →→++-++-→++-→→→→++=⎡⎤⎛⎫++-=⎢⎥+ ⎪⎢⎥⎝⎭⎣⎦++-⎛⎫++-=⋅+ ⎪⎝⎭⎛⎫---++=⋅++ ⎪+⎝⎭33331(ln ln ln )ln e ln 3x x x a b c a b c ++-⎡⎤⎛⎫-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦=++⋅=即0lim(ln )ln x y →= 即()lim ln x y →=故0lim x y →=即1lim 3x x xxx a b c →⎛⎫++=⎪⎝⎭(3)令11sin cos xy x x ⎛⎫=+ ⎪⎝⎭,则11ln ln sin cos y x x x ⎛⎫=+ ⎪⎝⎭ 于是11sin cos 1111sin cos 1111sin cos 111lim ln lim ln 1sin cos 11111lim ln 1sin cos 1sin cos 111sin 1cos lim ln lim 11xx x x x x x xx x y x x x x x x x x x x x x ⎛⎫+- ⎪⎝⎭+-→∞→∞+-→∞→∞⎧⎫⎪⎪⎡⎤⎛⎫=⎨⎬++- ⎪⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭⎡⎤⎛⎫⎛⎫=⋅++-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎛⎫- ⎪=-⋅ ⎪ ⎪⎝⎭111sin cos 1111sin cos 1x x x x x +-→∞⎧⎫⎪⎪⎡⎤⎛⎫⎨⎬++- ⎪⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭2111sin 2ln e (10)ln e 1limlim 11x x x x x x →∞→∞⎛⎫⎛⎫ ⎪⎪⎝⎭=⋅=-⋅= ⎪- ⎪ ⎪⎝⎭ 即limln 1x y →∞= 从而()lim ln 1x y →∞= 故lim e x y →∞= 即 11lim e sin cos xx x x →∞⎛⎫=+ ⎪⎝⎭.(4)令211xy x ⎛⎫=+ ⎪⎝⎭,则21ln ln 1y x x ⎛⎫=+ ⎪⎝⎭于是:22221222211lim(ln )lim ln lim ln 111111lim ln lim lim ln 110ln e 0x x x x x x x x x x y x x x x x x x x →∞→∞→∞→∞→∞→∞⎡⎤⎛⎫⎛⎫==+⎢⎥ ⎪+ ⎪⎝⎭⎝⎭⎣⎦⎛⎫⎛⎫==⋅++ ⎪ ⎪⎝⎭⎝⎭=⋅= 即 ()lim lim(ln )0,ln 0x x y y →∞→∞== lim 1x y →∞∴= 即21lim 11xx x →∞⎛⎫=+ ⎪⎝⎭.习题一1. 填空题(1) 已知当0x →时,1与2x 是等价无穷小,则常数a = -2 .(2)()ln 1lim1cos x x x x→+=- 2 .(3)3332lim 3x x x x →∞⎛⎫+=⎪-⎝⎭5e . (4)若函数22,4,()20,4x c x f x cx x ⎧-<=⎨+≥⎩在(),-∞+∞上连续,则常数c 的值为 -2 .(5)已知0x =是函数2x e ay x+=的第一类间断点,则常数a 的值为 -1 .2. 选择题(1)设函数f x ()在∞∞(-,+)内单调有界,{}n x 为数列,下列命题正确的是( B ).A.若{}n x 收敛,则(){}n f x 收敛B.若{}n x 单调,则(){}n f x 收敛 C.若(){}n f x 收敛,则{}n x 收敛 D.若(){}n f x 单调,则{}n x 收敛 (2)当0x +→B ).A. 1-B. 1xC. 1D. 1-(3)极限2lim ()()xx x x a x b →∞⎡⎤=⎢⎥-+⎣⎦( C ),这里,a b 为常数. A. 1 B. e C. a b e - D. b ae -(4)设函数1112,0,()22,0,x xe xf x e x ⎧+⎪≠⎪=⎨+⎪⎪=⎩则0x =是函数()f x 的( B ).A.可去间断点B.跳跃间断点C.无穷间断点D.连续点 (5)设*n N ∈,则函数21()lim1nn xf x x →∞+=+( D ).A. 存在间断点1x =B. 存在间断点1x =-C. 存在间断点0x =D. 不存在间断点3. 求函数⎧≠⎪=⎨⎪=⎩1sin ,0,0,x y xx 的定义域与值域.4. 判断下列函数的奇偶性:22(1)()(2)e e sin .x x f x y x -=+=-+解: (1)()()f x f x -==()f x ∴=.(2)222222()e e sin()e e sin (e e sin )()x x x x x x f x x x x f x ----=-+-=-+=--+=-∴函数22e e sin x x y x -=-+是奇函数.5. 设()f x 定义在(-∞,+∞)上,证明:(1) ()()f x f x +-为偶函数; (2)()()f x f x --为奇函数. 证: (1)设()()()F x f x f x =+-,则(,)x ∀∈-∞+∞, 有()()()()F x f x f x F x -=-+= 故()()f x f x +-为偶函数.(2)设()()(),G x f x f x =--则(,)x ∀∈-∞+∞,有()()()[()()]()G x f x f x f x f x G x -=---=---=- 故()()f x f x --为奇函数.6. 某厂生产某种产品,年销售量为106件,每批生产需要准备费103元,而每件的年库存费为0.05元,如果销售是均匀的,求准备费与库存费之和的总费用与年销售批数之间的函数(销售均匀是指商品库存数为批量的一半). 解: 设年销售批数为x , 则准备费为103x ;又每批有产品610x 件,库存数为6102x 件,库存费为6100.052x ⨯元. 设总费用为,则63100.05102y x x⨯=+.7. 邮局规定国内的平信,每20g 付邮资0.80元,不足20 g 按20 g 计算,信件重量不得超过2kg,试确定邮资y 与重量x 的关系. 解: 当x 能被20整除,即[]2020x x =时,邮资0.802025x x y =⨯=; 当x 不能被20整除时,即[]2020x x ≠时,由题意知邮资0.80120x y ⎡⎤=⨯+⎢⎥⎣⎦.综上所述有,02000;2520200.80,02000.1202020x xx x y x x x x ⎧⎡⎤<≤=⎪⎢⎥⎪⎣⎦=⎨⎡⎤⎡⎤⎪⨯<≤≠+⎢⎥⎢⎥⎪⎣⎦⎣⎦⎩且且 其中20x ⎡⎤⎢⎥⎣⎦,120x ⎡⎤+⎢⎥⎣⎦分别表示不超过20x ,120x +的最大整数. 8. 证明:11(1)arcsin h ln(h ln ,1121xx x x x x+=+=-<<-证: (1)由e e sinh 2x x y x --==得2e 2e 10x xy --=解方程2e2e 10xx y --=得e x y =因为e 0x >,所以e x y =ln(x y =+所以sinh y x =的反函数是arcsin h ln(().y x x x ==-∞<<+∞(2)由e e tanh e e x x x xy x ---==+得21e 1xy y +=-,得1112ln ,ln 121y y x x y y ++==--;又由101yy+>-得11y -<<, 所以函数tanh y x =的反函数为11arctan h ln (11).21xy x x x+==-<<-9.设数列{}n x 满足10x π<<,()1sin 1,2,n n x x n +==.证明lim nn x →∞存在,并求该极限.解:当1n =时,10x π<<,1sin n n x x += 则有1sin 1n n x x +=≤所以,数列{}n x 有界.令函数()sin f x x x =-,其中(0,)x π∈ 则 ()cos 10f x x '=-≤ ()(0)f x f ≤sin x x ≤1sin n n n x x x +=≤所以数列{}n x 单调递减根据单调收敛定理知:数列{}n x 极限存在令lim n n x A →∞=在1sin n n x x +=两边去极限得sin A A = 所以 0A = 故lim 0n n x →∞=10.设函数()f x =1()()x f x ϕ=,1()(())n n x f x ϕϕ-=,2,3,n =试计算极限()n n x .解:由题设()()21()x x f x ϕϕ====,依此类推,一般地,有()n xϕ=()1,0,,0,0,0,1,0.0,0n n n x xx x x x x x >⎧⎧≠⎪⎪====⎨⎨⎪⎪-<=⎩⎩=11. 求下列极限:221(1)lim(1)(1)(1)(1);)(1)nx n x x x x x x →∞→+++<-122222(1)lim(1)(1)(1)(1)(1)(1)(1)(1)lim 111lim .11nnn x x x x x x x x x x x x x x x+→∞→∞→∞+++<-+++=--==--111211211(1)(1)(2)lim (1))(1))(1)11.234!n n x n n n n x n n n n x n x x x x x x x x n n -→--→-→--=++++=++++==⨯⨯⨯⨯12.利用等价无穷小量,计算下列极限:0arctan 3(1)lim;(2)lim 2sin ;2n n x n x xx →→∞()22102320020041arctan (3)lim ;(4)lim ;arcsin(12)sin arcsin 2tan sin cos cos (5)lim ;(6)lim ,;sin 1cos 4(8)lim 2sin x x x x x x x x x x x x x x x x x x x αβαβ→→→→→→----- 为常数()222200;tan ln cos ln(sin e )(9)lim ,0;(10)lim .ln cos ln(e )2x x x x x x ax x xa b b bx x x→→++-≠+- 为常数,解:(1)因为当0x →时,arctan3~3,x x 所以00arctan 33limlim 3x x x xx x →→==.sin sin 22(2)lim 2sin lim lim .222n nn n n n n n nx x x x x x x x →∞→∞→∞=⋅== (3)因为当12x →时,arcsin(12)~12x x --,所以22111122224141(21)(21)lim lim lim lim(21) 2.arcsin(12)1212x x x x x x x x x x x x →→→→---+===-+=---- (4)因为当0x →时,22arctan ~,sin~,arcsin ~,22x xx x x x 所以 2200arctan lim lim 2sin arcsin 22x x x x xx x x →→==⋅.(5)因为当0x →时,2331sin ~,1cos ~,sin ~2x x x x x x -,所以 233300001tan sin sin (1cos )2lim lim lim sin sin cos cos 11lim .2cos 2x x x x x x x x x x x x xx x x →→→→⋅--==⋅== (6)因为当0x →时,sin~,sin~2222x x x x αβαβαβαβ++--,所以220020222sin sin cos cos 22lim lim 222lim 1().2x x x x xx x x x x xxαβαβαβαβαββα→→→+---=+--⋅⋅==- (7)因为当0x →时,~)~,x x --所以00 1.x x x →→→==-=-(8)因为当0x →时,sin ~,sin 2~2,x x x x 所以2222200222200201cos 42sin 2lim lim 2sin tan sin (2sec )2(2)8lim lim (2sec )2sec 84.lim(2sec )x x x x x x xx x x x x x x x x x x xx x →→→→→-=++⋅==++==+ (9)因为ln cos ln[1(cos 1)],ln cos ln[1(cos 1)],ax ax bx bx =+-=+- 而当0x →时,cos 10,cos 10ax bx -→-→故 ln[1(cos 1)]~cos 1,ln[1(cos 1)]~cos 1,ax ax bx bx +--+-- 又当x →0进,2222111cos ~,1cos ~,22ax a x bx b x --所以22220000221ln cos cos 11cos 2lim lim lim lim .1ln cos cos 11cos 2x x x x a xax ax ax a bx bx bx b b x→→→→--====-- (10)因为当0x →时,222sin 0,0e exx x x →→ 故 222222sin sin ln ~,ln ~,11e ee e x x xx x xx x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 所以22222222200022222000020sin ln 1ln(sin e )ln(sin e )ln e e lim lim lim ln(e )2ln(e )ln e ln 1e sin sin sin e lim lim e lim e lim e e 1 1.x x x x x x x x x x x x x x x x x x x x x x x x x x x xx x x x x →→→→→→→⎛⎫+ ⎪+-+-⎝⎭==+-+-⎛⎫+ ⎪⎝⎭⎛⎫⎛⎫==⋅=⋅ ⎪ ⎪⎝⎭⎝⎭=⋅= 13.设n N *∈,研究下列函数的连续性,并画出图形 :221(1)()lim ;(2)()lim .1x x nx x nn n n n x f x f x x n n x --→∞→∞--==++(1)∵当x <0时,221()lim lim 1,1x x x xx x n n n n n f x n n n --→∞→∞--===-++ 当x =0时,00()lim 0,n n n f x n n →∞-==+ 当x >0时,2222111()limlim lim 1111x xxx x xx n n n xn n n n f x n n n n --→∞→∞→∞---====+++1,0,()lim0,0,1,0.x xx xn x n n f x x n n x --→∞-<⎧-⎪∴===⎨+⎪>⎩由初等函数的连续性知()f x 在(,0),(0,)-∞+∞内连续, 又由 0lim ()lim11,lim ()lim(1)1x x x x f x f x ++--→→→→===-=-知0lim ()x f x →不存在,从而()f x 在0x =处间断.综上所述,函数()f x 在(,0),(0,)-∞+∞内连续,在0x =处间断.图形如下:图1-4(2)当|x |=1时,221()lim0,1nnn x f x x x →∞-==+ 当|x |<1时,221()lim,1nnn x f x x x x →∞-==+ 当|x |>1时,2222111()limlim 111nnn nn n x x f x x x x x x →∞→∞⎛⎫- ⎪-⎝⎭==⋅=-+⎛⎫+ ⎪⎝⎭即 ,1,()0,1,, 1.x x f x x x x <⎧⎪==⎨⎪->⎩由初等函数的连续性知()f x 在(-∞,-1),(-1,1),(1,+∞)内均连续,又由1111lim ()lim ()1,lim ()lim 1x x x x f x x f x x --++→-→-→-→-=-===-知1lim ()x f x →-不存在,从而()f x 在1x =-处不连续.又由 1111lim ()lim()1,lim ()lim 1x x x x f x x f x x ++--→→→→=-=-== 知1lim ()x f x →不存在,从而()f x 在1x =处不连续.综上所述,()f x 在(-∞,-1),(-1,1),(1,+∞)内连续,在1x =±处间断. 图形如下:图1-514. 下列函数在指定点处间断,说明它们属于哪一类间断点?21(1)cos,0;y x x == 1,1,(2) 1.3,1,x x y x x x -≤⎧==⎨->⎩解:(1)∵当0x →时,21cosx 呈振荡无极限, ∴x =0是函数的振荡间断点.(第二类间断点). (2)∵11lim lim(1)0x x y x --→→=-= ∴x =1是函数的跳跃间断点.(第一类间断点.)15. 当x =0时,下列函数无定义,试定义(0)f 的值,使其在x =0处连续:11(1)()sin sin ;(2)()(1).x f x x f x x x==+解:01(1)limsin sin0x x x→= ∴补充定义(0)0,f =可使函数在x =0处连续.10(2)lim ()lim(1)e xx x f x x →→=+=∴补充定义(0)e,f =可使函数在x =0处连续16. 试证:方程sin x a x b =+至少有一个不超过a b +的正根,其中0,0a b >>. 证:令()sin f x x a x b =--,则()f x 在[0,]a b +上连续, 且 (0)0,()(1sin )0f b f a b a x =-<+=-≥, 若()0f a b +=,则a b +就是方程sin x a x b =+的根. 若()0f a b +>,则由零点定理得.(0,)a b ξ∃∈+,使()0f ξ=即sin 0a b ξξ--=即sin a b ξξ=+,即ξ是方程sin x a x b =+的根,综上所述,方程sin x a x b =+至少有一个不超过a b +的正根.17. 设a 为正常数,()f x 在[0,2]a 上连续,且(0)(2)f f a =,证明:方程()()f x f x a =+在[0,a ]内至少有一根.证:令()()()F x f x f x a =-+,由()f x 在[0,2]a 上连续知,()F x 在[0,]a 上连续,且(0)(0)(),()()(2)()(0)F f f a F a f a f a f a f =-=-=-若(0)()(2),f f a f a ==则0,x x a ==都是方程()()f x f x a =+的根,若(0)()f f a ≠,则(0)()0F F a <,由零点定理知,至少(0,)a ξ∃∈,使()0F ξ=, 即()()f f a ξξ=+,即ξ是方程()()f x f x a =+的根,综上所述,方程()()f x f x a =+在[0,]a 内至少有一根.18. 设()f x 在[0,1]上连续,且0()1f x ≤≤,证明:至少存在一点[0,1]ξ∈,使()f ξξ=. 证:令()()F x f x x =-,则()F x 在[0,1]上连续,且(0)(0)0,(1)(1)10,F f F f =≥=-≤ 若(0)0f =,则0,ξ=若(1)1f =,则1ξ=,若(0)0,(1)1f f ><,则(0)(1)0F F ⋅<,由零点定理,至少存在一点(0,1)ξ∈,使()0F ξ=即()f ξξ=.综上所述,至少存在一点[0,1]ξ∈,使()f ξξ=. 19. 若()f x 在[,]a b 上连续,12n a x x x b <<<<<,证明:在1[,]n x x 中必有ξ,使12()()()()n f x f x f x f nξ+++=.证: 由题设知()f x 在1[,]n x x 上连续,则()f x 在1[,]n x x 上有最大值M 和最小值m ,于是12()()()n f x f x f x m M n+++≤≤,由介值定理知,必有1[,]n x x ξ∈,使12()()()()n f x f x f x f nξ+++=.。
概率论与数理统计习(第四版)题解答第一章 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。
设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合;(3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( =i ,则(1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321ωωωωωω=Ω (2)},,{642ωωωA =; }.,{63ωωB =(3)},,{531ωωωA =,表示“出现奇数点”;},,,{5421ωωωωB =,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A =⋃,表示“出现的点数能被2或3整除”;}{6ωAB =,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω= ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有号码1,2,3,4,5.从中任取3只,A —“最小号码为1”.解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( =i ,则},,,{1843ωωω =Ω;},,,{181211ωωωA =;}.,,,{1443ωωωB =(2) 设ijk ω表示“出现号码为k j i ,,”);5,,2,1,,(k j i k j i ≠≠= ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω=Ω }.,,,,,{145135134125124123ωωωωωωA =三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A ⋃⋃⋃或CA BC AB ⋃⋃(4) BC A C B A C AB C B A C B A C B A C B A ⋃⋃⋃⋃⋃⋃或C B A ⋃⋃或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i ≤≤1).用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品; (4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A ⋃⋃⋃ 21; (3) n n n A A A A A A A A A 212121⋃⋃⋃ (4) n A A A ⋃⋃⋃ 21或.21n A A A第二章 概率的古典定义·概率加法定理一、电话号码由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),求电话号码是由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C 有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C 设A 表示“电话号码是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A 指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P 设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组内的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812≈==C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P 1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P 故 181.01529.00281.0)(=+≈A P五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率.解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则 (1) 0855.019819920019319418)(3200219416≈⨯⨯⨯⨯==C C C A P (2) 912.0198199200192193194)(32003194≈⨯⨯⨯⨯==C C B P(3) 00223.019819920012019490)(3200019436119426≈⨯⨯⨯⨯=+=C C C C C C P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的 概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃= 75.04341313131==-++=第三章 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)(===B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A +=+=)(,所以)()()(B A P AB P A P +=,即14.06.0)4.01(5.0)()()()()()(=⨯--=-=-=B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(≈=--+=-+==B A P B P A P A P B A P B A A P B A A P二、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少?解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011=+=⋅+=+=C C C C C C A B P A P C P(2)4.05151)()()(2511141511=+=+=+=A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多 一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率.解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+= 973.0)02.01(31)03.01(32≈-⨯+-⨯=(2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之内击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1(=i ,则由题设,有1006.0)(1kA P ==,得60=k ,从而有4.015060150)(2===k A P ,.3.020060200)(3===k A P设A 表示“三次之内击中”,则321211A A A A A A A ++=,故有)()()()()()()(321211A P A P A P A P A P A P A P ++=832.03.0)4.01()6.01(4.0)6.01(6.0=⨯-⨯-+⨯-+= (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()(=---=B P故所求为 832.0)(1)(=-=B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率. 解:设i A 表示“第一次取得i 个新球”)3,2,1,0(=i ,则2201)(312330==C C A P 22027)(31219231==C C C A P 220108)(31229132==C C C A P 22084)(31239033==C C C A P 设B 表示“第二次取出的都是新球”,则31236312373123831239322084220108220272201)()()(C C C C C C C C A B P A P B P i i i ⋅+⋅+⋅+⋅==∑=146.0532400776161112208444722010855142202755212201≈=⋅+⋅+⋅+⋅=第四章 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时内车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时内三台车床中最多有一台需要工人照管的概率. 解:设i A 表示“第i 台机床不需要照管”)3,2,1(=i ,则9.0)(1=A P 8.0)(2=A P 7.0)(3=A P再设B 表示“在一小时内三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B +++=于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P +++=)7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0-⨯⨯+⨯-⨯+⨯⨯-+⨯⨯=902.0=.(另解)设i B 表示“有i 台机床需要照管”)1,0(=i ,B 表示“在一小时内三台车床中最多有一台需要工人照管”,则10B B B +=且0B 、1B 互斥,另外有504.07.08.09.0)(0=⨯⨯=B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1=-⨯⨯+⨯-⨯+⨯⨯-=B P故902.0398.0504.0)()()()(1010=+=+=+=B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率.解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1=A P 2.0)()(32==A P A P又设B 表示“电路发生间断”,则321A A A B +=于是有)()()()()(321321321A A A P A A P A P A A A P B P -+=+=)()()()()()(321321A P A P A P A P A P A P -+= 328.02.02.03.02.02.03.0=⨯⨯-⨯+=.三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)(=A P 31)(=B P 41)(=C P设D 表示“此密码能被译出”,则C B A D ⋃⋃=,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃= )()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++= 6.0413151415141513151413151=⨯⨯+⨯-⨯-⨯-++=. (另解)52)411)(311)(511()()()()()(=---===C P B P A P C B A P D P ,从而有6.053521)(1)(==-=-=D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则 飞机必被击落.求飞机被击落的概率.解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1=A P5.0)(2=A P 7.0)(3=A P设i B 表示“i 人击中飞机” )3,2,1,0(=i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210=---===A P A P A P A A A P B P )()(3213213211A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=)()(3213213212A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=14.07.05.04.0)()()()()(3213213=⨯⨯===A P A P A P A A A P B P设A 表示“飞机被击落”,则由题设有0)(0=B A P 2.0)(1=B A P 6.0)(2=B A P 1)(3=B A P故有458.0114.06.041.02.036.0009.0)()()(30=⨯+⨯+⨯+⨯==∑=i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构内就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作 出正确决策的概率.解:设i A 表示“第i 人贡献正确意见”,则7.0)(=i A P )9,,2,1( =i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则)9()8()7()6()5()5()(99999P P P P P m P A P ++++=≥=+⋅⋅+⋅⋅+⋅⋅=277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C 9991889)7.0()3.0()7.0(⋅+⋅⋅+C C+⋅⋅+⋅⋅+⋅⋅=273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(9+⋅⋅+0403.01556.02668.02668.01715.0++++=901.0=.六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验? 解:设做n 次试验,则n p A P A P )1(1}{1}{--=-=一次都不发生至少发生一次要p p n ≥--)1(1,即要p p n -≤-1)1(,从而有.1)1(log )1(=-≥-p n p 答:至少需要进行一次试验.第五章 离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p .生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X 表示“在两次调整之间生产的合格品数”,且设p q -=1,则ξ的概率分布为三、已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布;(2)放回抽样.抽取6个产品,求样品中次品数的概率分布.解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164===-x C C C x X P xx从而X 的概率分布为即(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66=-==-x C x X P xx x从而X 的概率分布为即四、电话总机为300个电话用户服务.在一小时内每一电话用户使用电话的概率等于0.01,求在一小时内有4个用户使用电话的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0(=p168877.0)01.01()01.0()1()4(2964430029644300≈-=-==C p p C ξP(2)用泊松分布计算)301.0300(=⨯==np λ168031355.0!43)4(34≈==-e ξP相对误差为.5168877.0168031355.0168877.0000≈-=δ五、设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率.解:设X 表示“事件A 发生的次数”,则3.0)(==p A P ,5=n ,).3.0,5(~B X 于是有)5()4()3()3(=+=+==≥X P X P X P X P5554452335)1()1(p C p p C p p C +-+-=16308.000243.002835.01323.0≈++≈(另解) )2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P322541155005)1()1()1(11p p C p p C p p C ------=16308.0≈六、设随机变量X 的概率分布为2, 1, ,0 , !)(===k k ak X P kλ;其中λ>0为常数,试确定常数a .解:因为∑∞===01)(k k X P ,即∑∞==01!k kk λa ,亦即1=λae ,所以.λe a -=第六章 随机变量的分布函数·连续随机变量的概率密度一、函数211x+可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)(∞+∞- ,);(2)(0,∞-).解:(1)设211)(x x F +=,则1)(0<<x F因为0)(lim =-∞→x F x ,0)(lim =+∞→x F x ,所以)(x F 不能是X 的分布函数.(2)设211)(x x F +=,则1)(0<<x F 且0)(lim =-∞→x F x ,1)(lim 0=-→x F x 因为)0( 0)1(2)('22<>+-=x x xx F ,所以)(x F 在(0,∞-)上单增. 综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )(=可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)⎥⎦⎤⎢⎣⎡2,0π; (2)[]π,0; (3)⎥⎦⎤⎢⎣⎡23,0π.解:(1)因为⎥⎦⎤⎢⎣⎡∈2,0πx ,所以0sin )(≥=x x f ;又因为1cos )(2020=-=⎰ππx dx x f ,所以当⎥⎦⎤⎢⎣⎡∈2,0πx 时,函数x x f sin )(=可作为某随机变量X 的概率密度.(2)因为[]πx ,0∈,所以0sin )(≥=x x f ;但12cos )(00≠=-=⎰ππx dx x f ,所以当[]πx ,0∈时,函数x x f sin )(=不可能是某随机变量X 的概率密度.(3)因为⎥⎦⎤⎢⎣⎡∈23,0πx ,所以x x f sin )(=不是非负函数,从而它不可能是随机变量X 的概率密度.二、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形. 解:设X 表示“取出的废品数”,则X 的分布律为于是,X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤<≤<≤<≤=3,132,22021921,222110,430,0)(x x x x x x F 其图形见右:四、(柯西分布)设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1(-内的概率;(3) X 的概率密度. 解:(1) 由0)2()(lim =-⋅+=-∞→πB A x F x ,12)(lim =⋅+=-∞→πB A x F x ,解得.1,21πB A ==即)( ,arctan 121)(+∞<<-∞+=x x πx F . (2) .21)]1arctan(121[]1arctan 121[)1()1()11(=-+-+=--=<<-ππF F X P(3) X 的概率密度为)1(1)()(2x x F x f +='=π.五、(拉普拉斯分布)设随机变量X 的概率密度为+∞<<∞-=-x Ae x f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(内的概率;(3)随机变量X 的分布函数.解:(1) 由1)(⎰+∞∞-=dx x f ,得1220⎰⎰+∞∞-+∞--===A dx e A dx Ae xx ,解得21=A ,即有).( ,21)(+∞<<-∞=-x e x f x(2) ).11(21)(2121)()10(101010ee dx e dx xf X P x x -=-===<<--⎰⎰(3) 随机变量X 的分布函数为⎪⎩⎪⎨⎧>-≤===-∞--∞-⎰⎰21102121)()(x e x e dx e dx x f x F x x x xx.第七章 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间不超过3分钟的概率.解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,51)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率.解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰e e dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰e e dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-eX P X P ,进一步有638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上 的概率.解:(1)因为)(~λe X ,所以R x ∈∀,有xex F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥tst s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有t t e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥.(2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x 设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx xf X P s X s X P xx .答:该电视机还能使用5年以上的概率约为6065.0.四、设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=. 解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X X Y -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yX yY e F e X P y X P y Y P y F =<=<=<= 所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f yyyyyyXYY π,即 )( )1(2)(2+∞<<-∞+=y e e y f yyY π.第八章 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布. 解:二维随机变量),(Y X 的联合概率分布为Y 的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan (),(yC x B A y x F ++=.求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度.解:(1)由0)0,(,0),0(,1),(=-∞=∞-=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA =(2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π (3)X 及Y 的边缘分布函数分别为 xxxX xdx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan1)4(2),()(2ππ2arctan 121x π+=yxyY ydy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan1)9(3),()(2ππ3arctan 121y π+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ )4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dx x y dx y x dx y x f y f Y ππ)9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-.,00;0,,Ae ),(3y)(2x 其它y x y x f求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X 及Y 的边缘概率密度;(4)),(Y X落在区域R :632 ,0 ,0<+>>y x y x 内的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有16132==⎰⎰∞+∞+--A dy e dx e A y x ,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x yy x xy⎩⎨⎧>>--=--其它0,0)1)(1(32y x e e y x (3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00020006),()(2032x x ex x dy e e dy y x f x f x y x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00030006),()(3032y y ex x dx e e dx y x f y f y y x Y(4)⎰⎰⎰⎰---==∈x y xRdy e dx edxdy y x f R Y X P 32203326),(}),{(6306271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰C x x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dy dx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx481.02713)322(92922132102≈=-++=x x x x . 第九章 随机变量的独立性·二维随机变量函数的分布一、设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,21)(2y y e y f yY求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P ≥.解: (1)X 的概率密度为⎩⎨⎧∉∈=)1,0(,0)1,0(,1)(x x x f X ,),(Y X 的联合概率密度为(注意Y X ,相互独立)⎪⎩⎪⎨⎧><<==-其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dx edx e dy e dx dxdy y x f X Y P x xyxy xy ⎰⎰⎰⎰⎰⎰-∞+-∞+-≥=-===≥1021022102)(21),()(7869.0)1(2221122≈-=-=--e ex二、设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(; ,,2 ,1 ,0 ,)(212211n j qp C j p n i q p C i p jn jjn Y in i i n X ====--证明它们的和Y X Z +=也服从二项分布. 证明: 设j i k +=, 则ik n i k i k n ki i n i i n ki Y X Z q p C q p C i k P i P k Z P k P +---=-=∑∑=-===22110)()()()( ∑=-+=ki k n n k i n in q p C C2121)( 由knm ki ik nk m C C C +=-=∑, 有k n n ki in i n C C C21210+==∑. 于是有 ),,2,1,0( )(212121n n k q p C k P kn n k i n n Z +==-++ 由此知Y X Z +=也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]内服从均匀分布,Y 在区间[0,2]内服从辛普森分布:⎪⎩⎪⎨⎧><≤<-≤≤=.20 0,; 2 1 ,2;10 ,)(y y y y y y y f Y 或求随机变量Y X Z +=的概率密度. 解: X 的概率密度为 ⎩⎨⎧∉∈=]1,0[,0]1,0[,1)(x x y f ξ . 于是),(Y X 的联合概率密度为⎪⎩⎪⎨⎧≤<≤≤-≤≤≤≤=. 0, 2 1,10 ,210,10,),(其它当当y x y y x y y x fY X Z +=的联合分布函数为}),{(}{}{)(D y x P z Y X P z Z P z F Z ∈=≤+=≤=,其中D 是zy x ≤+与),(y x f 的定义域的公共部分.故有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤≤><=3229321212331023,00)(222z z z z z z z z z z z F Z 从而随机变量Y X Z +=的概率密度为⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤≤><=3232132103,00)(z z z z z z z z z f Z三、电子仪器由六个相互独立的部件ij L (3,2,1;2,1==j i )组成,联接方式如右图所示.设各个部件的使用寿命ij X 服从相同的指数分布)(λe ,求仪器使用寿命的概率密度.解: 由题设,知ij X 的分布函数为⎩⎨⎧≤>-=-0,00,1x x e F x X ij λ 先求各个并联组的使用寿命)3,2,1( =i Y i 的分布函数.因为当并联的两个部件都损坏时,第i 个并联组才停止工作,所以有)3,2,1(),m ax (21==i Y i i i ξξ从而有)3,2,1( =i Y i 的分布函数为⎩⎨⎧≤>-==-0,00,)1()(221y y e F F y F y X X Y ii i λ 设Z "仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min (321Y Y Y Z =.从而有Z 的分布函数为⎩⎨⎧≤>---=⎩⎨⎧≤>----=-0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z λ故Z 的概率密度为⎩⎨⎧≤>--=---0,00,)2)(1(6)(23z z e e e z f z z z Z λλλλ第十章 随机变量的数学期望与方差一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即于是有1103322013220924491430=⨯+⨯+⨯+⨯=EX 即3.0004.03041.02205.0175.00≈⨯+⨯+⨯+⨯=EX2X 的分布为即于是有229220192209444914302=⨯+⨯+⨯+⨯=EX 即4091.0004.09041.04205.0175.002≈⨯+⨯+⨯+⨯=EX从而有3191.013310042471)11033(229)(222≈=-=-=EX EX DX 565.03191.0≈==DX X σ二、对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( =i ,则X 的分布为于是有p q p q q p q p iqp ipqEX i i i i i i 1)1()1()(211111=-='-='===∑∑∑∞=∞=-∞=- 2X的分布为于是有p pp p q q p q p q q p pqi EX i i i ii i 122)1()1()(])([223111122-=-=-+='=''==∑∑∑∞=∞=∞=- 进一步有pp p p p EX EX DX 11)1(12)(22222-=--=-=三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ ==-=k k X P k k k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为∑∑∑∑∞=∞=∞=∞=-=⋅-=-=-==1111)1(212)1(]2)1([2)1()(k k k k k k k k k k ki i i k k k X P k x X P x 不绝对收敛,所以ξ没有数学期望.四、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≥<-=.1, 0;1,11)(2x x xx f π 求数学期望)(X E 及方差)(X D .解:011)()(112=-⋅==⎰⎰-+∞∞-dx xx dx x xf X E πdx x x dx x x dx x f x X D ⎰⎰⎰-=-⋅==-∞+∞-1022112221211)()(πππ21]arcsin 2112[2102=+--=x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为 )( ,21)(+∞<<-∞=-x e x f x.求数学期望)(X E 及方差)(X D .解:021)(===⎰⎰+∞∞--+∞∞-dx xe dx x xf EX x2!2)3(21)(0222==Γ====⎰⎰⎰+∞-+∞∞--+∞∞-dx e x dx e x dx x f x DX x x(分部积分亦可)第十一章 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y -=的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为于是有72.072.0128.00=⨯+⨯=EY72.072.0128.002=⨯+⨯=EY 2016.0)72.0(72.0)(222=-=-=EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为θ,则θ服从]2,2[ππ-上的均匀分布,其概率密度为⎪⎩⎪⎨⎧-∉-∈=]2,2[,0]2,2[,1)(ππθππθπθf .弦OB 的长为 ]2,2[cos 2)(ππθθθ-∈=R L ,故所有弦的平均长度为⎰⎰-∞+∞-⋅==22cos 21)()()]([ππθθπθθθθd R d L f L EπθπθθπππRR d R4sin 4cos 4202===⎰.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-. 0,0 ;0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之内损坏可予以调换.若工厂售出一台设备赢利100元, 调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有⎰⎰---∞--=-===<104110441141)()1(e e dx e dx x f X P x x 进而有 41)1(1)1(-=<-=≥eX P X P设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141≈-⨯=⨯+-⨯-=---eee EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量n X X X ,,21相互独立,并且服从同一分布,数学期望为μ,方差为2σ.求这些随机变量的算术平均值∑==ni i X n X 11的数学期望与方差.解:因为μ=)(i X E ,2)(σ=i X D ,且随机变量n X X X ,,21相互独立.所以有μμ=====∑∑∑∑====ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni i n i i n i i 2122121211)(1)(1)1()(σσ=====∑∑∑∑====.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设i X 表示"第i 站的停车次数" (10,,2,1 =i ). 则i X 服从"10-"分布. 其中⎩⎨⎧=站有人下车若在第站无人下车若在第i i X i ,1,0于是iX 的概率分布为设∑==ni iXX 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101--⨯+-⨯===∑∑==i i i i EX X E EX748.8)9.01(1020≈-=即停车次数的数学期望为748.8.第十二章 二维随机变量的数字特征·切比雪夫不等式与大数定律一、设二维随机变量),(Y X 的联合概率密度为()(). 1,222++=y xAy x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X .解: (1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f . 有()()⎰⎰⎰⎰∞+∞-∞+∞-∞+==+=++1112022222A dr rrd A dxdy y xAπθπ解得, π1=A .(2) ()011),()(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxdy dxdy y x xf X E π.由对称性, 知 0)(=Y E .⎰⎰+∞∞-+∞∞-==-=dxdy y x f x EX EX X E X D ),(])[()(222()⎰⎰∞+∞-∞+∞-++=dx y xx dy 222211π()()+∞=+++=+-+=+=∞+∞+∞+⎰⎰⎰22022220223]11)1ln([1)1(211rr dr rrr r dr rr d πθπ同理, 有 +∞=)(Y D .)()])([(),cov(XY E EY Y Ex X E Y X =--= ⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(()011),(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxydy dxdy y x xyf π.二、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<=其它.,0;10,,1),(x x y y x f求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么?解: (1) 因为 ⎰⎰⎰⎰⎰====-∞+∞-∞+∞-10210322),(dx x dy xdx dxdy y x xf EX x x0),(10===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy dx dxdy y x yf EY0),()(1===⎰⎰⎰⎰-+∞∞-+∞∞-xxydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X -=--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(010==⎰⎰-xxydy xdx .(2) 当)1,0(∈x 时,有 ⎰⎰+∞∞--===x dy dy y x f x f xxX 2),()(; 当)1,0(∉x 时, 有0)(=x f X .即⎩⎨⎧∉∈=)1,0(0)1,0(2)(X x x x x f 同理有 ⎩⎨⎧∉+∈-=⎪⎩⎪⎨⎧∉∈=⎰⎰-)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f y y因为 ),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与Y 是不相关的.三、利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差)(X σ的概率.解:91)3()3(2=≤>-ξξξξξD D D E P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率. 解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有50005.010000=⨯==np E ξ 2500)5.01(5.010000=-⨯⨯==npq D ξ于是有npqp npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(-=-≥<-=<- 75.025.011=-=-=pq五、样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少个产品,可使次品率为10%的一批产品不被接受的概率达到0.9? 解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0= n ξD 09.0=要使得9.0)10(=>ξP ,即9.0)10(=≤<n ξP ,因为9.0)10(=≤<n ξP ,所以 )3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P --≈≤-<-=ΦΦ1)3.0101.0()3(1,01,0--+nn n ΦΦ (德莫威尔—Laplace 定理)因为10>n ,所以53>n ,从而有1)3(1,0≈n Φ,故9.0)3.0101.0(1,0≈-nn Φ.查表有8997.0)28.1(1,0=Φ,故有28.13.0101.0≈-nn ,解得.146≈n答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.第十三章 正态分布的概率密度、分布函数、数学期望与方差一、设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P 8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ(2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P )]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---=.0402.09973.09625.02=--二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率.解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ=9544.019772.02=-⨯= 故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率.解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P13025.05069.0)8944.05987.02(33≈=--=于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布).解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F X Y ≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y . 当0>y 时,有dx ey X P y F yx Y ⎰∞---=≤=ln 2)(2221)ln ()(σμσπ.此时亦有222)(ln 21)(σμσπ--='y Y eyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求: (1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数; (2) 随机变量函数XY Z=2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有(1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=; 222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=. (2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++= 212222212221μσμσσσ++=.第十四章二维正态分布·正态随机变量线性函数的分布中心极限定理一、设二维随机变量),(Y X 服从二维正态分布,已知0)()(==Y E X E ,16)(=X D ,25)(=Y D ,并且12),cov(=Y X ,求),(Y X 的联合概率密度.。
习题6-11.指出下列各微分方程的阶数:(1)()220x y yy x '-'+=;一阶 (2) 20y x y y x "-'+=;二阶 (3)220x y y x y '''+"+=;三阶(4)()()76d d 0x y x x y y -++=. 一阶2.指出下列各题中的函数是否为所给微分方程的解:2(1)2,5xy y y x '==;解:由25y x =得10y x '=代入方程得22102510x x x x ⋅=⋅=故是方程的解.(2)0,3sin 4cos y y y x x ''+==-;解:3cos 4sin ;3sin 4cos y x x y x x '''=+=-+ 代入方程得 3sin 4cos 3sin 4cos 0x x x x -++-=. 故是方程的解.2(3)20,e x y y y y x '''-+== ;解:2222e e (2)e ,(24)e xxxxy x x x x y x x '''=+=+=++代入方程得 2e 0x≠. 故不是方程的解.12121212(4)()0,e e .x x y y y y C C λλλλλλ'''-++==+解:12122211221122e e ,e e xx x x y C C y C C λλλλλλλλ'''=+=+代入方程得1212122211221211221212e e ()(e e )(e e )0.x x x x x x C C C C C C λλλλλλλλλλλλλλ+-++++=故是方程的解.3.在下列各题中,验证所给函数(隐函数)为所给微分方程的解:22(1)(2)2,;x y y x y x xy y C '-=--+=证:方程22x xy y C -+=两端对x 求导:220x y xy yy ''--+=得22x yy x y-'=-代入微分方程,等式恒成立.故是微分方程的解.2(2)()20,ln().xy x y xy yy y y xy '''''-++-==证:方程ln()y xy =两端对x 求导:11y y x y''=+ (*) 得(1)yy x y '=-.(*)式两端对x 再求导得22211(1)1y y xx y y ⎡⎤''+=-⎢⎥--⎣⎦ 将,y y '''代入到微分方程,等式恒成立,故是微分方程的解.习题6-21.从下列各题中的曲线族里,找出满足所给的初始条件的曲线: (1) 220()x x y C C y =-==为常数,5;解:当0x =时,y =5.故C =-25故所求曲线为:2225y x -= (2) =+2e 12()x y C C x (12,C C 为常数),====,100'x x yy .解: 2212(22)e xy C C C x '=++当x =0时,y =0故有10C =. 又当x =0时,1y '=.故有21C =. 故所求曲线为:2e xy x =. 2.求下列各微分方程的通解:(1)ln 0xy y y '-=;解:分离变量,得d 1d ln y x y y x=积分得11d ln d ln y x y x =⎰⎰ln ln ln ln y x c =+ ln y cx =得 e cxy =.(2)y '=解:分离变量,得=积分得=⎰得通解: .c -=-(3)(e e )d (e e )d 0x y x x y y x y ++-++=;解:分离变量,得e e d d 1e 1e y yy xy x =-+ 积分得 ln(e 1)ln(e 1)ln yxc --=+- 得通解为 (e 1)(e 1)xy c +-=.(4)cos sin d sin cos d 0x y x x y y +=;解:分离变量,得cos cos d d 0sin sin x yx y x y+= 积分得 lnsin lnsin ln y x c += 得通解为 sin sin .y x c ⋅=(5)y xy '=;解:分离变量,得d d yx x y=积分得 211ln 2y x c =+ 得通解为 2112e (e )x c y c c ==(6)210x y '++=;解: 21y x '=--积分得 (21)d y x x =--⎰得通解为 2y x x c =--+.32(7)4230x x y y '+-=;解:分离变量,得 233d (42)d y y x x x =+积分得 342y x x c =++ 即为通解.(8)e x y y +'=.解:分离变量,得 e d e d yxy x -=积分得e d e d y x y x -=⎰⎰ 得通解为: ee y x c --=+.3.求下列各微分方程满足所给初始条件的特解:20(1)e ,0x y x y y -='== ;解:分离变量,得 2e d e d yxy x =积分得 21e e 2yxc =+. 以0,0x y ==代入上式得12c =故方程特解为 21e (e 1)2yx =+.π2(2)sin ln ,e x y x y y y ='== .解:分离变量,得d d ln sin y xy y x=积分得 tan2e x c y ⋅=将π,e 2x y ==代入上式得1c = 故所求特解为 tan 2e x y =.4.求下列齐次方程的通解:(1)0xy y '-=;解:d d y y x x =+令 d d d d y y uu u xx x x=⇒=+ 原方程变为d xx= 两端积分得ln(ln ln u x c =+u cxy cx x =+=即通解为:2y cx =d (2)ln d y y xy x x =; 解:d ln d y y y x x x =令y u x =, 则d d d d y u u x x x=+原方程变为d d (ln 1)u xu u x=-积分得 ln(ln 1)ln ln u x c -=+ln 1ln1u cx ycx x-=-= 即方程通解为 1ecx y x +=22(3)()d d 0x y x xy x +-=解:2221d d y y x y x y x xyx⎛⎫+ ⎪+⎝⎭== 令y u x =, 则d d d d y u u x x x=+ 原方程变为 2d 1d u u u x x u++= 即 d 1d ,d d u x x u u x u x== 积分得211ln ln 2u x c =+ 2122ln 2ln y x c x =+ 故方程通解为 22221ln()()y x cx c c ==332(4)()d 3d 0x y x xy y +-=;解: 333221d d 33y y x y x x xy y x ⎛⎫+ ⎪+⎝⎭==⎛⎫ ⎪⎝⎭令y u x =, 则d d d d y u u x x x=+ 原方程变为 32d 1d 3u u u x x u ++= 即 233d d 12u x u u x=- 积分得 311ln(21)ln ln 2u x c --=+ 以y x代替u ,并整理得方程通解为 332y x cx -=. d (5)d y x y x x y+=-;解:1d d 1yy x yx x +=- 令y u x =, 则d d d d y u u x x x=+原方程变为 d 1d 1u uu x x u ++=- 分离变量,得 211d d 1u u x u x -=+ 积分得 211arctan ln(1)ln ln 2u u x c -+=+以y x 代替u ,并整理得方程通解为到 2arctan 22211e .()yxx y c c c +==(6)y '=解:d d yy x=即d d x x y y =+令x v y =, 则d d ,d d x v x yv v y y y==+, 原方程可变为d d vv yv y+=+ 即d d vyy= 分离变量,得d y y= 积分得ln(ln ln v y c =-. 即y v c+=2222121y v v c y yv c c⎛⎫=+- ⎪⎝⎭-= 以yv x =代入上式,得 222c y c x ⎛⎫=+ ⎪⎝⎭即方程通解为 222y cx c =+.5.求下列各齐次方程满足所给初始条件的特解:220(1)(3)d 2d 0,1x y x y xy x y =-+== ;解:22d d 3y y xx y x =-⎛⎫- ⎪⎝⎭令y ux =,则得 2d 2d 3u uu xx u +=-- 分离变量,得 233d d u xu u u x-=- 积分得 3ln ln(1)ln(1)ln u u u cx -+-++=即 231ln ln u c u x-=得方程通解为 223y x cy -= 以x =0,y =1代入上式得c =1. 故所求特解为 223y x y -=.1(2),2x x yy y y x='=+= . 解:设y ux =, 则d d d d y u u x x x=+ 原方程可变为 d d xu u x=积分得 21ln ln 2u x c =+.得方程通解为 222(ln ln )y x x c =+以x =1,y =2代入上式得c =e 2.故所求特解为 222(ln 2)y x x =+.6.利用适当的变换化下列方程为齐次方程,并求出通解: 利用适当的变换化下列方程为齐次方程,并求出通解:(1)(253)d (246)d 0x y x x y y -+-+-=解:设1,1x X y Y =+=+,则原方程化为25d 25d 2424YY X Y X YX X Y X--==++ 令 d 25d 24Y u uu u X X X u-=⇒+=+ 242d d 472Xu Xu u u +⇒-=+- 2222211(87)3ln d 247213d ln(472)224721114ln(472)d 262411141ln(472)ln ln 262u X u u u uu u u u u u uu u u u u c u +-⇒=-+-=-+-++-⎛⎫=-+-+-+ ⎪+-⎝⎭-=-+--++⎰⎰⎰26221623264223233416ln 3ln(472)ln ln ()241(472)2(41)(2)(41)(2),(u X u u c c c u u X u u c u X u u c X u u c c -⇒++-+==+-⇒+-⋅=+⇒-+=⇒-+==代回并整理得2(43)(23),(y x y x c c --+-== .(2)(1)d (41)d 0;x y x y x y --++-=解:d 1d 41y x y x y x --=-+- 作变量替换,令 1,0x X y Y Y =+=+=原方程化为 1d d 414YY X Y X Y X X Y X--=-=-++ 令Y uX =,则得2d 1d 14d 14d 14u u u u u X X X u X u-++=-⇒=-++分离变量,得 214d d 14u Xu u x+-=+ 积分得222211d(14)ln d 1421411arctan 2ln(14)22u X u u u u u c +=--++=-++⎰⎰ 即 22ln ln(14)arctan 2X u u c +++=22ln (14)arctan 2X u u c ⇒++=代回并整理得 222ln[4(1)]arctan.1yy x c x +-+=- (3)()d (334)d 0x y x x y y +++-=;解:作变量替换,v x y =+ 则d d 1d d y v x x =- 原方程化为 d 1d 34v vx v -=-- 11d 2(2)d 3434d d 2(2)31d d d 223ln(2)232ln(2)2,(2)v v x v v v x v v v xv v v x c v v x c c c -⇒=--⇒=-⇒+=-⇒+-=+⇒+-=+=⎰⎰⎰ 代回并整理得 32ln(2).x y x y c +++-=d 1(4)1d y x x y=+-.解:令,u x y =- 则d d 1d d u y x x =- 原方程可化为 d 1d u x u=-分离变量,得 d d u u x =-积分得 2112u x c =-+2122u x c =-+故原方程通解为 21()2.(2)x y x c c c -=-+=7.求下列线性微分方程的通解:(1)e x y y -'+=;解:由通解公式d de e e e d e ()e e d xx x x x x x y x c x c x c -----⎰⎡⎤⎰⎡⎤==⋅+=+⋅+⎢⎥⎣⎦⎣⎦⎰⎰ 2(2)32xy y x x '+=++;解:方程可化为 123y y x x x'+=++ 由通解公式得11d d 22e (3) e d 12(3)d 132.32x x x x y x x c x x x x c x x c x x x-⎡⎤⎰⎰=++⋅+⎢⎥⎣⎦⎡⎤=++⋅+⎢⎥⎣⎦=+++⎰⎰ sin (3)cos e ;x y y x -'+=解: cos d cos d sin sin e e ().e e d x xx x x x y x c x c ---⎰⎡⎤⎰==+⋅+⎢⎥⎣⎦⎰(4)44y xy x '=+;解: 22(4)d (4)d 22e e 4e d 4e d x xx x x x y x x c x x c ----⎰⎡⎤⎰⎡⎤==++⎢⎥⎣⎦⎣⎦⎰⎰()222222e e e 1x x x c c -=-+=-.3(5)(2)2(2)x y y x '-=+-;解:方程可化为2d 12()d 2y y x x x x -=--11d d 222ln(2)2ln(2)3e 2(2)e d e 2(2)e d (2)2(2)d (2)(2)xx x x x x y x x c x x c x x x c x c x --------⎰⎡⎤⎰=-+⎢⎥⎣⎦⎡⎤=-+⎣⎦⎡⎤=--+⎣⎦=-+-⎰⎰⎰22(6)(1)24.x y xy x '++=解:方程可化为 2222411x x y y x x '+=++ 222222d d 1123ln(1)224e ed 14e 4d 3(1)xxx x x x x x y x c x x c x x c x -++-+⎡⎤⎰⎰=+⎢⎥+⎣⎦+⎡⎤=+=⎣⎦+⎰⎰8.求下列线性微分方程满足所给初始条件的特解:πd 11(1)sin ,1d x y y x y x x x=+== ; 解: 11d d 11sin e sin d [cos ]e d x x x x x y x x c c x x c x x x -⎡⎤⎰⎰⎡⎤==+=-+⎢⎥⎣⎦⎣⎦⎰⎰ 以π,1x y ==代入上式得π1c =-, 故所求特解为 1(π1cos )y x x=--. 2311(2)(23)1,0x y x y y x='+-== . 解:22323d 3ln x x x x c x--=--+⎰ 22223323d 23+3ln d 3ln ee e d e d x xx x x x x xx xy x c x c -------⎰⎡⎤⎰⎡⎤∴==++⎢⎥⎣⎦⎣⎦⎰⎰ 2223311e .e e 22x x x x x c c ----⎛⎫⎛⎫=⋅=++ ⎪ ⎪⎝⎭⎝⎭以x =1,y =0代入上式,得12ec =-. 故所求特解为 2311e 22e x y x -⎛⎫=-⎪⎝⎭. 9.求下列伯努利方程的通解:2(1)(cos sin );y y y x x '+=-解:令121z yy --==,则有d d (12)(12)(cos sin )sin cos d d z zz x x z x x x x+-=--⇒-=- (1)d (1)d e (sin cos )e d e e (sin cos )d e sin xx x x x z x x x c x x x c c x ----⎰⎡⎤⎰=-+⎢⎥⎣⎦⎡⎤=-+=-⎣⎦⎰⎰1e sin x c x y⇒=- 即为原方程通解.411(2)(12)33y y x y '+=-.解:令3d 21d z z y z x x -=⇒-=-.d de 21e (21)e d x x x z x c x x c -⎰⎡⎤⎰==--+-+⎢⎥⎣⎦⎰ 3(e 21)1x y c x ⇒--=即为原方程通解.习题6-31.求下列各微分方程的通解:(1)sin y x x ''=+;解:方程两边连续积分两次得213121cos 21sin 6y x x c y x x c x c '=-+=-++(2)e x y x '''=;解:积分得 1e d e e x x xy x x x c ''==-+⎰112212123(e e )d e 2e 1(e 2e )d (3)e 2x x x x xxxy x c x x c x c y x c x c x x c x c x c '=-+=-++=-++=--++⎰⎰ (3)y y x '''=+;解:令p y '=,则原方程变为d d 11,,e e 1e d xx x p p x p p x p c x x x c -⎰⎡⎤⎰''=+-===--+⎣⎦故 21121(e 1)d e 2x xy c x x c x x c =--=--+⎰.3(4)()y y y ''''=+;解:设y p '=, 则d d p y py''= 原方程可化为 3d d ppp p y=+ 即 2d (1)0d pp p y ⎡⎤-+=⎢⎥⎣⎦由p =0知y =c ,这是原方程的一个解. 当0p ≠时,22d d 1d d 1p p p y y p =+⇒=+ 1121arctan d ln sin()tan()p y c yx y c c y c ⇒=-'⇒==---⎰2212arcsin(e )(e )c x y c c c '∴=+=1(5);y x ''=解:11d ln y x c x x''==+⎰ 1121211(ln )d ln ln ((1))y c x x x c x c x x x c x c c c x ''=+=-++'=++=-+⎰(6)y ''=;解:1arcsin y x x c '==+112(arcsin )d arcsin .y x c x x x c x c =+=+⎰ (7)0xy y '''+=;解:令y p '=,则得1d d 00p x p p x p x'+=⇒+= 1ln ln ln p x c ⇒+=得 1c p x =故 112d ln cy x c c x x==+⎰.3(8)10y y ''-=.解:令p y '=,则d d p y py''=. 原方程可化为 33d 10,d d d py pp p y y y--==22221112221211211222d d 221().c p y p y c x xc x c c x c c y c x c --⇒=-+⇒=-+⇒=⇒±=⇒±=+⇒=+⇒-=+⎰2.求下列各微分方程满足所给初始条件的特解:311(1)10,1,0x x y y y y =='''+===;解:令y p '=,则d d py py''=, 原方程可化为 33d 11d d d p y pp p y y y⋅=-⇒=- 2212121112221p y c p c y -⇒=+⇒=+由1,1,0x y y p '====知,11c =-,从而有2d y p y x x c '==⇒=±⇒=±+由1,1x y ==,得21c =故 222x y x += 或y =.211(2)1,0,1x x x y xy y y ==''''+===;解:令y p '=,则y p '''=.原方程可化为 211p p x x'+= 11d d 11211e (ln )e d x x x x p x c x c x x -⎡⎤⎰⎰==++⎢⎥⎣⎦⎰则 11(ln )y x c x'=+ 以1,1x y '==代入上式得11c =则 1(ln 1)y x x'=+ 221ln ln 2y x x c =++当x =1时,y =0代入得20c =故所求特解为 21ln ln 2y x x =+. 2001(3),01x x y y y x =='''===+; 解:1arctan y x c '=+ 当0,0x y '==,得10c =222arctan d arctan d 11arctan ln(1)2x y x x x x x x x x x c ==-+=-++⎰⎰以x =0,y =0代入上式得20c =故所求特解为 21arctan ln(1)2y x x x =-+. 200(4)1,1,0x x y y y y ==''''=+==;解:令p y '=,则p y '''=. 原方程可化为 21p p '=+211d d 1arctan tan()px p p x c y p x c =+=+'==+ 以0,0x y '==代入上式得1πc k =.2tan(π)d ln cos(π)y x k x c x k =+=-++⎰以x =0,y =1代入上式得21c = 故所求特解为ln 1cos(π)y x k =-++200(5)e ,0y x x y y y =='''===;解:令y p '=,则d d p y py''=. 原方程可化为 2d e d y ppy= 即 2d e d yp p y = 积分得221111e 222y p c =+ 221e y p c =+以0,0x y y '===代入上式得11c =-, 则p y '==2d arcsine y xx c -=±=+以x =0,y =0代入得2π2c =, 故所求特解为 πarcsin e 2yx -=+即πesin cos 2yx x -⎛⎫==± ⎪⎝⎭. 即lnsec y x =. 00(6)1,2x x y y y =='''===.解:令d ,d py p y py'''== 原方程可化为 12d 3d pp y y= 123221d 3d 122p p y yp y c ==+以0,2,1x y p y '====代入得10c = 故 342y p y'==± 由于0y ''=>. 故342y y '=,即34d 2d y x y=积分得 14242y x c =+ 以x =0,y =1代入得24c =故所求特解为 4112y x ⎛⎫=+ ⎪⎝⎭.习题6-41. 验证21=x y e 及22=x y xe 都是方程24(42)0'''-+-=y xy x y 的解,并写出该方程的通解. 2.已知函数123sin ,?cos ,===x y x y x y e 都是某二阶线性非齐方程的解,求该方程的通解. *3.用观察法求下列方程的一个非零特解,用刘维尔公式求第二个特解,然后写出通解. (1)2(1)220'''+-+=x y xy y (2)(1)0'''-++=xy x y y 4.求方程221111'''+-=---x y y x x x 的通解.习题6-51.求下列微分方程的通解:(1)20y y y '''+-=;解:特征方程为 220r r +-= 解得 121,2r r ==-故原方程通解为 212e e .x xy c c -=+(2)0y y ''+=;解:特征方程为 210r += 解得 1,2r i =± 故原方程通解为 12cos sin y c x c x =+22d d (3)420250d d x xx t t-+=;解:特征方程为 2420250r r -+= 解得 1252r r == 故原方程通解为 5212()e t x c c t =+.(4)450y y y '''-+=;解:特征方程为 2450r r -+= 解得 1,22r i =±故原方程通解为 212e (cos sin )xy c x c x =+.(5)440y y y '''++=;解:特征方程为 2440r r ++= 解得 122r r ==-故原方程通解为 212e ()xy c c x -=+(6)320y y y '''-+=.解:特征方程为 2320r r -+= 解得 1,2r r ==故原方程通解为 212e e x xy c c =+.2.求下列微分方程满足所给初始条件的特解:00(1)430,6,10x x y y y y y ==''''-+===;解:特征方程为 2430r r -+= 解得 121,3r r ==通解为 312e e x xy c c =+312e 3e x x y c c '=+由初始条件得 121122643102c c c c c c +==⎧⎧⇒⎨⎨+==⎩⎩ 故方程所求特解为 34e 2e xxy =+.00(2)440,2,0;x x y y y y y ==''''++===解:特征方程为 24410r r ++= 解得 1212r r ==-通解为 1212()ex y c c x -=+22121e 22xx y c c c -⎛⎫'=-- ⎪⎝⎭由初始条件得 11221221102c c c c c =⎧=⎧⎪⇒⎨⎨=-=⎩⎪⎩ 故方程所求特解为 12(2)ex y x -=+.00(3)4290,0,15;x x y y y y y ==''''++===解:特征方程为 24290r r ++= 解得 1,225r i =-±通解为 212e (cos5sin 5)xy c x c x -=+22112e [(52)cos5(52)sin 5]x y c c x c c x -'=-+--由初始条件得 112120052153c c c c c ==⎧⎧⇒⎨⎨-==⎩⎩ 故方程所求特解为 23e sin 5xy x -=.00(4)250,2,5x x y y y y =='''+===.解:特征方程为 2250r += 解得 1,25r i =± 通解为 12cos5sin 5y c x c x =+125sin 55cos5y c x c x '=-+由初始条件得 112222551c c c c ==⎧⎧⇒⎨⎨==⎩⎩故方程所求特解为 2cos5sin 5y x x =+. 3.求下列各微分方程的通解:(1)22e x y y y '''+-=;解: 2210r r +-=1211,2r r ∴=-=得相应齐次方程的通解为1212e e x xy c c -=+令特解为*e xy A =,代入原方程得2e e e 2e x x x x A A A +-=,解得1A =, 故*e xy =,故原方程通解为 212e ee x x xy c c -=++.2(2)25521y y x x '''+=--;解:2250r r +=1250,2r r ==-对应齐次方程通解为 5212ex y c c -=+令*2()y x ax bx c =++, 代入原方程得222(62)5(32)521ax b ax bx c x x ++++=--比较等式两边系数得137,,3525a b c ==-=则 *321373525y x x x =-+故方程所求通解为 532212137e3525x y c c x x x -⎛⎫=++-+ ⎪⎝⎭.(3)323e x y y y x -'''++=;解:2320r r ++=121,2r r =-=-,对应齐次方程通解为 212e e x xy c c --=+令*()e xy x Ax B -=+代入原方程得(22)e 3e x x Ax B A x --++=解得 3,32A B ==- 则 *23e 32xy x x -⎛⎫=-⎪⎝⎭故所求通解为 22123ee e 32xx xy c c x x ---⎛⎫=++- ⎪⎝⎭.(4)25e sin 2x y y y x '''-+=;解:2250r r -+=1,212r i =±相应齐次方程的通解为12e (cos 2sin 2)x y c x c x =+令*e (cos 2sin 2)xy x A x B x =+,代入原方程并整理得4cos24sin 2sin 2B x A x x -=得 1,04A B =-=则 *1e cos 24x y x x =-故所求通解为 121e (cos 2sin 2)e cos 24xx y c x c x x x =+-.(5)2y y y x '''++=;解:2210r r ++=1,21r =-相应齐次方程通解为 12()e xy c c x -=+令*y Ax B =+代入原方程得2A Ax B x ++=得 1,2A B ==- 则 *2y x =-故所求通解为 12()e 2xy c c x x -=++-2(6)44e x y y y '''-+=.解:2440r r -+=1,22r =对应齐次方程通解为 212()e xy c c x =+令*22e xy Ax =代入原方程得121,2A A ==故原方程通解为 222121()ee 2xx y c c x x =++. 习题6-61.求下列微分方程的通解: (1)(4)13360''-+=y y y(2)460'''''-++=y y y y(3)(4)56480''''''-++-=y y y y y (4)(5)(4)(3)220'''+++++=y y y y y y 2.求下列微分方程的通解: (1)45223''''''-+-=+y y y y x (2)(4)223''-+=-y y y x(3)33''''''+++=x y y y y e(4)cos '''-=y y x习题6-7*求下列欧拉方程的通解:(1)20x y x y y "+'-=; (2)234x y x y y x "+'-=. (3)323220x y x y xy y ''''''+-+=; (4)246x y xy y x '''-+=. (5) 322324x y x y xy x ''''''++=; (6)()24sin ln x y xy y x x '''-+=. 解:(1)作变换e tx =,即t =ln x ,原方程变为 (1)0D D y Dy y -+-=即 22d 0d yy t-= 特征方程为 210r -=121,1r r =-=故 12121e e t ty c c c c x x-=+=+. (2)设e tx =,则原方程化为3(1)4e t D D y Dy y -+-=232d 4e d t yy t-= ① 特征方程为 240r -=122,2r r =-=故①所对应齐次方程的通解为2212e e t t y c c -=+又设*3e ty A =为①的特解,代入①化简得941A A -= 15A =, *31e 5t y =故 223223121211e e e .55t t t y c c c x c x x --=++=++(3)(4)(5)(6)习题六1.填空题(1)微分方程3222(2)'=-x y y x y 满足(1)1=-y 的特解为 . (2)设()f x 为连续函数,且满足方程0()1(1)()d xf x x f t t =+-⎰,则()f x 的表达式为1()2x xe e -+ . (3)已知3222123,,x x x x xy e xe y e xe y xe =-=-=-是某二阶常系数非齐线性微分方程的3个解,则该方程的通解y = 3212x x xC e C e xe +- .(4)微分方程2ln xy y x x '+=满足1(1)9y =-的解为 . (5)二阶常系数非齐次线性微分方程21'''-+=y y y 的通解为y= 12()1xC C x e ++ .2.选择题(1)设曲线L 的方程为()=y y x ,在L 上任一点(,)P x y 处的切线与点P 到原点O 的连线垂直,若C 为任意正数,则L 的方程为(). A. =xy C B. 22-+=x xy y C C. 22-=x y C D. 22+=x y C(2)设微分方程20'''++=y y y ,则-=xy Cxe (其中C 为任意常数)(). A.是这个方程的通解 B.是这个方程的特解C.不是这个方程的解D.是这个方程的解,但既非它的通解也非它的特解(3)设线性无关的函数123,,y y y 都是二阶非齐次线性方程()()()'''++=y P x y Q x y f x 的解,12,C C 是任意常数则该非齐方程的通解是(). A. 11223++C y C y y B. 1122123()+-+C y C y C C y C. 1122123(1)+---C y C y C C y D. 1122123(1)++--C y C y C C y (4)微分方程34sin 2''+=+xy y exx x 的一个特解形式是(A ).A. []3()cos2()sin 2++++xAe x Bx C x Dx E x B. 3()cos 2()sin 2++++xAeBx C x Dx E xC. []3()cos2()sin 2++++xAxe x Bx C x Dx E xD. 3()cos 2()sin 2++++xAxeBx C x Dx E x(5)在下列微分方程中,以1123cos 2sin 2=++xy C e C x C x (123,,C C C 为任意常数)为通解的是().A. 440''''''+--=y y y yB. 440''''''+++=y y y yC. 440''''''--+=y y y yD. 440''''''-+-=y y y y 3.求解初值问题21()2,(1)1,(1) 1.''⎧+=⎨'==-⎩y yy y y4.设()=y y x 是微分方程2(32)6'''+=x y xy 的一个特解,且当0→x 时,()y x 是与1-xe 等价的无穷小量,求此特解. 5.求下列微分方程的通解: (1)coscos 0⎛⎫-+= ⎪⎝⎭y y x y dx x dy x x;(2)(2sin 3)(24sin 3)0-++--=x y dx x y dy ; (3)cos cos sin 2sin '=-yy y y x y;(4)3(1ln )0⎡⎤-++=⎣⎦xdy x xy x dx(5)322xy y y xe '''-+= (6)234ln '''-+=+x y xy y x x x .解:(5)由方程322xy y y xe '''-+=的特征方程2320λλ-+=解得特征根120,2,λλ==所以方程322x y y y xe '''-+=的通解为12.x xy C e C e =+设322xy y y xe '''-+=的特解为()xy x ax b e *=+,则()2(2)x y axax bx b e *'=+++,()2(422)x y ax ax bx a b e *''=++++.代入原方程,解得1,2a b =-=-,故特解为(2)xy x x e *=--,所以原方程的通解为 212(2)xxx y y y C e C ex x e *=+=+-+.6.在研究某种传染病在一孤立环境条件下传播时,把人群分成未感染者(健康人)和已感染者(病人)两类.当健康人与病人有效接触后受感染变成病人;病人治愈成为健康人后,健康人可再次被感染.设该环境下人群总人数为常数N ,假设:(I )在t 时刻健康人和病人数占总人数的比例分别为()S t 和()I t ;(II )在单位时间内,健康人受感染成为病人的人数为()()NS t I t λ;(III )在单位时间内,被治愈的病人数占病人总数的比例为常数μ.称λ为接触率,μ为治愈率,0λ>,0μ>.已知0(0)I I =.(1)试建立函数()I t 的微分方程(将()I t 视为t 的连续可微函数);(2)当时2μλ=,求解该方程,计算lim ()t I t →+∞,并说明此极限结果的实际意义.解:(1)有题意,在t 时刻,已感染的病人数为()NI t ,未感染者(健康人)人数为()NS t ,则有()()NI t NS t N +=,即()()1I t S t +=.则,[][]()()()()()N I t t I t NS t I t t NI t t λμ+∆-=∆-∆,因此()()()()dI t S t I t I t dtλμ=- 故所求模板为下面的微分方程的初值问题0()()(1())(),(0).dI t I t I t I t dtI I λμ⎧=--⎪⎨⎪=⎩ (2)当2μλ=时,方程为(1)dI I I dt λ=-+,分离变量可得111dI dt I I λ⎛⎫-=- ⎪+⎝⎭,故解得000()(1)t I I t I e I λ=+-,并且lim ()0t I t →+∞=.7.某海监船在执行任务中,发现正南方b 海里有一艘可疑船只往正东方向行驶.为探明可疑船只的行动目的,海监船立即开始跟踪可疑船只,在跟踪过程中,海监船航行方向始终指向可疑穿船只并保持二者距离不变.........,设以可疑船只初始位置为坐标原点建立坐标系. (1) 试写出海监船航行轨迹的微分方程及初始条件; (2)当海监船的航行方向与正东方向夹角为6π时,海监船行驶的路程为多少 海里?(3)求海监船航行轨迹方程. 解:(1)以可疑船只初始位置为坐标原点,正东方向为x 轴正向,正北方向为y 轴正向建立直角坐标系,则海盗船的起始位置为(0,)b .设(,)x y为海盗船运动轨迹的任意一点,由题意可知dy dx =(0)y b =. (2)当海盗船的运动方向与正东方向夹角为6π时。